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Abstract—A common method for image alignment in computer
vision is finding the maximum consensus transformation for a
set of features in the images. This is commonly done using
randomized methods such as RANSAC.

While relatively robust when strong features are involved,
these methods do not deal well with ambiguous features where
maximum likelihood does not provide the best match between
the images, a common case with modalities such as medical
ultrasound, thermal imaging and cross modality registration.
They also do not inherently allow for the application of exter-
nal knowledge regarding possible configurations to aid in the
registration.

In this paper we present a novel statistical framework for
maximum consensus image alignment which is both robust in
the presence of weak features (features not providing one-to-one
matches) while at the same time providing an inherent natural
ability for integrating external knowledge. Our methods is able
to collect information not only from finding good matches, but
also from improbable and partially ambiguous matches.

We demonstrate our framework in the context of medical
ultrasound image registration. In our test cases, our method
succeeded where other state of the art methods we compared
to failed to provide satisfactory results with over 17% of the
samples.

I. INTRODUCTION

One of the most popular methods used in computer vision
for the purpose of image registration is maximum consensus.
Given a pair of images to align and a set of features in each
image, we look for a transformation θ that best matches the
largest number of features with a residual up to some threshold
ε.

We can roughly split the problem on the one hand into rigid
or locally rigid transformation (translation, rotation, affine) and
deformable registration (optical flow [1], dense SIFT flow [2]).
On the other hand we have sparse versus dense registration [3],
[1]. In both cases, various feature spaces can be used, some
common ones including sum of square differences (SSD),
correlation (both of which are based on image space patches),
scale-invariant feature transform (SIFT) [4] and Speeded Up
Robust Features (SURF) [5].

For the case of rigid transformations, due to performance
considerations, generally a randomized approach is used. Of
these, random sample consensus (RANSAC) [6] has been

the dominant approach, along with various proposed im-
provements [7], [8], [9]. The underlying idea is to randomly
choose a minimal set that defines the assumed transformation.
Next, we find the maximal set that agrees with the computed
transformation. This process is repeated multiple times. Given
enough such iterations, a close to optimal transformation is
recovered with a high probability.

The major drawback with randomized approaches is that
there is no certainty that the near optimal solution will be
found, nor that a given solution is indeed close to optimal.
Several approaches have been proposed to find an optimal
solution, but most of these are very computationally intensive
and prohibitively slow. Some examples include branch and
bound [10], [11] or dealing with optimal subsets for specific
cases [12], [13]. Improving the performance of near optimal
solution with some global guaranties is an ongoing field of
research. Chin et. al. [9] for example proposed a solution that
improves on the performance by using tree searches.

Even ignoring performance, all of these methods suffer from
several major inherent drawbacks hampering both robustness
as well as flexibility

1. First and foremost, there is no intrinsic way to incor-
porate external information with regards to the possible
configurations. An example being the ability to utilize
information from (possibly low accuracy) camera mo-
tion tracking.

2. There is an underlying assumption that the maximum
likelihood match is in fact the correct one. While this
is generally true with high quality images containing
strong features, for images resulting from sources such
as medical ultrasound imaging, thermal imaging and
cross modal registration this is generally not the case.
These images tend to lack high quality features, and
those that do exist often pose high ambiguity in the
matches. Fig 1 shows an example of the issue for
medical ultrasound imaging. In this case we see a large
number of local and near global optimal points in the
feature matching and it is not clear which should be
chosen as the correct match.

3. Ambiguous feature matches such as aligning two infinite
lines are difficult or impossible to utilize for information.
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(a) Reference (b) Template (c) L-K Failed alignment

(d) ∆x for SIFT flow (e) ∆y for SIFT flow (f) Sample SIFT distance
image

Fig. 1: The problem with computing alignment with ultrasound
images. (a) and (b) show the reference and template images.
(c) shows the failed alignment resulting from running the
Lucas-Kanade method with image (a) in red and (b) in green.
(d) and (e) show the x and y offsets computed using the dense
SIFT flow with the green pixels denoting features with correct
alignment. (f) shows a typical distance image comparing a
template feature to the reference image (lower values denote
a better fit).

4. There is no usage of information that can be gained from
mismatches, i.e using features that match badly for a
given transformation (low probability transformations).

