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Abstract—In scene analysis, the availability of an initial back-
ground model that describes the scene without foreground objects
is at the basis of many computer vision applications. Multi-modal
models of the scene background are frequently adopted in the
applications, where each mode tries to keep track of the multiple
background modes observed along the sequence. In this work we
specifically address the problem of extracting a single background
image by a multi-modal model of the scene background, in
order to compare it against a given ground truth image of the
background. Experimental results are provided on the SBMnet
dataset, based on an existing multi-model background model and
different extraction criteria, and general conclusions are drawn.

I. INTRODUCTION

The availability of an initial background model that de-
scribes a scene without foreground objects is at the basis of
many applications, ranging from intelligent video surveillance
to computational photography [1], [2], [3], [4]. Therefore,
scene background initialization is a problem of interest for a
very vast audience. Also known as bootstrapping, background
estimation, background reconstruction, initial background ex-
traction, or background generation, its aim is to determine an
image describing the scene background empty of foreground
objects, given a set of images of the scene taken at different
times, in which the background is occluded by any number
of foreground objects [5]. Depending on the application, the
set of images (in the following referred to as the bootstrap
sequence) can consist of a subset of initial sequence frames
adopted for background training (e.g., for video surveillance),
a set of non-time sequence photographs (e.g., for computa-
tional photography), or the entire available sequence.

The problem of background initialization has been afforded
in several researches (for a survey of several methods, possible
classifications, and general issues, the reader is referred to
[5] and references therein; further recent works are also
summarized in [6], [7]). Most of the proposed methods are
specifically designed for background initialization, such as
those relying on subintervals of stable intensity (e.g., [8]),
iterative model completion (e.g., [9]), optimal labeling (e.g.,
[10]), or missing data reconstruction (e.g., [11]), eventually
corroborated by foreground detection (e.g., [12]). They provide
a uni-modal model of the scene background, i.e., a single
image of the estimated background, and their evaluation using
benchmarking datasets for background initialization, such as

the SBI dataset [6], the dataset adopted in [7], and the SBMnet
dataset (http://scenebackgroundmodeling.net), is carried out
comparing such images with ground truth (GT) background
images.

Any background modeling method, as those devised for the
detection of foreground objects through background subtrac-
tion (see [13] for a recent survey), can also be clearly adopted
for extracting an estimate of the scene background image.
However, in the frequent case of multi-modal background
models (e.g., MOG [14], KDE [15], and SOBS [16]), an issue
not yet deeply investigated is how to automatically select,
for each image pixel, the mode – among those stored in the
model – that is best suited for being adopted in the scene
background image. This issue naturally arises when evaluating
multi-modal background subtraction methods for the purpose
of background initialization [6], [17], [18], [19].

In this work we specifically address the problem of ex-
tracting a single background image by a multi-modal model
of the scene background, proposing and analyzing different
criteria. Rather than proposing a new background initialization
algorithm, our aim is to investigate possible ways to exploit
existing multi-modal background modeling algorithms for the
background initialization problem.

In Section II we briefly describe the SC-SOBS background
model [20], taken in our investigation as an example of multi-
modal model for the scene background. Four different criteria,
adapted to the SC-SOBS model, are proposed and justified in
Section III. Experimental results using these criteria are pro-
vided in Section IV using the SBMnet dataset, and compared
to the results of other background estimation methods. Section
V summarizes the achieved conclusions.

II. THE SC-SOBS BACKGROUND MODEL

The background model constructed and maintained in the
SC-SOBS algorithm [20] for background subtraction is based
on the idea of building an image sequence neural background
model by learning in a self-organizing manner image sequence
variations, seen as trajectories of pixels in time. The network
behaves as a competitive neural network that implements a
winner-take-all function, with an associated mechanism that
modifies the local synaptic plasticity of neurons, allowing
learning to be spatially restricted to the local neighborhood
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Fig. 1. Sequence Hybrid of the SBMnet dataset. First row: (a) frame I0 (size 296×208); (b) SC-SOBS model B0 (size 888×624); (c) frame I230; (d)
updated SC-SOBS model B230. Second row: details (corresponding to the small red rectangle) of the same images of the first row (best viewed online).

of the most active neurons. Therefore, the neural background
model well adapts to scene changes, capturing the most
persisting features of the image sequence.

