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Abstract—Sleep position is an important feature used to assess
the quality and quantity of an individual’s sleep. Furthermore,
it is related to sleep disorders like sleep apnoea and snoring, and
needs to be tracked in nursery homes to avoid pressure ulcers.
Therefore, a gravity sensor attached to the chest is generally
used to register body position during sleep studies. We suggest
a non-intrusive and cost-efficient approach to detect the sleep
position based on a single depth camera. Compared to alternative
state-of-the-art approaches, ours require no calibration, and
has been evaluated on a real setting comprising 78 patients
from a sleep laboratory. We use the Bed Aligned Maps to
extract a low resolution descriptor from a depth map which
is aligned to the bed position, We perform classification using
Convolutional Neural Networks, achieving an accuracy of 94.0%,
thus outperforming current state-of-the-art algorithms and even
the contact sensor from the sleep laboratory which achieves an
accuracy of 91.9%.

I. INTRODUCTION

Having sufficient quality sleep is essential for the physical
and mental well-being. Due to population aging, sleep dis-
orders such as obstructive apnoea, insomnia and restless leg
syndrome are becoming common [1], [2].

Sleep position is related to several sleep disorders. For
instance, sleep apnoea is observed with much higher frequency
in supine position [3]–[5]. Hence, according to [6], shifting the
body position during sleep is an effective medical treatment
for sleep apnoea. Nakano et al. [7] note that sleeping in supine
position is most likely to cause snoring. Finally, sleep position
is monitored in Intensive Care Units and nursery homes to
prevent pressure ulcers [8].

Sleep disorders are diagnosed through a polysomnogram,
a sleep study performed in specialized sleep laboratories. On
polysomnograms, the sleep position is commonly registered
using a contact sensor (gravity based) attached to the chest.
This approach is intrusive, valid for a one-time study but not
suitable for long-term monitoring.

Therefore, we suggest an alternative approach using a single
depth camera. Camera-based systems have the advantage that
the same sensor can be used for a wide range of tasks such
as detecting accidents [9], breathing patterns [10]–[12], awak-
eness [13], agitation [14]–[16], action recognition [17], [18],
etc. Compared to contact sensors, camera-based approaches
are inexpensive, easy to install even by non-experts, non-
intrusive and portable. Hence, such computer vision monitor-
ing systems are well suited for assisted living and elderly care.

Fig. 1: We classify sleep position from an overhanging camera
system attached to the ceiling. The bed position is detected
automatically from the depth camera and used for alignment.

We build upon our previous work on Bed Aligned Maps
(BAMs) [16], which are low resolution depth based descriptors
that use the bed position as an anchor to provide alignment.
BAMs were previously used together with Large Margin
Nearest Neighbors [19] to predict sleep position in a simulated
scenario with great success, however the approach does not
generalize well to real scenarios.

We collected a real dataset from a sleep laboratory using an
overhanging recording system with depth and infrared cameras
(see Fig. 1). We recorded 78 different patients, comprising a
total of 94 entire nights. Our recording system was installed
in three different rooms with different bed sizes. An important
aspect is that no calibration or nurse interaction was required.

This dataset contains people with significant sleep disorders,
and a wide variety of ages and body types. To assess the
difficulty of the task, it suffices to say that the gravity sensor
attached to the chest achieves an accuracy of only 91.9% for
sleep position classification.

We use BAMs [16] with a cell size of 5x5cm to generate a
depth descriptor of size 40x26. The small size of the descriptor
allows us to classify it efficiently using a small Convolutional
Neural Network, achieving an accuracy of 94.0%, outperform-
ing LMNN [16] (70.8%) and HoG+SVM [20] (88.9%).
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Fig. 2: The Bed Aligned Map (BAM) is a compact depth based descriptor. From a stream of depth images (a) the bed position
is detected (b). An infrared image, used only for labeling and evaluation, is projected over the depth map (c) and a top-down
virtual view centered on the bed is generated (d). The bed surface is split into cells and the mean height above the mattress
within a cell is used to generate the BAM descriptor (e). To improve visualization, the cell size pictured here is 10x10cm
while the cell size used in the paper is 5x5cm. Best viewed in color.

