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Abstract—Augmented Reality (AR) is a type of human-

computer interaction that overlays virtual information on a user’s
natural visual perception of the environment. Determining where
to place these virtual objects so they appear a part of the
environment requires real-time fracking. One type of tracking
uses point clouds, processed from commodity depth sensors,
such as the Microsoft Kinect. In this format, tracking becomes
a 3D registration problem which can be quickly solved using
local registration methods; however, these techniques require a
sufficient overlap between the object-to-track, and the sampled
object points from the range camera. 3D descriptors can be
used to provide this initial overlap, but require significant
computational resources.
This work extends previous research towards real-time descriptor
computation on large point sets. To do so, the 3D descriptor
extraction process is broken down into fundamental algorithmic
steps. These steps are optimized by computing them on the GPU
using NVIDIA’s CUDA framework. Results of an experiment
indicate the opportunity for large speed-ups in the most compu-
tationally intensive portions of descriptor extraction.

I. INTRODUCTION

Augmented Reality (AR) is a type of human-computer in-
teraction in which virtual information is seemingly integrated
into the real world. It does so by overlaying the information
on a user’s natural visual perception of the environment [1].
This information is presented in a context-sensitive manner
that is appropriate for a specific task, and provides numerous
opportunities to improve how users perform tasks.

Object tracking refers to the techniques enabling the real-
time calculation of an object’s pose relative to a global
reference coordinate system. One type of tracking processes
images from a commodity range camera (such as the Microsoft
Kinect), which provides distance information for each image
pixel. Using the optical properties of the camera, range images
can be transformed into point clouds. Exploiting this format,
tracking becomes a 3D registration problem; one of estimating
the rigid transformation that best aligns an a priori point cloud
reference model with point cloud data obtained in real-time
from the environment (environment model).

Local point cloud registration approaches, such as variants
of the Iterative Closest Points (ICP) algorithm, enable real-
time tracking on commodity hardware [2], [3], [4], [5], [6],
[7]. However, ICP relies on a sufficient overlap of the reference
model and the environment model, and is best suited for frame-
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to-frame tracking with small changes between frames [8], [9].
A lack of sufficient overlap introduces the opportunity to trap
the model at a local minimum during the registration process
[10], [11].

3D descriptors can be used for the initial alignment, how-
ever, descriptor extraction (computation) for one point cloud
from a single range image is generally intractable [12], [13].
Despite the computational burden of extracting descriptors,
few efforts have been undertaken to extend the extraction
process to the GPU. While many 3D descriptors are encoded
from information contained in a Local Reference Frame (LRF)
and are thus viable candidates for task parallelism, many
are not trivially approached due to scattered memory access
patterns.

In this work, we extend the work in [14] to perform descrip-
tor extraction on the GPU toward real-time 3D registration.
The descriptor extraction process is broken down into three
elementary steps (k-d tree generation, normal estimation, and
descriptor extraction). In this work, we focus on the first and
last respective steps and provide the following contributions:

1) A top-down point cloud-based k-d tree construction

method on the GPU

2) A pared implementation of the Fast Point Feature His-

togram (FPFH) on the GPU, using cached nearest neigh-
bors and demonstrating significant speed-ups compared
to its CPU counterpart.

II. RELATED WORK AND BACKGROUND

The descriptor extraction process extended herein processes
an unorganized Point Cloud P (a set of 3D points, such as
those rendered in Figure 1) into a set of FPFH descriptors
in three elementary computation steps. Figure 2 provides an
overview of these steps and characterizes the percentage of
total computation time required for the point clouds in Fig-
ure 1. First, the points are organized into a k-d tree, enabling
fast O(logn) searches (Section II-A). Second, the normal
estimation step generates a normal for each point in P. Finally,
the descriptor extraction step (containing both Simplified Point
Feature Histogram [SPFH] Extraction and FPFH Extraction)
uses the points, normals, and local point neighborhoods to
establish LRFs and encode descriptors (Section II-B). As
shown, the SPFH extraction takes the majority share of time
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in the sequential descriptor extraction process, and thus stands
to benefit the most from GPU optimization.

