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Abstract—In this work, we propose a metric adaptation
method for set-based face verification and evaluate it on the
newly released IARPA Janus Benchmark A (IJB-A) dataset
and its extended version, the Janus Challenging Set 2 (CS2).
A template-specific metric is trained to adaptively learn the
discriminative information in test templates and the negative
training set, which contains subjects that are mutually exclusive
to subjects in test templates. The proposed regularized joint
Bayesian metric learning framework not only alleviates the over-
fitting problem but also provides a way to efficiently reduce the
model size. We also analyze the selection of the compact and
representative negative set to speed up the training time and
to reduce storage space. Experiments on the IJB-A and CS2
datasets yield promising results.

I. INTRODUCTION

Face verification research has been one of the active
research areas in computer vision community for decades.
Although performance on the well-known unconstrained face
dataset, the Labeled Faces in the Wild (LFW) [10][13], has
been pushed to surpass human performance by deep convolu-
tional neural network approaches [18][16], most faces in the
LFW dataset are in frontal or near-frontal poses. Therefore,
the problem of unconstrained face verification under extreme
pose, illumination, and expression variations is still unsolved.
Recently, the IARPA Janus Benchmark A (IJB-A) dataset [12]
was released to address these problems which contains more
challenging unconstrained acquisition conditions, including
full pose and illumination variations, aging and occlusion. In
addition, the protocol for IJB-A verification is set/template-
based, and each set/template contains a mixture of images or
frames from multiple videos of the same person. Different
from the traditional image-to-image or single video-to-video
comparisons, this new protocol is more challenging and practi-
cal because faces from heterogeneous sources introduce larger
variations within the templates.

In this paper, we propose a metric adaptation method for the
set-based face verification problem. Given a pair of templates,
the idea of metric adaptation is to learn a template-specific
metric by utilizing the intra-information between features in
one template and the inter-information between the template
and the negative set (i.e., the negative set is a set of samples
from subjects who are mutually exclusive to the test data.). In
principle, this is similar to the one-shot approach [21] used

for one-to-one verification where intra-information cannot be
exploited.

In general, the proposed regularized joint Bayesian metric
learning framework alleviates the over-fitting problem. In ad-
dition, it provides a way to significantly reduce the model size
without much degradation in performance. We also analyze
the selection of the negative set to reduce its size and to
accelerate the metric learning process. Extensive experiments
on IJB-A and CS2 datasets yield promising results compared
to other competitive methods.

The rest of the paper is organized as follows. A brief review
of related works is presented in Section II. In Section III, we
present the details of the proposed method and the strategy for
selecting the negative set. We present the experimental results
in Section IV and finally conclude in Section V.

II. RELATED WORK

We briefly review several related works on metric learning
for face verification problems.

The discriminative similarity measure is a key component
in improving the performance for a face verification system.
Taigman et al. [19] learned the Mahalanobis distance for face
verification using the Information Theoretic Metric Learning
(ITML) proposed in [6]. Weinberger et al. [20] proposed
the Large Margin Nearest Neighbor (LMNN) metric which
enforces the large margin constraint on the relative distances
among all triplets of labeled training data (i.e. a triplet consists
of an anchor sample, a positive sample with the same label as
the anchor and a negative sample with a different label.). Chen
et al. [2] proposed a joint Bayesian approach which models
the joint distribution of a pair of face images directly instead
of their difference vector, and the ratio of between-class and
within-class probabilities is adopted as the similarity measure.
Hu et al. [9] proposed a discriminative deep metric from
hand-crafted features for face verification using a deep neural
network. Huang et al. [11] proposed a projection metric which
preserves the underlying manifold structure of the labeled
training images. Schroff et al. [16] and Parkhi et al. [14]
optimized the DCNN parameters based on triplet distance
embedding loss which directly embeds the DCNN features
into a discriminative subspace and presented promising results
for face verification. Recently, Sankaranarayanan et al. [15]
used triplet metric learning based on similarity instead of
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Fig. 1. The system overview of the proposed regularized metric adaptation method for unconstrained face verification.

a distance measure to achieve better results for the face
verification task.