Given an image sequence {It}, for each pixel p in the image
domain D, a neuronal map is built consisting of n×n weight
vectors mi,j

t (p), i, j=0, . . . , n-1, which will be called a model
for pixel p and will be indicated as Mt(p):

Mt(p) =
{
mi,j

t (p), i, j = 0, . . . , n− 1
}
. (1)

The complete set of models Mt(p) for all pixels p of the t-
th sequence frame It is organized as a 2D neuronal map Bt,
where each pixel is represented by a local n × n neuronal
map. This configuration allows us to easily take into account
the spatial relationship among pixels and corresponding weight
vectors.

For each pixel p, the corresponding weight vectors of the
model M0(p) are initialized with the pixel brightness value at
time t = 0 (mi,j

0 (p) = I0(p), i, j = 0, . . . , n− 1). Therefore,
the resulting neuronal map B0, obtained for all pixels p, is
an n× n enlarged version of the first sequence frame I0. For
example, the initial neuronal map B0, shown in Fig. 1-(b) as
an image of size 888 × 624, has been obtained by the first
sequence frame I0 of size 296 × 208 (Fig. 1-(a)) choosing
n = 3, as in all the experiments reported in Section IV.

At each subsequent time step t, background subtraction is
achieved by comparing each pixel p of the t-th sequence frame
It with the current pixel model Mt−1(p), in order to determine
if there exists a best matching weight vector in Mt−1(p) that is
close enough to it. To this end, in the experiments reported in
Section IV, the Euclidean distance of vectors in the HSV color
hexcone has been adopted. If no acceptable matching weight
vector exists, p is detected as a foreground pixel; otherwise,
it means that p is a background pixel.

In case of spatially coherent background pixels, further
learning of the neuronal map enables the adaptation of the

background model to slight scene modifications. Such learning
is achieved by updating the neural weights according to a
visual attention mechanism of reinforcement, where the best
matching weight vectors, together with their neighborhood,
are reinforced into the neuronal map. As an example, in Fig.
1-(d) we report the updated SC-SOBS model B230 at time
t = 230. Looking at the model detail shown in Fig. 1-(h),
we can see that the updated background model stores many
more variations of the blue color than the current sequence
frame (Fig. 1-(g)). These are the updated weight vectors,
that represent the most persisting background values observed
along the sequence (mainly the water sky blue, but also darker
blue values corresponding to swimming fish).

The above described initialization and update procedures
are generally adopted for training, over the initial K training
frames of a given sequence, the neural network background
model, to be used for detection and adaptation in all subse-
quent sequence frames. What differentiates the training and the
adaptation phases is the choice of method parameters. Specif-
ically, during training, the foreground segmentation threshold
is assigned a high value, so as to obtain a (possibly rough)
initial background model that includes several observed pixel
intensity variations, and the learning factor for model update
is chosen as a monotonically decreasing function of time t, in
order to ensure neural network convergence. For further details
related to the background model update procedure and all the
method parameters, the reader is referred to [20].

III. EXTRACTING A BACKGROUND IMAGE

For the purpose of background initialization, the SC-SOBS
background model BK is computed as the result of the initial
training over the entire bootstrap sequence I0, . . . , IK , and,
as outlined in Section II, it consists of n2 weight vectors for
each pixel. The background image estimate BE, of the same
size of the bootstrap sequence, can be extracted according to
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Fig. 2. Sequence advertisementBoard of the backgroundMotion category: (a)-(f) GT background images, representing 6 different contents of the changing
advertisement board, shown in order of appearance; (g)-(m) results of SC-SOBS-C3 for each of the corresponding GT (best viewed online).

several procedures. In this paper, we considered four different
criteria for each pixel p:

• C1 (multi-modes average): as the mean of the model
MK(p) for pixel p

BE(p) = meani,j=0,...,n−1(m
i,j
K (p)).

This way of proceeding is analogous to the one adopted
in publicly available software for extracting a single
background image by a multi-modal background model
(e.g., MOG2 in OpenCV [21]). However, it should be
stressed that taking the average of the stored modes (the
n2 weight vectors for SC-SOBS or the k Gaussian means
for MOG [14]) has little meaning as compared to the
whole multi-modal model, that tries to keep track of the
(possibly very different) background modes during the
bootstrap sequence.