In this work, we focus on both k-d tree construction and
descriptor extraction steps. Thus, this section covers work
related in the area of 3D descriptor extraction and k-d tree
construction on the GPU.

A. K-d tree construction on the GPU

A k-d tree is well-known balanced binary tree used for ac-
celerating searches performed on multidimensional data [15].
In one type of k-d tree, each internal node (non-leaf) represents
both a container for data (e.g. triangles, primitives, points,
etc.), and an axis-aligned splitting plane, spatially separating
the regions of its two children. In this work, we focus on k-d
trees in which both internal nodes and leaf nodes each contain
a single 3D point.

Sequential k-d tree construction with 3D points generally
consists of two parts that are recursively repeated. First, data
are sorted on the selected dimension. Secondly, the data are
split using the median element (which is not strictly the median
of the data, but the middle element). All nodes less than that
element for the current dimension are passed to build a subtree
with the root node located at the median element’s left child,
and likewise, those with a greater value are passed to build
a subtree at the median element’s right child. Due to the
scattered memory access patterns inherent in traversing graphs
(by chasing pointers) on the CPU, k-d tree construction isn’t
trivially implemented on the GPU.

On GPUgs, k-d trees have been implemented for several fast
or interactive ray tracing approaches [16], [17], [18], [19],
[20]. This method allows passing rays into the root node,
and rapidly searches for intersections with primitives objects
(such as triangles) in the scene at leaf nodes. In contrast to
this work, we develop a k-d tree for point clouds that differs
in several fundamental ways: the type of data contained in a
node; the lack of a heuristic function at each internal node
(such as the Surface Area Heuristic); and the storage of data
at each splitting plane, allowing nearest neighbor searches at
each node traversed.

Other work implements k-d trees for computing particle
interactions, relaxing the binary restriction of the data structure
[21]. This work extends the k-d tree to support searching
in cells, and is therefore, similar in design to an oct-tree.
Whereas, our approach maintains the balanced binary tree
structure of the k-d tree with a single splitting plane for each
inner node.

Most similar to this work is that of Gieseke et al. [22], who
develop so-called buffer kd trees to perform nearest neighbor
queries on a large amount of data. While their speed-ups are
significant in an experiment for large clouds, they are limited
to single nearest neighbor search results, whereas this work
requires K-nearest neighbor searches.

B. 3D Descriptor Extraction on the GPU

Although the descriptor extraction process is computation-
ally burdensome, few efforts have been undertaken to paral-
lelize the process on the GPU. At this time, the Point Cloud

Fig. 1. Planar point cloud rendering with a) 10,000 points b) 50,000 points
and c¢) 100,000 points

Library (PCL) version 1.8.0 [23] contains a limited number
3D descriptor extraction methods on the GPU, including a
version of Point Pair Features [24], and the Fast Point Feature
Histogram [25]. While the work contained here develops a
GPU version of the FPFH, it differs in two main respects.
First, we extract a descriptor using one radius only (thus
pared), computing a fraction of the total descriptors. Secondly,
we cache local nearest neighbors in a prior step to avoid
redundant, time-consuming computations.

Recently, Palossi et al. [13] introduced a GPU version of
the SHOT descriptor extractor for real-time speeds. However,
results were limited to point clouds containing 10,000 points,
which is roughly 3% of the total number of points in a single
Microsoft Kinect camera frame.

III. GPU OPTIMIZATION

This section describes the GPU optimizations developed in
this work, aimed at real-time point cloud registration in 3D. To
this end, GPU optimizations are implemented using NVIDIA’s
Compute Unified Device Architecture (CUDA) framework
[26]. CUDA serves as an extension of the C/C++ programming
languages, in which the GPU is considered a co-processor to
the CPU, and runs a serial program called a kernel massively
in parallel. This framework is capable of executing thousands
of threads in parallel, which are organized in blocks.