On the other hand, besides learning a metric from the
training data, Wolf et al. [21] proposed the one-shot similarity
(OSS) kernel based on a set of pre-selected reference images
that are mutually exclusive to the pair of images being
compared and training a discriminative classifier between the
test images and the reference set. Guo et al. [7] followed
the same paradigm and developed the one-shot similarity
approach based on partial least square regressors to leverage
the rich information of the high-dimensional feature obtained
by concatenating Gabor [22], LBP [1], and HOG [5] fea-
tures. In [8], Guo et al. extended their one-shot similarity
approach using a sparse representation that does not require
any training of classifiers between the reference set and test
samples. Crosswhite et al. [4] developed a one-shot similarity
framework based on linear support vector machines and deep
convolutional features of faces and achieved competitive re-
sults for the unconstrained face verification task. Our approach
falls in this category: we adapt the joint Bayesian metric to
the one-shot similarity framework and achieve good results.
Furthermore, we also demonstrate in Section IV that our
regularized formulation can be used to reduce the model size
but still yield comparable results to those obtained using the
original metric.

III. PROPOSED METHOD

A. Regularized Joint Bayesian Metric Learning

The joint Bayesian metric learning has been shown to be
effective for face verification [2], [3]. Its formulation can
also be interpreted as the combination of two components:
Mahalanobis distance and projected cosine similarity. In gen-
eral, directly minimizing the hinge loss objective function

usually results in a large model complexity and over-fitting
problems due to a large number of parameters introduced
by metric matrices. On the other hand, Euclidean distance
and cosine similarity provide a good baseline performance
on deep convolutional features [3] for the face verification
task. In addition, Euclidean distance and cosine similarity have
better generalization capability because they are not trained
on a particular training set. The model size for Euclidean
and cosine metric is also small since only the diagonal terms
are non-zeros. Therefore, we add the regularization terms to
enforce the learned metric matrices to stay close to identity
matrices, since when both metric matrices are identity, the
computation of the similarity scores reduces to the summation
of the Euclidean distance and the cosine similarity.

Given a set of features X, we construct positive pairs if
both features belong to the same person and negative pairs
otherwise. The goal of the metric learning is to increase the
similarity score of positive pairs while decreasing the negative
ones. We solve an optimization problem as follows:

argmin
W,V,b

∑
ij

max{0, α− lij(b−dW(xi, xj)+2sV(xi, xj))}

+ λ1‖W − I‖2F + λ2‖V − I‖2F (1)

where dW(xi, xj) = (xi − xj)
TWTW(xi − xj) is the

Mahalanobis distance and sV(xi, xj) = xTi VTVxj is the
projected similarity. Both W ∈ Rd×d and V ∈ Rd×d are
the projection matrices. lij = 1 if {xi, xj} is a positive pair
and lij = −1, otherwise. b is the bias and α is the margin
parameter. λ1, λ2 are the regularization parameters to control
the regularization terms.

To solve the optimization problem in (1), we apply the
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stochastic gradient descent (SGD) method as follows:

Wt+1 =

{
Wt, if lijρij ≥ α
Wt − τ(lijWtΨij + λ1(W − I)), otherwise,

Vt+1 =

{
Vt, if lijρij ≥ α
Vt + τ(lijVtΓij + λ2(V − I)), otherwise,

bt+1 =

{
bt, if lijρij ≥ α
bt + τ lij , otherwise,

(2)
where τ is the learning rate, Ψij = (xi − xj)(xi − xj)

T ,
Γij = xix

T
j +xjx

T
i , ρij = b−dW(xi, xj)+2sV(xi, xj). Note

that the regularization term is updated only when the condition
is violated instead of being updated for every iteration. In
practice, this strategy significantly reduces the computation
complexity but yields similar results.

B. Metric Adaptation with Negative Set

Given a negative training set T which has no overlapping
subjects with the test set and a pair of test templates G
and P , we adaptively learn two metric metrics for templates
G and P as described below. The positive pairs are gener-
ated by every two features in G (i.e., if the template only
contains a single face image, we use the features extracted
from the image and its horizontally flipped one.). On the
other hand, the negative pairs are generated for every two
features between G and T (i.e., one in G, and the other
one in T .). With a bunch of positive and negative pairs, we
train the regularized metric for G by solving (1). Once the
metric matrices are learned, we compute the similarity score
ρG(P,G) = bG − dWG

(xG, xP ) + 2sVG
(xG, xP ), where xG

and xP are the average of unit-normalized features for the
template (i.e. the average used here is media sensitive: the
features from the same video will be averaged first and then
averaged with others.). Similarly, we train a metric for the
template P and compute ρP (P,G). Finally, the similarity
score between G and P is computed as the weighted sum
of the two scores: s(P,G) = βρG + (1 − β)ρP where β
is the weight used to balance the two similarity scores and is
determined as the ratio of the number of positive pairs in each
template. The overview of the proposed method is illustrated
in Figure 1.