• C2 (multi-modes vs. last frame): by choosing, in the
model MK(p) for pixel p, the weight vector BE(p) that
is closest to the corresponding pixel in the last frame of
the bootstrap sequence

d(BE(p), IK(p)) = min
i,j=0,...,n−1

d(mi,j
K (p), IK(p)),

(2)
according to a distance d(·) (in the experiments it is the
L2 norm of the RGB values). This way of proceeding is
strictly related to the motivation of any background sub-
traction method (i.e., change detection), since the model
estimated during a bootstrap sequence is to be adopted for
background subtraction with subsequent sequence frames
(represented in this case by the last bootstrap frame IK).

• C3 (multi-modes vs. ground truth): by choosing the
modeling weight vector that is closest to the ground truth
image GT (as we did in [6]), i.e., substituting IK with
GT in Eq. (2). The aim here is to provide the best
representation of the background that can be achieved
through the constructed background multi-modal model,
even though it is only applicable for comparison pur-
poses, being based on the knowledge of a ground truth
to compare with.

• C4 (multi-modes vs. reference uni-mode): by choosing
the modeling weight vector that is closest to the cor-
responding pixel in the background image R estimated
by the most accurate uni-modal background initialization
method, i.e., substituting IK with R in Eq. (2). The
aim here is to provide the best representation of the
background that can be achieved through the constructed
background multi-modal model, in a way that, at the same
time, is independent on the knowledge of a ground truth
background. As byproduct, it shows to what extent the
multi-modal method outperforms the best uni-modal one.

We explicitly observe that the above reasonings, formulated
for the SC-SOBS model adopted as an example, can be easily
extended to many other multi-modal background subtraction
methods.

IV. EXPERIMENTAL RESULTS ON SBMNET

Our experimental analysis is based on the SBMnet dataset,
that includes 79 different videos, each with one or more
GT background images, spanning 8 categories selected to
include diverse scene background modeling challenges (Ba-
sic, Intermittent Motion, Clutter, Jitter, Illumination Changes,
Background Motion, Very Long, and Very Short).

The metrics adopted for SBMnet have been chosen among
those frequently used in the literature for background ini-
tialization, as described in detail in [6]. Lower values for
AGE, pEPs, and pCEPs, as well as higher values for PSNR,
MS-SSIM, and CQM, indicate higher accuracy of the esti-
mated background image. For each sequence, they are evalu-
ated comparing the estimated background images with a GT
background image. For selected sequences, showing different
conditions along the bootstrap sequences, more than one GT
background image is available; in these cases, the reported
performance results are those that maximize the MS-SSIM
value, in accordance with the SBMnet evaluation scripts.

Background images extracted by the SC-SOBS model using
the four procedures outlined in Section III have been compared
to those obtained with other background initialization methods.
As in [22], the temporal ColorMedian background estimate is
computed, for each pixel, as the one that minimizes the sum
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Fig. 3. Sequence advertisementBoard of the backgroundMotion category:
(a) SC-SOBS model; (b) results of SC-SOBS-C1; (c) result of SC-SOBS-C2
(extracted using the last sequence frame shown in (d)); (e) result of SC-SOBS-
C4 (extracted using as reference the result of Photomontage shown in (f)); (g)
SC-SOBS-C4b (extracted using as reference the result of ColorMedian shown
in (h)) (best viewed online).

of L∞ distances of the RGB value from all RGB values for
that pixel along the sequence. Results for Photomontage [10]
have been obtained through the software made available by
the authors, choosing the maximum likelihood image objective
as data term for achieving visual smoothness. Being based
on a batch processing algorithm, in the case of too long
sequences, a subset of equidistant frames along the sequence
has been selected. Finally, the background estimates extracted
by the SC-SOBS model have been obtained as described
in Section III. Specifically, the SC-SOBS model has been
obtained as the result of the initial training of the related
software (publicly available in the download section of the
CVPRLab at http://cvprlab.uniparthenope.it) using for all the
sequences the same default parameter values. Results indicated
as SC-SOBS-C4 are obtained using criterion C4, choosing
as reference background estimation method Photomontage,

that, according to Table I, is the most accurate uni-modal
background estimation method among those here considered
for comparison. For further analysis, we also report results
SC-SOBS-C4b, obtained by choosing the temporal Color Me-
dian, that, on average, is the second most accurate compared
method. It should be made clear that the adopted ranking, that
naturally arises from the average overall results of Table I,
can clearly differ from the average ranking across categories
reported on the SBMnet website.

