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Abstract—Cocaine dependence devastates millions of human
lives. Despite of a variety of treatments, there is a very high rate
of individual relapse to drug use. In the last decade, functional
magnetic resonance imaging (fMRI) proved to be a powerful
tool to diagnose and understand different pathologies. This work
provides advances in the identification of cocaine dependence and
in the relapse prediction based on fMRI classification. We improve
the traditional methodology of the literature called multi-voxel
pattern analysis (MVPA), which is used for feature extraction
and classification. In addition, we propose new features that use
specific functional connectivity measures. An extensive evaluation
was conducted comparing our methodology with MVPA, as well
as, several learning methods with distinct feature sets. We could
identify the neural patterns that lead to improve classification ac-
curacies and evaluate the advantages of employing an information
fusion approach through an ensemble of classifiers. Experimental
results show an improvement of final accuracy over the state-of-
the-art methods.

I. INTRODUCTION

Identifying neural phenotypes of cocaine dependence and
relapse is of extreme importance to public health. According
to the 2013 National Survey on Drug Use and Health, approxi-
mately 1.5 million Americans are currently addicted to cocaine.
Despite treatment, individuals relapse to drug use at a very high
rate, leading to prolonged, devastating impacts on human lives
and the society. Understanding why cocaine addicts are unable
to refrain from drug use is of critical importance in addiction
neuroscience. For that purpose, the study of brain functions by
means of functional magnetic resonance imaging (fMRI) has
become increasingly popular during the last decade.

Two main approaches have being proposed for the analysis
of fMRI data of the brain: the standard mass-univariate ap-
proach known as general linear modeling (GLM) [3] and the
multi-voxel pattern analysis (MVPA) using pattern recognition
techniques [7], [6]. GLM requires a priori task-design and is
limited to observables or at least measurable task conditions [4].
On the other hand, MVPA has the ability to delineate complex
associations between multiple voxel signals, stimuli, or mental
states in a data-driven way. Unlike most previous work, our
focus consists in predicting neuropathology, that is, identifing
cocaine dependence and predicting relapse. This is a challeng-

ing task because of the commonly large inter-subject variability
and small sample size of the data set [8].

Our experiments use a fMRI data set with seventy-five co-
caine dependent and eighty-eight healthy individuals matched
in age and gender. Imaging data were collected while sub-
jects performed a cognitive paradigm known as the stop-
signal task [16], [15]. More specifically, we examine the brain
responses to conflict anticipation as altered in addiction [10],
[9].

From each fMRI image, we extract mean-based patterns of
brain responses as feature set, just as is commonly used by
univariate GLM analyses and extant MVPA applications [7],
[19], [6]. However, we also include a measure of signal
complexity called power-spectrum scale invariance (PSSI) [18],
[11] as well as functional connectivity [12], [22], since indi-
vidual variability cannot be fully captured without considering
more elaborate measures such as signal complexity and con-
nectivity [21]. Finally, we classify samples using both single
classifiers and a fusion method based on diversity measures [2].
The results are compared with PRONTO, a popular MVPA
package [19].

In summary, we add to traditional MVPA methodology:
(i) by using specific functional connectivity measures as new
features; (ii) evaluating learning methods with distinct feature
sets; and (iii) employing classifier selection and fusion for
cocaine dependence recognition.

II. COCAINE DEPENDENCE, COGNITIVE CONTROL AND
BAYESIAN UPDATING

Cognitive control is a critical executive function, defined
as the ability to withhold or modify actions in response to
a dynamically changing environment. With a variety of labo-
ratory paradigms, numerous studies have characterized deficits
in cognitive control in chronic cocaine users [5]. For example,
in the stop signal task (SST) where ones respond quickly
to an imperative go stimulus and must withhold response as
instructed by an occasional stop signal, cocaine dependent
individuals (CD) demonstrated diminished response inhibition
and error processing, as compared to demographically matched
healthy controls (HC) [17].
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Fig. 1. Classifier selection and fusion framework is composed of three steps: (a) Training the classifier set C; (b) Classifier selection approach reduces the
amount of classifiers from C to C∗; and (c) Meta-learning approach which combines the C∗ classifier outcomes to achieve the final class [2].