II. RELATED WORK

The problem of sleep position is not uniquely defined.
Several approaches (e.g. [12], [21], [22]) are based on the
United Kingdom Sleep Assessment and Advisory Service
(SAAS) who clustered sleep positions in six classes: foetus,
log, yearner, soldier, freefaller and starfish [23]. However,
sleep laboratories use a simpler classification: supine, left,
right and prone [24]. Few papers (e.g. [16]) consider a the
empty bed class, which is important for unattended applica-
tions. Inspired by the sleep laboratory we use as a reference,
we use four classes: empty, left, supine, right. Prone position
is not considered as it is rare in real conditions and we did
not have enough samples in our 600-hour data collection for
it to be statistically significant.

Smart beds are a common alternative method to monitor
sleep position non intrusively. Motion sensors are placed inside
the pillow [25] or onto the bed itself [26], [27]. Hoque et
al. [27] uses RFID-based sensors equipped with accelerome-
ters that are attached to the bed mattress.

There are camera based approaches that use color [22],
infrared [24], thermal, depth cameras [12], [16], or a combina-
tion of them [20]–[22]. Yu et al. [12] propose an approach for
the two class problem (supine and side-lying) based on a depth
camera attached to the bed. First head and torso are detected
using ellipse fitting, then the position is classified as supine if
the topmost pixel on the head is above the topmost pixel of the
chest, and side-lying otherwise. Their algorithm is evaluated
on 8 volunteers in a simulated experiment. Lee et al. [21]
describes a system using an overhanging Kinect 2.0 sensor
over the bed. They classify between SAAS positions. First they
extract body joint positions using Kinect v2 own libraries [28].
They use the relative position of hands and knees with respect
to the spine for classification using a parametric approach. The
approach requires the patient to not use a blanket. Evaluation
and results are not provided.

Most related to our approach, Torres et al. [20] use a
combination of depth and infrared cameras together with a
pressure mattress to classify between SAAS positions. Only
one scenario with a fixed camera above the bed is used, so

alignment problems are not considered. They use HoG [29]
and modified geometric moments [30] as features. The descrip-
tors are combined using coupled-constrained Least Squares to
assign weights to each modality, and then multiclass classifiers
based on Support Vector Machines and Linear Discriminant
Analysis are used. Evaluation is performed on only 5 people
in a simulated scenario.

III. METHODOLOGY

A. System Setup

We use a multi-camera system fixed to the ceiling above
the bed (see Fig. 1). To capture depth we use an Asus Xtion
camera based on the same PS1080 platform that powers the
Microsoft Kinect. This depth sensor projects a structured
infrared pattern over the scene and uses it to extract disparity
information at 30 frames per second and a resolution of
640x480 pixels. In addition, an infrared camera captures
images calibrated to the depth view which are used only for
labeling (see Fig. 2c).

To minimize obstructions to the face and chest areas, the
sensor is not installed directly above the bed but above the
feet of the patient, with an inclination of 30%. This enables a
clear view of the patient even when the bed is articulated (not
flat), and avoids the bed trapeze (the holding triangle used to
help patients get in and out of the bed).

B. Bed Aligned Maps

The depth camera provides disparity maps, which can be
easily converted to depth maps to form a 2.5D scene repre-
sentation. This representation is robust and light-invariant.

However, as the camera is fixed to the ceiling and the
bed has wheels, the relative position of the patient with
respect to the camera is different for each recording. This
causes an alignment problem, which is worsened by the high
dimensionality of the depth map.