Examples of background images extracted by the SC-SOBS
model using the four procedures outlined in Section III and
by the compared methods are reported in Figs. 2 and 3. In
the first row of Fig. 2, we report the six GT images pro-
vided in the SBMnet dataset for sequence advertisementBoard,
representing the scene empty of foreground objects, with 6
different contents of the changing advertisement board. In the
second row of Fig. 2, we report the result of SC-SOBS-C3
for each of the corresponding GT. From these results we can
observe that the background model (reported in Fig. 3-(a)),
consisting in all the experiments of 3 × 3 weight vectors
for each pixel, well represents the ground truth background
appearing at the end of the video sequence, as shown in Fig.
2-(m) and, to some extent, in Fig. 2-(l). This is due to the
SC-SOBS update strategy, that tends to incorporate into the
background model the most recent background pixels. The
mean adopted in SC-SOBS-C1, instead, produces an averaged
version of the advertisement boards (shown in Fig. 3-(b)),
corresponding to none of the GT background images. Using
the last sequence frame (shown in Fig. 3-(d)), SC-SOBS-C2
produces an advertisement board (shown in Fig. 3-(c)) very
similar to the last GT reported in Fig. 2-(f), but it also includes
part of the moving cars along the highway, that have pixel
colors similar to those stored in the SC-SOBS model. Using
as reference the result of Photomontage (shown in Fig. 3-(f)),
SC-SOBS-C4 produces an advertisement board closest to it
(shown in Fig. 3-(e)), but again using the stored modes that
better represent the last sequence frames. Finally, using as
reference the result of temporal ColorMedian (shown in Fig.
3-(h)), SC-SOBS-C4b produces an advertisement board very
similar to the GT reported in Fig. 2-(e).

Quantitative performance results on SBMnet are compared
in Tables I and II in terms of average performance measures
achieved by the different background initialization methods
overall and on each video category, respectively. Here, we
observe that performance measures achieved by SC-SOBS-C3
are the best for all categories. This shows the extreme ability
of the SC-SOBS model to represent the scene background.
However, as already pointed out in Section III, the way
the estimated background images are extracted by the model
according to the criterion C3 is too biased, as compared to the
other methods. This is the reason why we report in boldface
the best results for each metric among all compared methods,
but excluding SC-SOBS-C3.

Among results extracted by the SC-SOBS model, worst per-
formance measures are those achieved by SC-SOBS-C1. This
confirms the unsuitability of the usual practice for extracting a

146



TABLE I
AVERAGE ACCURACY RESULTS ON THE WHOLE SBMNET DATASET. IN
BOLDFACE/UNDERLINED THE BEST/SECOND BEST RESULTS FOR EACH

METRIC AMONG ALL COMPARED METHODS (EXCLUDING SC-SOBS-C3).

Method AGE pEPs pCEPs MS-SSIM PSNR CQM
ColorMedian 8.1150 0.0959 0.0526 0.9133 27.6703 28.6064
Photomontage 7.1950 0.0686 0.0257 0.9189 28.0113 28.8719
SC-SOBS-C1 10.6887 0.1499 0.0665 0.8843 24.8675 25.9016
SC-SOBS-C2 7.7161 0.0808 0.0335 0.9047 26.9576 27.9199
SC-SOBS-C4 7.5183 0.0711 0.0242 0.9160 27.6533 28.5601
SC-SOBS-C4b 7.9262 0.0776 0.0324 0.9086 27.6354 28.5362
SC-SOBS-C3 2.5863 0.0161 0.0045 0.9800 36.3332 36.8729

background image from a multi-modal background model by
averaging its modes.

According to Table I, performance measures achieved by
SC-SOBS-C4 are on average the best among those extracted
by the SC-SOBS model. Even though the reference back-
ground estimation method (Photomontage) achieves overall
results better than SC-SOBS-C4, there are many categories
(namely, Basic, IntermittentMotion, Jitter, BackgroundMotion,
and VeryLong) for which SC-SOBS-C4 results are better (see
Table II). The reason is that the multi-modal SC-SOBS model
is able to store different background values, chosen among
the most persistent along the bootstrap sequence, and thus
excluding eventual non persistent foreground values. For the
IlluminationChanges category, instead, SC-SOBS-C4 achieves
much worse performance results than Photomontage. Example
results for sequence CameraParameter from this category are
reported in Fig. 4 and Table III. For this sequence, two GT
images are provided in SBMnet, representing the scene with
lights off and on (Figs. 4-(a)-(b)). The result of Photomontage
(Fig. 4-(d)) is close to the more frequent dark scenario,
while the SC-SOBS model (Fig. 4-(c)), being updated for
online background subtraction, tends to better represent the lit
scenario of the last bootstrap frames. Therefore, SC-SOBS-C4
(Fig. 4-(e)), extracted taking for reference the dark scenario,
achieves poor performance results. Better results, in this case,
are achieved taking into account the bright last sequence frame
(see result of SC-SOBS-C2 in Fig. 4-(f)).