In this paper we propose a new, feature space and metric
agnostic, statistical matching approach for rigid alignment
where in this first work we demonstrate the results in the
context of recovering translation. A naive extension towards
handling rotation as well is straight forward, if numerically
expensive. We leave research into efficient recovery of more
complex transforms for future work.

This framework is targeted at the drawbacks previously
mentioned. We construct an alignment confidence map by
computing a probability distribution per offset. The confidence
for each configuration can both increase based on good
matches as well as decrease based on bad matches.

Using such as statistical framework also allows us to com-
bine any form of external information that can be expressed as

an expectation distribution with regards to possible outcomes.
We demonstrate the results of our method in the context of

medical ultrasound imaging, and specifically, reconstructing a
360 degree tomographic scan of the human leg in the context
of prosthetic design [14], [15]. For this use case, all other
methods we applied have failed to provide satisfactory results
with over 17% of the sample imaging pairs resulting with large
registration errors.

II. METHOD

For the purpose of this work, we use the definitions set
forth by Albert Tarantola [16] for disjunction and conjunction
of probabilities. Given a set of n probability distributions
p1, . . . , pn let us define two new probability distributions:
the disjunction and the conjunction probability distributions
respectively

(p1 ∨ · · · ∨ pn) (x) =
1

n

(
p1(x) + · · ·+ pn(x)

)
(p1 ∧ · · · ∧ pn) (x)

µ(x)
=

1

ν

p1(x)

µ(x)
. . .

pn(x)

µ(x)

(1)

where ν is the normalizing constant

ν =

∫
Ω

p1(x)

µ(x)
. . .

pn(x)

µ(x)
dx (2)

and µ(x) is the homogenous probability distribution. The
homogenous probability distribution is defined when the man-
ifold has a natural notion of volume (see [16] for more details).
For the case of images in standard cartesian space, this is set
to be a constant, but may be set to non-uniform distributions
for data that is mapped to more complex manifolds such as
polar or spherical coordinates.

These two probability distributions map roughly to or and
and in multivariate logic.

We found the use of conjunction of probabilities to be more
robust than disjunction. One way to look at this is that there is
a preference to mutual agreement (and) rather then averaging
where the strong contender (or outlier) can tip the scale. As
we will see later (Sec II-C) through a numerical modification,
the two are in some sense equivalent, although conjunction
has a strong outlier suppressing effect.

A. Probability distribution for registration

For the purpose of registration, we treat the first image as
reference and the second image as template. For each feature
point y in the template image we can compute the distance
function with regards to every point x in the reference image
as

dy(x) = ‖fr(x)− ft(y)‖ (3)

Here fr and ft denote the feature vector in the reference and
template images respectively, under an appropriate norm. In
the case of SSD features f would denote image patches using
the squared l2 norm. For SIFT feature vectors we use inverse
cosine of the inner product (angle).
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We take each such match as a the reciprocal of an unnor-
malized probability distribution. Thus, the given probability
distribution is

py(x) =
1

νy

1

‖fr(x)− ft(y)‖

νy =

∫
Ω

1

‖fr(x)− ft(y)‖
dx

(4)

where again νy is a normalizing constant.
Note that we take this probability distribution in the general

sense as there can be a division by zero when features match
exactly, such is the case when matching an image to itself.
One solution is to add a small constant offset that can be
interpreted as allowing for some uncertainty even in the case
of an exact match.

Rather than taking the maximum likelihood solution per
feature, which is the common approach, we opt to use the
entire probability distribution. The idea is twofold

1. Especially in the case of images suffering from low
quality features and / or features that change with angle
of view, such as bones in ultra-sound imaging, the
maximum likelihood solution is often ill posed, suffering
from multiple local optimal points. It is not clear in this
case that the global optimum is indeed the best match.

2. There is an opportunity to gain information from bad
matches and not only from the good ones. That is, with
each feature, we wish not only to gain information from
good matches, but also to suppress offsets matching bad
matches.

In practice, we do not use all the probability distributions,
but rather randomly select a small set of distributions to work
with. Specifically, the examples were made with 300 randomly
selected feature points.

B. External constraints

By external constraints we mean any external information
that does not come directly from the images. Such information
can include a rough estimation as to the location of the
camera. In our case for example, we know the position of
the ultrasound probe, but as the subject is not restrained, there
is some relative unknown motion of the subject with respect
to the probe.