We use Bed Aligned Maps (BAMs) [16] to manage the
alignment problem by using the bed position as a 3D anchor.
We obtain the BAM as described in [16]. Each BAM is created
from a single depth image. The bed is localized in 3D space
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Fig. 3: The CNN architecture used consisting of three convolutional layers and two fully connected layers. Each convolutional
layer uses ReLU, 2x2-max-pooling and batch normalization. We use tahn activation for the fully connected layers. The output
layer uses softmax with one neuron per class.

and its surface is divided in equally sized cells (5x5cm in
this case). A top-down view is generated using the bed as
reference, and the point cloud obtained from the depth image
is vertically projected over the bed surface with each point
being assigned to its corresponding cell. The Bed Aligned Map
is the matrix formed by the average cell height above the bed
surface (see Fig. 2).

We apply two modifications to the original BAM algorithm.
First, we use a 5x5cm cell size instead of 10x10cm. Second,
we modified the point cloud projection algorithm to deal with
the bed trapeze. Although the camera placement allows for
an unobstructed view of the patient, the trapeze gets projected
back to the bed when the top-down view is generated. To
avoid this, the point cloud is generated by processing the
depth image sequentially bottom-up from feet to head, and
checking that the same direction is maintained on the top-
down representation.

The dimensions of the Bed Aligned Map depend on the
size of the bed, ranging in our experiments from 40x16 for
a normal 80cm width bed, to 40x26 for an 130cm bed used
by overweight patients. We deal with variable sized maps by
zero padding smaller BAMs to 40x26.

C. Convolutional Neural Network
Compared to images, BAMs encode depth instead of light

intensity, however they share a similar 2D structure and
therefore Convolutional Neural Networks (CNNs) [31] should
outperform non-spatially aware classifiers like Support Vector
Machines or simple Multilayer Perceptrons.

Choosing the right model size for the CNN is critical. CNNs
are data driven methods where both features and classifiers are
automatically learnt from training data. The larger the model,
the larger is the amount of data required for the training. In
cases where enough data is not available, it is common to start
with a pre-trained model from a similar task, and refine the
model (usually only the last layers) using the available data.

However as there is no available pre-trained model for bed
analysis from depth, we need to train our model from scratch.

Non simulated sleep position data is expensive to acquire:
our 600 hours of video contain only around 1000 signifi-
cantly different sleep positions. We need to scale our model
accordingly, and in this regard BAMs help significantly as
they reduce the dimensionality while keeping the 2D structure
(unlike PCA).

Our CNN classifies a single 40x26 cell BAM into one of
four possible classes: empty, right, supine, and left. We use
three convolutional layers with ReLU, 2x2 max pooling, and
batch normalization, followed by two fully connected layers
and an softmax layer (see Fig. 3).

As Bed Aligned Maps are small, the best results are
obtained using reduced receptive fields for the convolutional
layers (5x5 for the first two layers and 1x1 for the third one).
However, it must be noted that small changes in the number of
layers and the parametrization itself do not have a large impact
on the performance. Still, the network has 255976 parameters.

D. Learning

Our training data is normalized to a zero mean and unit
standard deviation. It is then resampled to balance the amount
of samples on each class, and finally data augmentation is used
to diminish overfitting. This includes left and right shifting of
the bed as well as mirroring across the vertical axis.

Training is performed using stochastic gradient descent with
a learning rate of 0.001 and a mini-batch size of 10. After
each mini-batch update step t, we anneal the learning rate by
a factor of 0.001/(1+ t · 10−5). To compute the loss between
the predicted and the target output, we use the negative
log-likelihood criterion. Training stops when validation error
ceases to improve, between 30 and 61 epochs. The CNN is
implemented in Torch7 [32].
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IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Sleep Study Dataset

Over a period of six months we recorded 78 different sleep
laboratory patients using our integrated monitoring system (see
subsection III-A). Our monitoring system is independent to
the rest of devices used in the sleep laboratory, but it is time-
synchronized with them. Therefore we can compare the results
obtained from our system to the chest sleep position sensor
used in the sleep laboratory (SleepSense from S.L.P. Ltd.).