A. K-d tree

Construction of the k-d tree on the GPU is based on a couple
key observations. First, the GPU co-processor obtains fast
speeds when branch divergence is minimized, since all threads
in the warp perform instructions in a SIMD (Simultaneous
Instruction Multiple Data) manner. Secondly, fast speeds are
obtained when memory access is coalesced. With this in mind,
rather than designing an algorithm around random memory
access by one thread, we develop an algorithm, that from its
input parameters, can ask itself during its computation if it is
the thread that should process the median element. And if the
thread determines it should process the median element, it can
place the point in the correct position in the tree. This concept
is referred to as a median splitting element, and is formulated
in Appendix A.

Similar to the sequential CPU implementation, the GPU im-
plementation of the k-d tree construction relies on repeatedly
sorting the points by a dimension (Algorithm 1), and then
splitting the data with a median element and adding it to the
tree (Algorithm 2). The sorting and splitting operations are
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called sequentially for each depth of the k-d tree, and is thus
limited to [logn] calls.

The segmented sorting sequentially runs several parallel
kernels, and is documented in Algorithm 1. First, a map
operation fills an array with its indices, which is used later
in the sorting process. To coalesce memory accesses, each
point is split into a separate data set by dimension. This is
followed by a map operation that creates a list of predicates,
which is used in an inclusive scan [27] to identify the sorting
group that each index belongs in. The sorting group segments
the data so sorting is confined to those points between the
median splitting elements. To do so, the range of the data is
computed, and subsequently linearly transformed in the range
widening step (Line 8). At this point, the sorting is performing
using a fast key-value radix sort; using the data as keys to be
sorted, and the original point indices that come along for the
ride [28]. The result is that the indices array contains at index
¢ the location for where the point at ¢ should be moved, and
a move is easily performed with a mapping.

Similar to sorting, building of the tree at a particular depth
relies on the ability for the thread ¢ to determine if the point
located at index ¢ should be the median and therefore split the
data and insert the point into the tree (Algorithm 2). To do
so, the algorithm must contend with two special cases that lie
outside the assumptions formulated in Appendix A. The first
case is the trivial case where ¢ = 0, and hence the element
at index 0 will always report it is a median splitting element.
This is easily handled on the final depth of the tree, since the
algorithm is formulated to only choose the element at index O
when a < 1. The second special case is when o« < 1 which
occurs on the largest depth, where each node is thus a median
splitting element. In this situation, the kernel can calculate the
median and median splitting elements for the previous depth,
and set elements which are neither to the tree. The elements at
the final level of the tree are guaranteed to be within 1 index
of their parent, since median splitting elements at the depth
above are 2a < 2x1=2= [2a] = 1.

The tree is stored in a linear array of points, with the root
stored at index O, its left child at index 1, and right child at
index 2. Each left and right child node of a node at position
1 is stored in positions 2: + 1 and 27 + 2, respectively.

B. Descriptor Extraction

Similar to the CPU implementation, the GPU descriptor
extraction is executed in two steps. First, an SPFH descriptor
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Algorithm 1: Sort_Dimension(P, n, depth)
Input: A point cloud P = {p;}, the length of the point
cloud n, the depth of the tree depth
Output: A point cloud sorted by a single
indices < Parallel map: element ¢ gets unique index i;
(x,y,z,w) < Parallel scatter: split each point
p; = {%i,v:, zi,w;} into components;
predicates < Parallel map: element ¢ to 1 iff ¢ is a
median splitting element, and O otherwise;
keys <— Parallel inclusive scan on predicates;
5 buffer «+ z,y, or z (by depth);
6 (max_element, min_element) < Parallel max-min
scan on buf fer;
range < max_element — min_element;
buf fer < Parallel map: Range widening on buf fer
using predicates and keys;
(buf fer,indices) < Parallel key-value radix sort, where
key=buf fer and value=indices;
10 P « Parallel gather of {x;,y;, z;,w;} into their new
location specified by indices;
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is extracted for each point in the cloud. Secondly, FPFH de-
scriptors are extracted by adding Euclidean distance-weighted
SPFH descriptors from points in the local neighborhood.