Further considerations can be drawn comparing SC-SOBS-
C4 and SC-SOBS-C4b results, obtained using the C4 crite-
rion and different reference uni-modal background estimation
methods. Generally, as expected, better background images are
extracted by taking as reference the more accurate method, as
shown in Table I, even though there may be isolated cases
not fulfilling this expectation (e.g., for the VeryShort category,
where slightly better results are achieved by SC-SOBS-C4b as
compared to those of SC-SOBS-C4).

V. CONCLUSION

Driven by the need to compare different background models
for the purpose of background estimation, in this paper we
analyzed different automatic criteria for extracting a single
estimated background image by a multi-modal model, exem-
plifying several alternatives based on the SC-SOBS multi-
modal background model.

TABLE II
ACCURACY RESULTS ON ALL CATEGORIES OF THE SBMNET DATASET. IN

BOLDFACE THE BEST RESULTS FOR EACH METRIC AMONG ALL COMPARED
METHODS (EXCLUDING SC-SOBS-C3).

Method AGE pEPs pCEPs MS-SSIM PSNR CQM

B
as

ic

ColorMedian 3.6941 0.0127 0.0035 0.9810 34.1813 34.8247
Photomontage 4.4856 0.0226 0.0039 0.9719 32.3208 32.9621
SC-SOBS-C1 8.5898 0.1125 0.0475 0.9287 26.4904 27.5031
SC-SOBS-C2 5.6780 0.0418 0.0179 0.9466 28.5685 29.5205
SC-SOBS-C4 4.3598 0.0200 0.0033 0.9728 32.1766 32.8665
SC-SOBS-C4b 3.9135 0.0146 0.0033 0.9777 32.9309 33.6122
SC-SOBS-C3 1.8025 0.0036 0.0017 0.9902 39.4453 39.8313

In
t.M

ot
io

n

ColorMedian 6.8457 0.0612 0.0414 0.9151 24.7058 25.7739
Photomontage 7.1460 0.0639 0.0427 0.9138 24.8941 25.8682
SC-SOBS-C1 9.5116 0.1323 0.0551 0.8976 24.6332 25.7379
SC-SOBS-C2 6.2452 0.0518 0.0290 0.9396 26.6425 27.7076
SC-SOBS-C4 6.2583 0.0487 0.0238 0.9255 25.9249 26.9569
SC-SOBS-C4b 6.1912 0.0486 0.0241 0.9251 25.7893 26.8305
SC-SOBS-C3 2.6263 0.0137 0.0078 0.9781 34.1659 34.9035

C
lu

tte
r

ColorMedian 12.4760 0.1555 0.1066 0.8120 26.0386 27.1007
Photomontage 6.8195 0.0543 0.0294 0.8892 28.5554 29.4882
SC-SOBS-C1 18.0379 0.2982 0.1890 0.7959 21.8034 23.0811
SC-SOBS-C2 12.9403 0.1640 0.0915 0.7900 21.5548 22.8110
SC-SOBS-C4 7.0590 0.0644 0.0304 0.8939 28.0077 29.0737
SC-SOBS-C4b 12.7395 0.1568 0.1034 0.8102 25.4252 26.5450
SC-SOBS-C3 3.6306 0.0294 0.0113 0.9653 33.5012 34.3982

Ji
tte

r
ColorMedian 8.9660 0.1048 0.0401 0.8565 25.6888 26.7869
Photomontage 10.1272 0.1210 0.0441 0.8390 24.3478 25.4186
SC-SOBS-C1 12.9314 0.1990 0.0812 0.7905 22.3104 23.4806
SC-SOBS-C2 10.7645 0.1315 0.0559 0.8179 23.8171 24.9466
SC-SOBS-C4 10.0232 0.1186 0.0420 0.8403 24.5562 25.6570
SC-SOBS-C4b 9.3232 0.1078 0.0398 0.8506 25.2905 26.3732
SC-SOBS-C3 3.8419 0.0355 0.0090 0.9577 32.9675 33.7220

Il
l.