As some patients were recorded for more than one night,
the complete recording comprised 94 nights for a total of
approximately 600 hours corresponding to 65 million images.
We extract 20 samples per night as this dataset is too big to
be labeled by hand in its entirety.

Considered classes are supine, left, right and empty. The
empty class represents when the patient is not lying on the
bed, but may contain a patient sitting on the bed. The prone
position (also known as abdominal position) is special. It is
an uncommon position to sleep, but it is even more rare in the
sleep laboratory as it is uncomfortable for the patients carrying
a cable box on their chests. Therefore we discard the very few
samples we captured in the prone position, as they were not
statistically significant.

The resulting set is severely unbalanced. Of the 1880
samples extracted and hand labeled, 85 belong to empty
beds, 461 to right position, 761 to supine position, and 573
to left position (see Fig. 4). Note that the left position is
more common than the right position. This is because in all
monitored rooms both the room door and the bathroom are on
the left side of the bed. This induces a bias as most patients
prefer to sleep facing the door, and also makes the left position
more challenging as most patients choose to enter and leave
their beds from the left.

B. Evaluation

We perform a 5-fold cross validation, making sure that each
fold has a similar size, but comprises a different set of patients.
Subsequently, we present our experimental results averaged
over all folds.

Chest Sensor: The chest sensor used in the sleep laboratory
uses an accelerometer to detect its orientation by means of
detecting the gravity vector. Its output is discrete: left, right,
supine, prone or up.

The up label means that the patient chest is in vertical
position, either sitting on the bed or standing. We associate
this label to our empty class.

Among all sleep positions, the sensor shows a significant
bias towards the supine position (see Table. I).

Accuracy across all samples is 91.9%, however it must be
noted that the sensor tends to oscillate frequently between
sleep positions, and often missreports the prone position. It is
difficult to estimate the impact of those errors on the accuracy.

Large Margin Nearest Neighbor: Large Margin Nearest
Neighbor [19] (LMNN) is a variant of k-Nearest-Neighbor
applied to classification where a custom metric is used instead

(a) Empty

(b) Right

(c) Supine

(d) Left

Fig. 4: Sample BAMs. The dataset is diverse with respect to
patient appearance (weight, age, gender, corpulence) and sleep
attitudes (e.g. sleeping with/without blanket). It contains all the
common behaviors in a hospital bed, e.g. a nurse visible in the
leftmost image in (c). The gray scale indicates depth.

Empty Right Supine Left
Empty 98.61 0.00 0.69 0.69
Right 1.36 93.49 6.24 0.44

Supine 0.00 1.01 96.98 2.00
Left 0.86 0.45 13.24 85.45

TABLE I: Confusion matrix for the chest sensor from the sleep
laboratory. The accuracy is 91.9%.

of euclidean. This metric is designed to minimize the leave-
one-out error and is closely related to Mahalanobis distance.

LMNNs were used with success to classify sleep position
from BAMs on a simulated dataset [16]. The simulated dataset
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used was perfectly balanced with one instance per class and
person, and clearly distinct sleep positions.

When LMNN is used in the sleep laboratory dataset, re-
sults are significantly worse (see Table. II). In this case we
used leave-one-patient-out evaluation which is better suited
to LMNN, and no rebalancing of the training set, as having
repeated samples is harmful. LMNN is unable to overcome the
unbalanced training set and shows a strong bias towards the
most common class: supine. Overall accuracy drops to 70.8%.

Empty Right Supine Left
Empty 9.43 11.32 75.47 3.77
Right 0.00 55.88 35.43 8.69

Supine 0.15 5.54 85.83 8.47
Left 0.00 4.42 30.27 65.31

TABLE II: Confusion matrix of the Large Margin Nearest
Neighbor, it shows a strong bias towards the supine position
and an average accuracy of 70.8%.

Fig. 5: The architecture of the MLP with 1040 input and
20 hidden neurons. Each 40x26 BAM is reshaped into a 1-
dimensional vector before being processed.