Here, we employ a Bayes-optimal decision-making model
to capture the adaptive nature of cognitive control in the SST,
in which participants learn to anticipate an infrequent stop
signal through trial by trial learning [20]. We hypothesize that
participants choose to go or stop based on accumulating sensory
evidence within a trial, as well as prior belief about the likeli-
hood of a stop trial prior to stimulus onset. This rational strategy
explains classic stopping behavior. In particular, by augmenting
this decision-making model with trial-by-trial learning, we were
able to account for the sequential effect in the SST [13]; that
is, go reaction time slows down after a run of stop trials and
speeds up after a preponderance of go trials. Further, we have
shown that a core cognitive control deficit in cocaine addiction
is impairment in learning from and adapting to changes in
contextual information [10].

III. CLASSIFIER SELECTION AND FUSION FRAMEWORK

In order to improve the efficacy of classifiers, we employ
a classifier fusion approach, building on a diversity measure
as derived from the agreements/disagreements among distinct
classifiers. For this purpose, a successful classifier selection and
fusion framework originally proposed for multimedia recogni-
tion [2] is adopted. In this paper, a tuple containing a single
learning method (e.g., k-Nearest Neighbors – kNN) and a
description technique (e.g., a color channel from the RGB color
channels) defines a classifier.

A. Classifier Fusion

Fig. 1 presents the framework as proposed in [2] for classifier
selection and fusion. The classifiers first learn to identify pat-
terns from a training set (T ) of samples. Afterwards, classifica-
tion models (|C|) are generated and applied to a validation data
set (V ). The result of this process is a matrix MV composed
of classifiers outcomes, which is defined as |MV | = |V | × |C|,
where |V | is the number of examples from a validation set V
(see Fig. 1-(a)).

Then, diversity measures (D) are computed using the con-
tents of MV , reflecting the degree of agreement and dis-
agreement of all |C| available classifiers [14]. Based on D,
it is possible to determine the most appropriate classifiers that
should be combined.

The objective of this process is to combine the set of most
suitable classifiers in terms of the diversity and accuracy, given
by C∗ ⊂ C, as shown in Fig. 1 - (b)). During this step a new
matrix M∗

V ⊂MV is computed.
Given new data I , it is classified through a meta-learning

approach embodied by a fusion technique (e.g., Support Vector
Machines) over a new matrix M∗

V (Fig. 1 - (c)). Next section
describes the selection process using diversity measures in more
details.

B. Classifier Selection

The methodology to select classifiers on the basis of diversity
measures as proposed in [2] is illustrated in Fig. 2. It comprises
the following steps:

(a) Quantify the agreement among available classifiers in C
by means of the set of diversity measures D. It takes
into account the computed values of MV . Five different
measures have been used here (Correlation Coefficient
p, Double-Fault Measure, Disagreement Measure, Inter-
rater Agreement k, and Q-Statistic [14]);

(b) Sort the pairs of classifiers according to their diversity
score. Because distinct diversity metrics are used, this
step generates a set of ranked lists R;

(c) Compose another set of ranked lists Rt from the top t
pairs of classifiers from each ranked list in R;

(d) Generate a histogram H counting the occurrences of a
classifier in all ranked lists of Rt;

(e) Combine classifiers that are among the most frequent in
H, of which the accuracy is greater than a given threshold
T in a fusion approach. T is given by the average
accuracy among all classifiers used in the validation set
V .

Fig. 2. The five steps for classifier selection are: (a) Computation of diversity
measures; (b) Ranking of pairs of classifiers by their diversity measures scores;
(c) Selection of the top t; (d) Computation of a histogram H; (e) Select the
most appropriate classifiers |C∗|.
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IV. MATERIAL AND METHODS

A. Subjects and behavioral task

Seventy-five cocaine dependent (CD) and eighty-eight
healthy controls (HC) matched in age and gender participated
in this study. A complete description of the experiment can be
found in [11]. CD were recruited from the local, greater New
Haven area in a prospective study [17] and met criteria for
current cocaine dependence, as diagnosed by the Structured
Clinical Interview for DSM-IV. They were drug-free while
staying in an inpatient treatment unit The Human Investigation
committee at Yale University School of Medicine approved
the study, and all subjects signed an informed consent prior
to participation.