Such external information can be applied by defining an
appropriate probability distribution. Although the two are
essentially the same under this framework, we can distinguish
between “hard” and “soft” constraints.

Hard constraints mean that we only know the set of valid
configurations, but do not know that some options are more
likely than others. This can be interpreted as a conditional
probability. That is, we want to compute the conditional
probability P

(
x|B

)
where B is the domain of validity. This

can be defined via conjunction of probabilities as follows (see
[16])

P
(
A|B

)
= (P ∧MB) (A) (5)

In this case MB is the restriction of the homogenous proba-
bility to the event B. The resulting distribution is

µB(x) =

{
kµ(x) if x ∈ B
0 otherwise

(6)

with k a normalizing constant.
Note that for the common case where µ is a constant, this

reduces to the case of multiplying the probability distribution
by the support function χB , and normalizing.

Soft constraints mean that we know the probability distri-
bution with regards to the expected position. A simple case
would be a normal distribution around an expected target point.
This case can be simply described again as conjunction of
probabilities.

C. Log distribution

The conjunction of a large number of probabilities is
numerically unstable, as we are dealing with a large number
of multiplication. One solution is to work with log distribution
instead

L (x) = log

(
1

ν

(p1 ∧ · · · ∧ pn) (x)
µ(x)

)
= log

(
1

ν

p1(x)

µ(x)
. . .

pn(x)

µ(x)

)
= log (p1) + · · ·+ log (pn)− log (ν)− n log (µ)

(7)

Assuming that the homogenous probability distribution is
uniform then log (ν) + n log (µ) is a constant. As we are
looking for the maximum likelihood of the conjunction we
can neglect that part, resulting with

L (x) =

n∑
i=1

log (pi) (8)

Ignoring for the moment that the individual log distributions
are not probability distributions (due to scaling), we see
that the log distribution of the conjunction is equivalent to
the disjunction of the log distributions (up to an additive
constant due to scaling). This gives an intuition as to why the
conjunction is more stable, as the logarithm compresses large
positive spikes, reducing the effects of strong false positives
(outlier suppression).

D. Aligning probabilities

A final application note is the issue of alignment of prob-
ability distributions. Due to the finite size of both template
and reference images, two features from the template image
cannot convey the same range of transformation parameters.
This is due to the fact that some transformations map the
template features outside of the reference image. This scenario
can be seen in Fig 2, where we see that the probability
distributions only partially overlap. As a result, the individual
probability distributions do not cover the entire domain and
need to be padded. We use zero padding for both disjunction
and conjunction of the log distribution.
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Fig. 2: Here we see how probability distributions for displace-
ment based on different features only partially overlap as due
to the finite size of the image, some offsets map to coordinates
which are outside the image.

For disjunction, this creates a small bias towards zero offset,
although in our case we did not find that it warrants special
handling.

For conjunction, this complicates things due to two issues.
The first is that a value of zero in the log probability maps
to one in the original distribution, which leads to the second
problem. The log distributions may be negative. If not careful,
zero padding may create a bias towards large offsets. The
solution we used is to scale all distributions uniformly to reach
a mean value on the order of one (zero in the log distribution).
Scaling of the distribution can also be interpreted as scaling of
the domain as a probability distribution needs to integrate to
one. One needs to make sure though to use the same value for
all distributions. In our case we found that dividing the original
distribution by the mean (regularization) and then multiplying
by the number of pixels in the domain (scaling) provided a
good results.

III. RESULTS

Our sample problem depicts a 360 degree tomographic ul-
trasound scan of the lower leg. Capture was taken of a healthy
human subject (under approval from the MIT COUHES of-
fice). Figures 1a and 1b show two sample images from the
scan (reference and template images). The scanning setup is
depicted in Fig 3a with an image of the actual setup shown
in Fig 3b. An ultrasound probe is mounted onto a rotational
stage and is rotated around the subject’s lower leg to collect
72 images at 5 degree increments. The angle and location of
the probe is known, but the subject is unrestrained (both for
comfort as well as to avoid physical distortion of the extremity
during measurements). This results with relative motion of