1) SPFH Extraction: The parallel algorithm used for SPFH
extraction is shown in Algorithm 3. In the sequential algo-
rithm, each point pair inside point’s local neighborhood is
processed in a loop. In the parallel algorithm, however, we
launch a thread for each possible point-pair inside every local
neighborhood. Thus, given a point cloud of n points, and a
maximum neighborhood size of k, we launch nk? threads. To
prevent the influence of each point-pair twice in the sequential
algorithm (e.g. once for (i,j), and once for (j,i)), we restrict
the condition that ¢ < j, and thus only process the point-
pair once. Similarly, this restriction is extended to the parallel
algorithm by enforcing the same constraint on the thread index.
Since each thread calculates its own point-pair contribution to
the SPFH at ¢, one atomic add operation is performed to for
each angular variation (Line 3) to ensure race conditions don’t
occur.

2) FPFH Extraction: The goal of the FPFH Extraction step
is to add the weighted SPFHs in the local neighborhood to the
SPFH at index i. We leverage the fast access of shared memory

Point cloud
Plane 10,000

Plane 50,000

. Plane 100,000
4.8

i ]
K-d tree generation |—| Normal Estimation |—|

SPFH Extraction

0.7 0.4

FPFH Extraction |

Fig. 2. Percentage of total run-time for each logical step in the descriptor extraction process
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Algorithm 2: Build_Depth_Kernel(P, n, tree, depth)

Input: A point cloud P = {p,}, the length of the point
cloud n, the k-d tree tree, the depth of the tree
depth

Output: A k-d tree stored on the GPU

max_depth < log, n;

if depth == |maxDepth| then

depth < depth — 1;

special_case < true;

end
& & FapmTTS
if special_case then
ifi==0V[L] > L then

« . «
Choose left or right as parent;
Set element 7 in the tree;

o XN NN R W N

o
=)

end

-
—

else

-
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if [1] < 2L A[L] is odd then
Set element 7 in the tree;
end

-
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among threads in a block to do so. The FPFH extraction step
is launched in a kernel with a block for each point in the point
cloud, and a thread for each element in the local neighborhood.
As long as the maximum number of local neighbors is fixed,
and the shared memory is large enough to hold one floating
point number for each local neighbor, this approach can be
used.

Each thread is used to retrieve an independent SPFH and
weight its bins using Euclidean distance. When that is com-
plete, all threads in the block are synchronized. Then, for
each bin of the histogram, the weighted values are loaded
into shared memory, and a Scan operation with the addition
operator sums the neighborhood values into the bin at thread
index 0. Finally, the FPFH descriptor is written to memory.

IV. SOFTWARE AND HARDWARE

The proposed algorithms are implemented as two C++
libraries and tested in an experiment. The CPU library uses
the Eigen library [29] to align point objects to 16-byte sizes
for Streaming SIMD Extensions (SSE), to implement an
aligned allocator for the point cloud class, and for performing
fast singular value decompositions for normal estimations.
The parallel library uses NVIDIA’s CUDA version 7.5.18,
and is built supporting the Maxwell architecture. The Thrust
Library that accompanies CUDA is used for the radix sort
in Algorithm 1. Points and descriptors are aligned to 16-byte
boundaries through the use of macros.

The experiment was run on a consumer-grade HP Envy
laptop running Microsoft Windows 8.1 x64. The laptop has
an Intel Core i7-4900MQ CPU and 8 GB of RAM. The GPU
is a mid-range NVIDIA GeForce 840m (28 nm) based on

Algorithm 3: Compute_SPFH_Kernel
(P, N, n, Neighborhood, kNeigh)

Input: A point cloud P = {p,}, A point cloud of
normals N = {n;}, the length of the point cloud
n, the local neighborhoods for each point
Neighborhood, and the size of each local
neighborhood kNeigh

Output: An SPFH descriptor for each point SPFH

i < Point Index;

j < First neighbor index;

k < Second neighbor index;

neigh_size < kNeighli];

if j > neigh_size V k > neigh_sizeV j > k then

| return;

end

p; < GetNeighbor(Neighborhood, i, j);

n; < GetNormal(N,j);

p, < GetNeighbor(Neighborhood, i, k);

ny < GetNormal(N,k);

u < nj;

Pr; < Pr — Pjs

V4 Py X ug

W< uXxv;

Normalize(u, v, w);

impact < CalculateBinsAndImpact(a, ae, a3);

AtomicAdd( SPF H[i],impact );

D-TE- - B Y T S

e O <
NN R W N =D

the Maxwell architecture (GM108 chip), with 2 GB dedicated
memory, and 2 GB shared memory.