We employed a simple reaction time task in this stop-signal
paradigm [16], [15] (Fig. 3). There were two trial types: ‘Go’
(75%) and ‘Stop’ (25%), randomly intermixed, with an inter-
trial interval of 2s. A small fixation dot appeared on the screen
to engage attention at the beginning of the trials. After a
randomized fore-period (FP) between 1 and 5 s, the dot turned
into a circle (the go signal), prompting the subjects to quickly
press a button. The circle disappeared at a button press or after
1 s had elapsed, and the trial terminated. The time between
go signal and the button press is known as reaction time (RT).
In a Stop trial, an additional X, the stop signal, replaced the
go signal and instructed subjects to withhold their response.
Failure to withhold the go response for the 1 s constituted a stop
error (SE), and stop success (SS) otherwise. The stop signal
reaction time (SSRT) is an index of motor response inhibition
performance, and was estimated by subtracting the critical stop
signal delay (the time interval between go and stop signals)
from the median of Go trials RT.

Fig. 3. Trial-types in the stop-signal task (SST) paradigm.

B. fMRI data acquisition and pre-processing

FMRI data were collected with 3T Siemens Trio scan-
ner [15]. Each scan comprised four 10-min runs of the SST.

Functional blood oxygen level dependent (BOLD) signals
were acquired with a single-shot gradient echo echo-planar
imaging (EPI) sequence, with 32 axial slices parallel to the AC-
PC line covering the whole brain [15]: TR=2000 ms, TE=25
ms, bandwidth=2004 Hz/pixel, flip angle=85, FOV=220×220
mm2, matrix=66×64, slice thickness=4 mm and no gap. A
high-resolution 3D structural image (MPRAGE; 1 mm resolu-
tion) was also obtained for anatomical co-registration. Three
hundred images were acquired in each session.

Functional MRI data was pre-processed with standard
pipeline using Statistical Parametric Mapping 12 (SPM12)

(Wellcome Department of Imaging Neuroscience, University
College London, U.K.).

C. Feature extraction
1) Brain activation: We constructed GLM’s and localized

brain regions responding to conflict anticipation (encoded by
the posterior probability P(stop)) at the group level, as in our
previous works [13], [9]. In short, four main conditions were
defined according to trial type and outcome: go success, go er-
ror, stop success and stop error. P(stop), Go RT, and SSD were
entered as parametric modulators. In the group level analysis
including both CD and HC, the regions responding to P(stop)
comprised the bilateral parietal cortex, the inferior frontal gyrus
(IFG) and the right middle frontal gyrus (MFG) with peak MNI
coordinates at [39,53,-1] and [42,23,38], respectively, in mm;
and regions of motor slowing: bilateral insula ([-33, 17, 8] and
[30, 20, 2]), the left precentral cortex (L.PC) ([-36,-13,56]),
and the supplementary motor area (SMA) ([-9,-1,50]) (Fig. 4),
consistent with our previous studies [13], [9]. These regions
of interest (ROIs) were used as masks to extract the activation
feature set, which included 1005 voxels.

2) Brain complexity: Dynamically dysregulated circuit can
be characterized in a computationally efficient way using
nonlinear complexity measures, such as PSSI. We showed
significant complexity differences in frontoparietal networks
between CD and HC, which may provide useful information
in relapse prediction [11]. Using optimized methods [18], we
estimated the PSSI-β from each FFT-transformed time series
S(f) by linear fit of the decaying slope, within the frequency
range 0.01-0.25 Hz. The whole-brain PSSI maps were masked
using the same ROIs (Fig. 4).