Ultrasound probe

(a) Capture procedure (b) Hardware setup

Tibia

Fibula

(c) Comparison of US (left) and MRI (right) results

Fig. 3: This figure presents the capture setup (a and b) as well
as a comparison of the US tomographic reconstruction (c, left)
to the MRI image (c, right) of approximately the same slice.
Images are of the lower leg. US image has been reconstructed
from 72 individual images.

the subject requiring compensation to achieve proper recon-
struction. Our problem is reduced to rigid registration between
pairs of ultrasound images (see [14], [15] for more information
on the setup and medical problem statement). Fig 3c depicts
a full correct reconstruction based on our method from the
ultrasound images (left) and the corresponding MRI image
(right). The dark area in the center of the ultrasound image
is due to lacking penetration in the capture, meaning that the
scan does not cover the whole volume of the leg.

In figure 4 we can see the results of attempted full recon-
struction using several methods. As a reference implementa-
tion we used the image alignment toolbox [17]. Fig 4a is the
attempted reconstruction using the Lucas-Kanade method [18],
[19]. Fig 4b shows the same using the enhanced correlation
coefficient (ECC) [20]. Both produce large errors on 13 and 12
of the image pairs respectively (approximately 17%). SURF
based registration [5] as implemented by both MATLAB as
well as the image alignment toolbox failed to find any useful
feature on most of the images. Figures 1d and 1e depicting the
dense SIFT flow [2] show that it is also impossible to figure out
the correct offset from this method (green depicts the correct
offsets), at least not without extra filtering heuristics and noting
that correct offsets do not correlate with good features.

To present our method, we implemented recovery based on
300 random features per image pair. We performed recovery
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(a) Lucas-Kanade (b) ECC

(c) SIFT, disjunction (d) SIFT, conjunction

(e) SSD, disjunction (f) SSD, conjunction

Fig. 4: Full reconstruction comparing Lucas-Kanade registra-
tion (a), ECC registration (b) along with several variations of
our method. (c) and (d) show the alignment based on SIFT
features baed on disjunction and conjunction of probabilities
respectively. (e) and (f) show the same based on SSD features.
The only correct reconstruction is (d), with (f) almost as good
with only one significant registration error. All other options
have multiple errors, also presented in Fig 5.

using both disjunction (logical or) and conjunction (logical
and) of probabilities. No heuristics were used in choosing the
features other than ensuring that the chosen features are within
the domain of interest (i.e image rather than mask features
resulting from image rotation). As can be seen in Fig 4d, our
method of statistical based offset recovery using SIFT features
based on the conjunction of probabilities achieves perfect (or
near perfect) reconstruction. Doing the same with sum of
square difference features (SSD) using 8× 8 sized patches, as
depicted in Fig 4f achieved almost the same results, producing
an erroneous reconstruction for only two image pairs. Using
Disjunction of probabilities (Figures 4c and 4e) proved to
produce erroneous results and is presented for completeness.

In Fig 5a we use our recovery based on the statistical
method using SIFT features and conjugation of probabilities as
ground truth. This reconstruction has been deemed by visual
inspection to be as good as can be achieved. The distance
(error) per recovered translation for each image pair as com-
pared to each of the other recovery methods depicted in Fig 4
is plotted as measured in pixels. As can be seen, registration
as recovered by using SSD features and our statistical method
and conjugation of probabilities is the only one that comes
close, with two large errors for frames 29 and 71. All of the
rest of the methods suffer from multiple failed frames, where
at least 17% of the frames contain large registration errors.
Fig 5b depicts the matching recovered position for each one
of the sets appearing in Fig 4, with the solid black line showing
our reference ground truth.

Finally, in Fig 6 we can see example probability distribu-
tions for SIFT based registration for disjunction of probabili-
ties (Fig 6a) and conjunction of probabilities (Fig 6b). Fig 6c
shows the resulting registration. The images in this case are
the same as depicted in Fig 1.

IV. CONCLUSION AND FUTURE WORK

In this work we presented a novel statistical framework for
recovering maximal consensus matching for the purpose of
rigid image registration. This framework is not only much
more robust than random consensus matching as it is able to
extract information from highly ambiguous matches as well
as mismatches, it also allows for the inclusion of external
information such as camera and object tracking in an intrinsic
way to the framework.

As future work, we look to expand the method efficiently
to more general transformations.
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