C. Negative Set Selection

In general, a large negative set is preferred for metric
adaptation since more diverse negative pairs help to learn a
better metric. However, since metric adaptation is conducted
during testing time, it is essential to reduce the size of the
negative set to speed up the computation. One simple solution
is to directly average and normalize the features by subjects
and use the averaged features as the negative set. However,
since the training set contains some faces which may be badly
aligned or in extreme pose or illumination conditions, directly
averaging them with other good features introduces errors and
degrades the performance. We develop a strategy to identify
outliers based on the results of K-means clustering and only
use the good features for averaging. First, the mean feature of

each subject is used to initialize the K-means algorithm, K is
set as the number of subjects in the negative set, and then we
apply the K-means algorithm on the entire negative set. In the
best situation, all the features should be assigned to the cluster
corresponding to their ground truth labels. If some features are
assigned to the clusters of other subjects, these features are
potential outliers to their own subjects. Nevertheless, if the
subjects contain very few features, it is possible that all the
features in the subjects are assigned to other subjects. In this
case, we should preserve all the features in the subjects. The
detailed steps are summarized in Algorithm 1.

Algorithm 1 Negative Set Selection
Input: Original Negative Set X , class labels for all the

features in X .
Output: Representative negative set Xr.

1. Mean selection: For each subject i, compute the mean
point xMi

2. Representative feature selection: Apply the K-means
algorithm on the entire set X , using all the xMi obtained
from step 1 for initialization. For each feature, compare its
new cluster index with its true label. Preserve the consistent
ones.
3. Outliers removing: Remove the non-consistent features.
If there is no consistent feature for certain subjects, preserve
all the features.
4. Representative features averaging: Average the remain-
ing features in each subject to get the final negative set Xr.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed approach on
the challenging IARPA Janus Benchmark A (IJB-A) and
its extended version, the Janus Challenging Set 2 (CS2).
Some alternative methods are compared and the receiver
operating characteristic curves (ROC) are used to measure
the performance for different algorithms. We also discuss the
reduction of model size and the selection of the negative set.

A. Experiment Setup

The DCNN features used in all the experiments of this work
are the pool5 features extracted by the deep convolutional
network proposed in [3] which consists of ten convolutional
layers, five pooling layers and one fully connected layer
and is trained using the CASIA-WebFace dataset [23]. The
dimensionality of the pool5 features is 320. Media averaging
pooling followed by unit-normalization for the feature vectors
are used as the preprocessing steps after feature extraction [4].

For the parameters used in (1), we set margin α = 0.001,
regularization parameters λ1 = λ2 = 0.01, and the learning
rate τ = 0.01. In general, a large margin results in a more
strict condition for lijρij ≥ α in (2), where the condition
is easier to be violated and the metric will be updated very
often. This may discourage the metric from learning the hard
positives or negatives. Therefore, we set the margin to a
relatively small number so that the metric is updated based
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Method Negative Set Usage, Size TAR@FAR = 10−3 TAR@FAR = 10−2 TAR@FAR = 10−1

Cosine No 0.598±0.078 0.802±0.055 0.945±0.009
JBML Yes, during training period, about 10,000 0.655±0.072 0.836±0.028 0.955±0.006

SVM-TA-v0 [4] Yes, during adaptation period, N/A N/A 0.939±0.013 N/A
SVM-TA-v1 [4] Yes, during adaptation period, 332 0.723±0.034 0.874±0.012 0.956±0.006
SVM-TA-v1 [4] Yes, during adaptation period, about 10,000 0.757±0.048 0.888±0.013 0.956±0.007

RMA Yes, during adaptation period, 332 0.763±0.037 0.887±0.014 0.959±0.005

TABLE I
VERIFICATION RESULTS ON IJB-A DATASET. THE RESULTS ARE AVERAGED OVER 10 SPLITS. THE RESULTS OF SVM-TA-V0 IN THE THIRD ROW ARE

DIRECTLY CITED FROM THE ORIGINAL PAPER. THE RESULTS OF SVM-TA-V1 ARE IMPLEMENTED BY US.