3) Functional connectivity: We analyzed the frontoparietal
circuit involved in Bayesian predictions and motor conse-
quences using a standard temporal correlation analysis [22] and
multivariate Granger causality analysis or mGCA [12]. In Fig.
5, we illustrate fifteen correlation coefficients derived from the
six ROIs comprising the frontoparietal anticipation circuit for
each individual CD and HC. Using mGCA, we observed that
the connectivities from bilateral parietal to L.PC and SMA were
disrupted in CD (Fig. 4). Interestingly, the connection strength
from bilateral parietal to the L.PC was negatively correlated
with earlier relapse (p=0.0067), and decreased connectivity
from MFG to IFG was correlated with decrease in inhibition
performance (i.e., prolonged SSRT, p=0.0038; Fig. 4). These
findings offer circuit-level evidence of altered cognitive control
in cocaine addiction [5].

The extracted features can be summarized as follows:
• P(stop) 1005: brain responses to conflict anticipation,

comprised of 1005 values within the 6 ROIs.
• PSSI 1005: PSSI complexity, comprised of 1005 values

within the 6 ROIs.
• Connectivity measures: 4 distinct metrics, 15 pairwise

Pearson correlations between the fMRI time courses of
the 6 ROIs (cc15), and mGCA connectivity weights,
30 F-values (fs30), 30 degrees of influence (doi30) and
30 FGeweke (fgeweke30). All mGCA metrics indicated
directional influences between ROIs [12].
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Fig. 4. Disrupted frontoparietal circuit in cocaine addicts. The frontoparietal
circuit included six regions responding to Bayesian conflict anticipation (“S”)
and regions of motor slowing (“RT”). (a) CD and HC shared connections
(orange arrows). (b) The relative connection strength or degree of influence
(doi) between R.MFG and R.IFG is negatively correlated with SSRT;

Fig. 5. Connectivity strengths between nodes in the frontoparietal circuit. We
represent connectivity strengths between nodes for each individual subject in
CD (red line) and HC (blue line) groups.

D. Experimental Methodology

1) Learning Methods: We used seven learning methods in
the framework: Naı̈ve Bayes (NB), Decision Tree (DT), Naı̈ve
Bayes Tree (NBT), k-Nearest Neighborhood (kNN) using k =
1, k = 3, and k = 5, and Support Vector Machine (SVM). We
used the implementation of learning methods as available in
the WEKA1 data mining library. All learning techniques were
used with default parameters.

2) Evaluation Measure: In our experiments, we used evalua-
tion measure from the confusion matrix. The balanced accuracy
can be calculated according to the expression in Equation 1.

3) Cross-Validation: We used the 10-fold cross-validation
protocol and all results are reported in terms of Average
Balanced Accuracy.

Balanced Accuracy =
Specificity + Sensitivity

2
(1)

1http://www.cs.waikato.ac.nz/∼ml/weka (As of 04/15/2016).

V. RESULTS

This section shows results from two different experiments. In
Section V-A, we compare different learning methods for each
extracted feature. In Section V-B, we employ classifiers fusion
to explore the use of complementary information provided by
each extracted features.

A. Comparative Study: Learning Methods and Features

In this experiment, we used six feature sets derived from
three different sources: brain activation features P (stop)1005;
brain complexity features PSSI1005; and four functional
connectivity features: cc15, fs30, doi30, and fgeweke30. The
numeric suffix in front of the feature name indexes the number
of dimensions. Additional ten new feature sets were created
through combination of any 2 or 3, or all connectivity features
(2−Combined, 3−Combined, 4−Combined or ALL). All
results are reported in terms of average balanced accuracy from
the 10-folds cross-validation protocol.

1) Cocaine Dependence vs. Healthy Control: Table I shows
effectiveness results of the seven learning methods for each
extracted feature for cocaine dependence dataset. As shown, for
single features, the NB and NBT using cc15 feature achieved
the best results than any other learning method and single
feature, with an average balanced accuracy of 70.94% and
69.28%, respectively. Also, the functional connectivity features
(single or combined) achieved the best results for all seven
learning methods used in this experiments (in green and blue).
This suggests that the functional connectivity features best
describe the data.