V. RESULTS AND DISCUSSION

Preliminary results of the descriptor extraction experiments
on the CPU and GPU are displayed in Figures 3, 4 and 5.
On the x-axis of each chart is the computation step of the
descriptor extraction process, and on the y-axis is the average
computation run-time in milliseconds for a sample size of 100.

As you can see in Figure 3, the time needed to compute
the k-d tree, estimate normals, extract SPFH descriptors, and
extract FPFH descriptors for the smallest (10,000-point) point
cloud on the CPU is not real-time. As evidenced by the chart,
the major bottleneck is the SPFH Extraction step, in the best
case taking 3.4 seconds.

Figures 4 and 5 show the preliminary results of descriptor
extraction on the GPU on varying sized plane models and
100,000 point primitive models, respectively. The k-d tree
generation step shows an improvement in speed for the GPU
for both the 50,000 point plane and the 100,000 point plane,
but longer run-time for the 10,000 point cloud. These results
are consistent with other approaches that build k-d trees on
the GPU, such as Zhou et al. [30], who report a 3x - 7x
speedup in their CUDA implementation over the sequential
implementation.

Most striking is the reduction in the time of the SPFH
extraction process, where the CPU version runs in the best case
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nearly 2800 times longer than the GPU algorithm for the plane
object. Some of this speed-up can be attributed to the lack
of a nearest neighbor search, since the local neighborhoods
are cached in the normal estimation stage. In comparison,
the FPFH extraction takes longer to compute than the SPFH
extraction. One of the reasons for this could potentially be the
O(klogn) processing contained within each kernel for the
scan operation that reduces each dimension of the descriptor.

VI. CONCLUSION AND FUTURE WORK

In conclusion, preliminary results on primitive object point
clouds indicate that dramatic reductions in processing time
for the descriptor extraction process can be obtained by
performing it on the GPU. In particular the SPFH and FPFH
steps indicate that the processing time of point clouds with
100,000 points can be reduced from minutes to milliseconds.

There is much future work ahead. First, GPU memory
needs to be better utilized for faster reads and writes. Texture
memory should be investigated for use with unorganized
point clouds, to take advantage of global access and caching.
Similarly, shared memory use should be investigated further
as an alternative to some much slower global reads and writes.
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Fig. 5. Average GPU extraction time on primitive object point clouds
containing 100,000 points

Threads and block layouts for kernel execution needs to
be more intelligently selected. Unless otherwise noted, each
kernel was executed using the maximum of 1024 threads to
each block. However, there may be more optimal block layouts
that produce faster descriptor extraction times.

More point cloud models need to be tested to determine if
the timing results are similar in each step to those obtained for
the primitive point cloud models. We will continue this inves-
tigation larger, room-sized clouds obtained from commodity
depth cameras.
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APPENDIX

The index of the median element m;4, can be selected as
the middle of n elements using the floor function:

mise = |5 | (M

Repeated application of this median selection yields the ob-
servation that at depth d, for o > 1, the index ¢ of the median
element can be expressed as one particular assignment of ¢ by

i=|cal (2)
such that ¢ € Z, and n
S VESY 3)

Definition 1. Let ¢ be a median splitting element at depth d
if at some depth d; < d, i is the index of a median element.

Since by definition Vo, a > 1, it follows

i=cal <= i<ca<i+i 4)
. o
Leec™ 5)
(0% (0%
Y
e[’f* ) (6)
« (6%

Theorem 1. There is at most one non-zero positive integer

value ¢, such that
[i i+1)
S )
o o

Proof. Suppose, for the sake of contradiction, that both ¢ and
¢+ 1 were contained in the interval [i/a, (i + 1)/a). Then

4+ 1
LA )
a . @
Lo <c< M (8)
« «o
Since o« > 1, 11 .
< t+l-a < * 9)
« «
which is a contradiction.
O

3085