C
ha

ng
es

ColorMedian 12.0055 0.2308 0.1768 0.9377 24.3424 25.4479
Photomontage 5.2668 0.0329 0.0155 0.9743 30.2102 31.0393
SC-SOBS-C1 11.0782 0.1404 0.0729 0.9242 24.7584 25.6874
SC-SOBS-C2 4.7231 0.0300 0.0139 0.9827 30.6951 31.4548
SC-SOBS-C4 10.3591 0.1005 0.0574 0.9075 26.2190 27.0837
SC-SOBS-C4b 10.9937 0.1081 0.0571 0.9031 25.2372 26.1682
SC-SOBS-C3 1.7964 0.0074 0.0009 0.9940 38.1984 38.6331

B
ck

g.
M

ot
io

n

ColorMedian 9.0640 0.1200 0.0253 0.8679 26.3857 27.3097
Photomontage 12.0930 0.1589 0.0410 0.8244 23.5420 24.5253
SC-SOBS-C1 10.5269 0.1516 0.0330 0.8626 24.7998 25.7293
SC-SOBS-C2 10.1155 0.1373 0.0329 0.8627 25.4669 26.4329
SC-SOBS-C4 10.7280 0.1481 0.0302 0.8486 24.5806 25.5603
SC-SOBS-C4b 9.2921 0.1236 0.0240 0.8692 25.8423 26.7056
SC-SOBS-C3 3.4983 0.0308 0.0027 0.9738 34.2457 34.6913

Ve
ry

Lo
ng

ColorMedian 6.8762 0.0549 0.0208 0.9848 29.5425 30.4075
Photomontage 6.6446 0.0629 0.0259 0.9838 29.2081 30.0166
SC-SOBS-C1 6.7501 0.0645 0.0106 0.9683 28.0284 28.9539
SC-SOBS-C2 4.2929 0.0280 0.0051 0.9714 31.1008 31.8405
SC-SOBS-C4 6.0638 0.0355 0.0021 0.9837 29.2615 30.1014
SC-SOBS-C4b 5.6626 0.0308 0.0015 0.9847 30.4258 31.1957
SC-SOBS-C3 1.2410 0.0008 0.0001 0.9963 41.3309 41.6148

Ve
ry

Sh
or

t

ColorMedian 4.9923 0.0277 0.0060 0.9515 30.4774 31.1999
Photomontage 4.9770 0.0327 0.0030 0.9548 31.0117 31.6568
SC-SOBS-C1 8.0835 0.1003 0.0424 0.9070 26.1158 27.0397
SC-SOBS-C2 6.9668 0.0616 0.0257 0.9266 27.8168 28.6472
SC-SOBS-C4 5.2953 0.0330 0.0044 0.9556 30.4997 31.1813
SC-SOBS-C4b 5.2764 0.0309 0.0073 0.9493 30.2797 30.9889
SC-SOBS-C3 2.2531 0.0077 0.0024 0.9848 36.8109 37.1887

TABLE III
ACCURACY RESULTS ON CameraParameter SEQUENCE.

Method AGE pEPs pCEPs MS-SSIM PSNR CQM
Photomontage 1.6291 0.0003 0.0000 0.9925 40.4538 40.7403
SC-SOBS-C2 7.4852 0.0688 0.0265 0.9796 23.7660 24.7126
SC-SOBS-C4 30.9091 0.3493 0.2219 0.6086 13.4793 14.7779
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(c) (d)

(e) (f)

Fig. 4. Sequence CameraParameter of the illuminationChanges category:
(a) and (b) GT background images, representing the scene with lights off
and on, respectively; (c) SC-SOBS model; results of (d) Photomontage, (e)
SC-SOBS-C4, and (f) SC-SOBS-C2.

Following extensive experimental results carried out on
the SBMnet dataset (http://scenebackgroundmodeling.net), we
showed the unsuitability of the usual practice for extracting a
background image from a multi-modal background model by
averaging its modes. Instead, the best criterion resulted the one
that, for each pixel, considers the mode that is closest to the
corresponding pixel in the background image computed with
the most accurate uni-modal background estimation algorithm.
The choice for such reference estimated background image can
easily be done looking at the benchmarking results available
through the SMBnet website.
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