Fig. 3. Sample images in IJB-A dataset.

on the hard negative/positive pairs. This idea is similar to the
hard negative/positive mining strategy which is widely used in
metric learning and has proven to be effective [17], [16], [15].
The learning rate and the regularization parameter are deter-
mined based on cross validation. We initialize W0 = V0 = I
and b0 is learned using only the negative set during the training
period. The size of negative set is 332 which is the number of
subjects in the set. In our experiments, all the possible positive
and negative pairs are used to learn the metric for five epochs
because the size of the negative set and the testing templates
are small. The weight used to balance the two similarity scores
is set as the ratio of the number of positive pairs in each
template.

B. Evaluation on IJB-A and CS2 Datasets

Both IJB-A and JANUS CS2 datasets contain 500 subjects
with 5,397 images and 2,042 videos. The datasets are divided
into training sets which contain 333 subjects, and test sets
which contain 167 subjects. Based on the different training/
test set division, ten splits are generated. Some sample images
are shown in Figure 3. The training sets are shared for both
datasets. For the test set, JANUS CS2 contains about 167
gallery templates and 1763 probe templates. All pairs of
gallery-to-probe templates are used for verification. The IJB-
A evaluation protocol selects around 11,748 hard pairs of
gallery-to-probe templates (1,756 positive and 9,992 negative
pairs) from JANUS CS2.

We compare the results of the proposed regularized met-
ric adaptation (RMA) approach with two baseline methods,
the cosine similarity without metric learning and the joint
Bayesian metric learning (JBML) without metric adaptation.
The cosine similarity method is unsupervised and does not re-
quire any training set while JBML is trained using the training
data of IJB-A and JANUS CS2 during the training period and
the trained model is then applied in the testing phase. We also
compare our results with the recently proposed SVM-based

Fig. 4. Sample pair that is correctly classified by RMA while mis-classified
by JBML.

template adaptation (SVM-TA) method [4], which requires
a large negative set in testing phase for template adaptation.
We cite the results from [4] as SVM-TA-v0. We also follow
the same preprocessing steps and use the same parameters
described in [4] for our implemented features as SVM-TA-v1
for comparison. The main difference comes from the DCNN
features used in both works where in [4] the network is
trained using the VGG face dataset which contains more face
images (around 2.6 million faces) than the CASIA-WebFace
dataset (around 500K faces) used by us.

Figure 2(a) shows the ROC curves for the IJB-A dataset.
Table IV shows the True Acceptance Rate (TAR) when
False Alarm Rate (FAR) at 10−3, 10−2, 10−1. The results
are averaged over 10 splits. It is observed that the proposed
method RMA shows better results than other non-adaptation
baselines especially in the low FAR region. Figure 4 shows
an example pair that is correctly classified by RMA, yet mis-
classified by JBML at FAR = 10−2. It demonstrates the
effectiveness of the metric adaptation approach for the hard
case, where extreme poses and occlusions are present. Notice
that two versions of the SVM-TA-v1 results are reported
based on whether a small or a large negative set is used. We
outperform SVM-TA-v1 when using the same negative set
while perform comparably when SVM-TA-v1 uses a larger
negative set. It demonstrates that metric learning can fully
exploit the discriminative information in a relatively small
negative set.

Figure 2(b) shows the ROC curves for the CS2 dataset.
Table IV-B shows the performance of different methods on
the CS2 dataset. Results are averaged over 10 splits. As an
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Fig. 2. ROC curves for IJB-A and CS2 dataset. The results are averaged over 10 splits. SVM-TA-SMALL means using a small negative set and SVM-TA-
LARGE means using a large negative set where SVM-TA refers to our implementation, SVM-TA-v1.

Method Negative Set Usage, Size TAR@FAR = 10−3 TAR@FAR = 10−2 TAR@FAR = 10−1

Cosine No 0.748±0.031 0.898 ±0.010 0.945 ±0.003
JBML Yes, during training period, about 10,000 0.773±0.040 0.908±0.007 0.974±0.004

SVM-TA-v1 [4] Yes, during adaptation period, 332 0.792±0.018 0.904±0.007 0.965±0.004
SVM-TA-v1 [4] Yes, during adaptation period, about 10,000 0.827±0.014 0.918± 0.007 0.965±0.003

RMA Yes, during adaptation period, 332 0.822±0.019 0.922±0.008 0.971±0.002

TABLE II
VERIFICATION RESULTS ON CS2 DATASET. THE RESULTS ARE AVERAGED OVER 10 SPLITS.

extended version of IJB-A dataset, the CS2 dataset compares
all the possible pairs in the gallery and probe sets. The baseline
for CS2 is higher than for the IJB-A dataset which makes it
more difficult to improve from the baseline. The proposed
RMA still outperforms the non-adaptation method by 2% at
FAR = 10−2 and 5% at FAR = 10−3. SVM-TA-v1 with
the large negative set still yields comparable results. However,
when using the same negative set, it can hardly improve the
performance from the non-adaptation baselines.