Furthermore, the best result among all classifiers was
achieved by kNN1 using 2−Combined features (cc15+doi30
and cc15 + fS30) with average balanced accuracy of 71.91%.
Note that all best combinations contain cc15, the best feature
to describe cocaine dependence (blue, Table I).

2) Relapse Prediction: Since the relapse dataset is com-
posed of unbalanced classes (63 non-relapsors and 13 relap-
sors), we created 400% synthetic instances to smaller class
with the well-known SMOTE approach [1]. Therefore, after
dividing the dataset on 10-folds cross validation, we applied
SMOTE approach only on the training sets to equalize both
classes.

Table II shows effectiveness results achieved with seven
learning methods for each extracted feature for relapse predic-
tion. For single features, the kNN1 and kNN5 using fgeweke
feature achieved the best results as compared to any other
learning method and single feature, with an average balanced
accuracy of 69.88% and 76.43%, respectively. Moreover, the
latter is the best effectiveness result among all classifiers.

3) Comparison with state of the art: We executed the
same previous experiments with the popular fMRI classification
package PRONTO [19], using brain activation and complex-
ity as feature sets. For cocaine dependent dataset, PRONTO
achieved best balanced accuracies of 55.57% for the feature
set P(stop) 1005, and of 66.46% for the feature set PSSI 1005.
For cocaine relapse dataset, PRONTO achieved best balanced
accuracies of 49.63% for the feature set P(stop) 1005, and of
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TABLE I
EFFECTIVENESS RESULTS ACHIEVED OF SEVEN LEARNING METHODS USING SIXTEEN DIFFERENT DESCRIPTORS FOR COCAINE DEPENDENCE DATASET.

Type Descriptors Learning Methods
NB DT NBT kNN1 kNN3 kNN5 SVM

Brain Activation P (stop)1005 53.88 48.58 50.67 50.90 45.81 45.36 57.53
Brain Complexity PSSI1005 62.17 53.57 55.41 54.09 64.41 60.50 61.04

Functional connectivity

cc15 70.94 67.86 69.28 64.03 65.94 67.21 69.23
doi30 58.57 62.05 62.07 66.75 63.50 64.21 60.80

fgeweke30 65.99 59.95 60.52 58.37 61.04 63.04 68.70
fs30 65.99 59.95 60.52 58.37 61.04 63.04 68.70

2-Combined

cc15 + doi30 66.74 67.43 65.95 69.94 69.37 68.71 71.11
cc15 + fgeweke30 67.19 70.80 66.20 71.91 68.49 65.96 68.97

cc15 + fs30 67.19 70.80 66.20 71.91 68.49 65.96 69.04
doi30 + fgeweke30 62.86 59.95 62.52 60.78 59.41 61.38 68.39

doi30 + fs30 62.86 59.95 62.52 60.78 59.41 61.38 67.68
fgeweke30 + fs30 65.99 59.95 55.16 58.37 61.04 63.04 65.37

3-Combined
cc15 + doi30 + fgeweke30 63.88 67.60 61.22 67.20 68.28 66.43 71.02

cc15 + doi30 + fs30 63.88 67.60 61.22 67.20 68.28 66.43 71.02
doi30 + fgweke30 + fs30 63.97 60.74 64.19 60.71 61.38 61.23 64.51

4-Combined ALL 64.60 67.60 64.31 65.97 68.28 67.34 70.08

TABLE II
EFFECTIVENESS RESULTS ACHIEVED OF SEVEN LEARNING METHODS USING SIXTEEN DIFFERENT FEATURES FOR COCAINE RELAPSE DATASET.