Multilayer Perceptron: To quantize the impact of the
convolutional layers, we evaluated a simpler neural network
approach consisting of a multilayer perceptron (MLP).

The source BAM is flattened to a 1040 dimensional vector
and fed to a MLP with 1040 input, 20 hidden and 4 output
neurons. Hyperbolic tangent is used as activation function
for the hidden neurons and softmax for the output layer (see
Fig. 5). Training is performed similarly to the CNN approach,
balancing the training set and using data augmentation. We
use dropout to prevent overfitting.

As expected, our MLP generalizes better than LMNN, but
still shows weak performance with an accuracy of 82.2% (see
Table. III).

Empty Right Supine Left
Empty 82.80 1.60 9.20 6.40
Right 1.60 84.40 8.40 5.60

Supine 1.60 10.40 78.80 9.20
Left 1.20 4.40 9.60 84.80

TABLE III: Confusion matrix of the multilayer perceptron,
accuracy of 82.2%.

HoG and Support Vector Machines: Histograms of Ori-
ented Gradients [29] (HoG) and Support Vector Machines [33]
(SVM) are known to have a very good synergy to detect and
classify human shapes.

It can be compared to a shallow version of a CNN, HoG
providing the spatial structure, and SVM classifying on top.
Furthermore, it has been suggested recently for sleep position
by Torres et al. [20].

Our setups used are significantly different and therefore it
is not possible to exactly replicate the methods implemented
in [20]. Therefore we apply HoG to the BAMs, reducing the
feature space from 1040 to 280 dimensions, and apply SVM
on top.

As the previous methods, data augmentation and training
set balancing was applied, and empirically we found that the
RBF-kernel provide the best performance.

The accuracy achieved is 88.9% (see Table. IV). This is
better than MLP, as expected due to the HoG descriptor
providing structural insight, but not as accurate as the chest
sensor.

Empty Right Supine Left
Empty 96.00 1.20 0.40 2.40
Right 1.60 89.20 6.40 2.80

Supine 0.80 2.80 90.80 5.60
Left 0.40 1.60 12.80 85.20

TABLE IV: Confusion Matrix of the Histogram of Oriented
Gradients and Support Vector Machines. The accuracy is
88.9%.

Convolutional Neural Network: Our CNN approach
achieves an accuracy of 91.0% without data augmentation,
whereas additional data augmentation leads to a further per-
formance boost to 94.0% (see Table. V).

The CNN achieves superior performance compared to all
other classifiers and even outperforms the chest sensor. The
CNN behaves similarly to the HoG+SVM combination. In
both cases the best classified class is the empty bed and,
most importantly, the errors in sleep position are reasonable.
This means that in both cases the left position is more easily
confused with the supine position than with the right position,
and the same happens in the opposite direction. With such
accurate performance, most errors can be attributed to edge
cases were the patient sleep position is between both positions.

Empty Right Supine Left
Empty 98.40 0.00 0.00 1.60
Right 0.40 93.20 4.40 2.00

Supine 0.40 1.60 94.00 4.00
Left 0.00 1.20 4.80 94.00

TABLE V: Confusion Matrix of the CNN. The accuracy is
94.0%. This outperforms all other classifiers and the chest
sensor.
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V. CONCLUSIONS

We have explored the problem of automatically determining
the sleep position from a single depth image. We have shown
how the problem is effectively treated using a classifier on
top of spatial descriptors, as the HoG+SVM and the CNN
approaches achieved great results while non-spatial classifiers
like LMNN and MLP had mediocre performance.

Our evaluation is performed on 78 patients from a sleep
laboratory where we achieved a classification accuracy of
94.0% with the CNN approach, surpassing the chest sensor
used in the laboratory (accuracy 91.9%). Compared to other
approaches, ours uses a single modality, requires no calibration
or user interaction, has been validated on a real scenario, and
achieves better performance. Further work is directed towards
an holistic sleep quality monitoring system using the same
setup for nursery homes, assisted living, and ageing-at-home
scenarios.
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