C. Model Size Reduction

When the model learned by the metric adaptation needs
to be saved for future use (e.g., the subject is enrolled in
the database.), it is useful to reduce the model size as small
as possible for practical use. The original model requires
O(n2) storage space where n is the dimension of the data
sample. Since the model is template-specific, the whole model
size for a dataset will be proportional to the number of
unique templates which is usually very large. We reduce the
original model size to O(n) by taking only the diagonal of
W and the transformed feature VTVx for each template. The
similarity is then computed as ρG(xG, xP ) = bG − (xG −
xP )

T diag(WG)
2(xG−xP )+2xPVT

GVGxG and similarly for
ρP (xG, xP ). The reason why we keep the diagonal elements
of W is that as we enforce a regularization term in (1), which
guarantees that the elements on the diagonal preserve the most
information as compared to other off-diagonal elements. The
results with and without model size reduction are listed in
Table III. From the table, the performance only decreases by

a small margin while the whole model size is significantly
reduced from O(n2) to O(n).

D. Negative Set Selection Analysis

The size of the negative set significantly influences the
adaptation time as well as the storage space. It is desired to
keep a relatively small negative set while maintaining a similar
performance as the large one. We investigate and compare
different strategies to reduce the size, including (1) Random
where a media feature (i.e. features from the same media
are averaged) for each subject is randomly selected into the
negative set, (2) Naive K-means where the media average
feature for each subject (i.e. features from the same media
are averaged first and then different media from one subject
are averaged) is used as the negative set, (3) Naive K-medoids
where the 1-medoid of all the media features of each subject
is taken into the negative set, (4) Outlier Removed K-means
means the method described in Algorithm 1, and (5) Outlier
Removed K-medoids means the similar strategy described as
Outlier Removed K-means but K-means is replaced by K-
medoids.

Table IV summarizes the results of different methods using
RMA on IJB-A verification split 1. It shows that methods
based on K-means outperform K-medoids based method and
randomly selection by a large margin. It shows that by
averaging different media in one subject, we obtain more
discriminative information than just including a single media
feature. The Outlier Removed Kmeans performs slightly better
than Naive Kmeans at FAR = 10−2.
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Model Size TAR@FAR = 10−3 TAR@FAR = 10−2 TAR@FAR = 10−1

O(n) 0.746±0.041 0.878±0.016 0.956±0.005
O(n2) 0.763±0.037 0.887±0.014 0.959±0.005

TABLE III
THE RESULTS FOR THE MODEL SIZE REDUCTION WHICH ARE AVERAGED OVER 10 SPLITS.

Method TAR@FAR = 10−3 TAR@FAR = 10−2 TAR@FAR = 10−1

Random 0.683 0.848 0.943
Naive K-means 0.773 0.886 0.952

Outlier Removed K-means 0.770 0.890 0.953
Naive K-medoids 0.672 0.851 0.946

Outlier Removed K-medoids 0.673 0.851 0.947

TABLE IV
NEGATIVE SET SELECTION. IT SHOWS THE RESULTS OF DIFFERENT STRATEGIES FOR THE SPLIT 1 OF THE IJB-A FACE VERFICATION.

V. CONCLUSION

In this paper, we proposed a regularized metric adaptation
approach to learn a template-specific metric for the set-based
face verification problem.

Extensive experiments on the newly released IARPA Janus
Benchmark A (IJB-A) and CS2 dataset demonstrate the ef-
fectiveness of the proposed method for unconstrained face
verification when the negative set is used. In addition, the
proposed approach can be used to significantly reduce the
model size while still yielding comparable performance to
the original model. Analysis shows the importance of the
negative set selection on the verification performance. A K-
means based method can efficiently construct a compact and
representative negative set.
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