Type Descriptors Learning Methods
NB DT NBT kNN1 kNN3 kNN5 SVM

Brain Activation P (stop)1005 42.74 43.45 55.36 45.83 45.12 53.69 52.86
Brain Complexity PSSI1005 59.40 58.45 53.69 63.57 68.10 66.55 60.24

Functional connectivity

cc15 57.02 50.48 46.19 59.40 48.69 52.86 50.71
doi30 58.81 57.02 62.14 68.81 68.93 69.64 60.60

fgeweke30 45.36 51.07 49.76 69.88 70.60 76.43 67.26
fs30 42.02 44.40 56.19 54.64 62.26 63.10 62.14

2-Combined

cc15 + doi30 61.90 54.29 63.81 60.71 61.43 67.26 61.31
cc15 + fgeweke30 49.29 39.40 52.74 67.26 75.60 71.55 61.07

cc15 + fs30 47.74 51.07 57.02 59.64 54.29 58.45 53.57
doi30 + fgeweke30 41.90 44.05 53.69 65.48 67.14 73.81 64.52

doi30 + fs30 49.52 41.31 44.76 57.14 62.14 67.14 66.07
fgeweke30 + fs30 38.57 62.74 39.76 62.02 59.52 66.43 60.24

3-Combined
cc15 + doi30 + fgweke30 46.07 60.24 57.26 66.31 66.43 75.60 65.24

cc15 + doi30 + fs30 46.90 52.02 58.21 56.31 66.31 64.88 58.81
doi30 + fgweke30 + fs30 38.69 51.19 53.69 60.48 57.86 67.86 70.24

4-Combined ALL 47.62 48.81 55.12 67.14 67.98 69.64 57.02

62.78% for the feature set PSSI 1005. These results have been
obtained with PRONTO using SVM, and they are consistent
with our SVM implementation results (Tables I and II, SVM).

Together, these findings support the hypothesis that func-
tional connectivity features are best in identifying cocaine
dependence.

B. Selection and Classifier Fusion

We adopt a classifier selection and fusion framework
(FSVM) to combine the most suitable classifiers using all
available functional connectivity features [2].

In this experiment, four different fusion approaches were
used: (1) MV is a majority voting technique; (2) FSVM-POLY
is a SVM technique with polynomial kernel; (3) FSVM-NORM
is a SVM technique with normalized polynomial kernel; (4)
FSVM-RBF is a SVM technique with RBF kernel. FSVM
refers to the selection and fusion framework, as implemented
through SVM in the fusion step (meta-learning).

Figs. 6 (a) and (b) show four curves, MV, FSVM-POLY,
FSVM-NORM, and FSVM-RBF, describing a behavioral anal-
ysis of each fusion approach using different number of clas-
sifiers |C | = {1, . . . , 98} (14 types of features × 7 learning
methods = 98 classifiers).

As shown in Fig. 6 (a), the MV approach achieved better
results in the range of {8, . . . , 98} classifiers. However, FSVM-
POLY obtained the best results when less than 8 classifiers were
considered. The best result, in identifying CD from HC, was
achieved by MV using 20 classifiers with average balanced
accuracy of 74.75%.

In Fig. 6 (b), the same behavior seen previously could not be
observed for the cocaine relapse dataset. This occurs because
of the challenging learning task with very few instances in the
training set (small training task). In this scenario, the adopted
framework has not produced good results. However, it is a
promising approach to be explored in the future as more data
are collected.

VI. CONCLUSION

In this work, we proposed the use of specific functional
connectivity measures for cocaine dependence recognition task.
We showed that connectivity measures achieved better effec-
tiveness results than traditional MVPA features. Furthermore,
a comparative study of seven learning methods and sixteen
different features was performed. The 2−Combined features
(cc15+fgeweke30 and cc15+fs30) obtained the best average
balanced accuracy in identifying cocaine dependence with
71.91% against 66.46% by tradicional package PRONTO. In
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(a) Cocaine Dependent Dataset. (b) Cocaine Relapse Dataset.
Fig. 6. In (a) are effectiveness results for dependents dataset. In (b) are results for relapse dataset.

relapse prediction, the connectivity feature fgeweke30 also
achieved better result than PRONTO with 76.43% and 62.78%,
respectively. Thus, regional directional connectivity is a critical
neural phenotype of cocaine dependence. In addition, the
classifier selection and fusion framework has improved classifi-
cation effectiveness results of cocaine dependence with 74.75%
against 66.46% obtained by package PRONTO. However, the
same improvement was not observed in relapse prediction. This
latter may relate to the imbalance of sample size between
classes that hinders the learning of classifiers.
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