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Abstract— Inferring scene depth from a single monocular 

image is an essential component in several computer vision 

applications such as 3D modeling and robotics. This process is an 

ill-posed problem. To tackle this challenging problem, previous 

efforts have been focusing on exploiting only global or local depth 

aware properties. We propose a model that incorporates both of 

them to obtain significantly more accurate depth estimates than  

using either global or local properties alone. Specifically, we 

formulate single image depth estimation as a 𝑲 nearest neighbor 

search problem at both image level and patch level. At each level, 

a set of rich depth aware features, describing monocular depth 

cues, is employed in a nearest-neighbor regression model. By 

comparing the results with and without patch based fusion, the 

importance of our joint local-global framework becomes clear. 

The experimental results also demonstrate superior performance 

compared with existing data-driven approaches in both 

quantitative and qualitative analyses with a significantly simpler 

algorithm than others. 

Keywords—Depth estimation, Monocular depth cues, Joint 

local-global framework, KNN regression model, Data-driven 

approaches.  

I. INTRODUCTION  

Understanding scene depth has a variety of applications in 
computer vision disciplines, including 3D model 
reconstruction, recognition, robot navigation and surveillance. 
For example, there are depth-based fall detection systems 
which are used for assisting elderlies and people with 
disabilities [1]. In addition, scene depth estimation plays a 
fundamental role in the process of 2D to 3D image/video 
conversion through depth image based rendering (DIBR) 
procedure. DIBR is the process of generating 3D content from 
a single image and its associated depth map [2]. 

Recently, emergence of 3D technology in various fields 
ranging from entertainment to medical imaging, enrich the 
user’s‎ viewing‎ experience‎ by‎ creating‎ the‎ illusion‎ of‎ depth.‎
Particularly in medical cases, lesser-invasive surgeries are 
enabled by providing surgeons 3D vision. On the other hand, 
getting 3D content which requires extra cameras is not as 
common as monocular imaging; this is the case especially 
where hardware size is an important issue such as in endoscopy 
in medical imaging [3]. To close this gap between 3D displays 
and 3D contents, many 2D to 3D image/video conversion 
algorithms have been proposed in the last few years. Single 
image depth estimation as the main step of this procedure is a 
technically ill-posed problem, due to the lack of reliable depth 

cues such as motion or stereo correspondence in a monocular 
viewpoint. Humans, however, are able to perceive scene depth 
easily in monocular situations, thanks to the prior knowledge 
they learned over the years. This observation has motivated 
many researchers to simulate human visual system (HVS) 
behavior in depth perception using monocular depth cues 
exploited from a 3D repository. As a pioneer work in this 
regard, Saxena et al. proposed the Make3D algorithm [4] in 
which both monocular depth cues and the relation between 
different parts of the image are modeled in a Markov random 
filed (MRF). They also presented an MRF model to capture 3D 
position and orientation of super pixels in an image [5]. 
Make3D algorithm was further improved by Batra and Saxena 
in [6]. They proposed max-margin parameter learning in 
conditional random fields (CRFs) with Laplacian potentials. In 
[7], Liu et al. integrated semantic labels with monocular depth 
cues to improve the 3D reconstruction process. Hoiem et al. 
constructed the surface layout of a scene by labeling of the 
images into geometric classes [8]. More recently, the algorithm 
in [9] transfers depth gradient as reconstruction cues, instead of 
directly selecting depth values from the training data.  

Apart from learning-based methods for single image depth 
estimation, various conventional algorithms have been devised 
which are typically based on image content. These methods 
predict depth values by directly making use of monocular 
depth cues such as atmospheric effects [10], focus/defocus [11] 
and occlusions [12]. However, the main drawback of such 
approaches is that they usually tend to impose some strict 
assumption on the image content. Hence their application 
typically is limited up to some restricted scenes, such as images 
containing haze, defocus due to the limited depth of field 
(DOF) and etc. But practically, most of the time, real images 
do not provide such conditions. This is why data-driven 
approaches have come under the focus in recent years.  

Some data-driven approaches are based on a reasonable 
assumption about existence of correlation between image 
visual appearance and depth values. The core idea of such 
methods is that scenes with similar appearance are expected to 
have similar depth values and hence, retrieving similar images 
to the input image from 3D repository is the mutual step 
between such algorithms. A set of high level image features 
such as histogram of oriented gradients (HOG) [13], local 
binary pattern (LBP) [14], GIST [15] or a combination of them 
is typically used in the retrieving process. Konrad et al. 
proposed a fast and simple way to fuse associated depths of 𝐾 
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candidate images [2]. They applied median operator on 𝐾 
depth maps to provide an initial estimate of a depth map. 
Herrera et al. replaced simple median operator with weighted 
averaging in which depth maps are weighted according to 
image’s‎ similarity‎ [16, 17]. Weighted median statistics is 
another fusion strategy which has been devised in this regard 
[18]. Depth transfer algorithm devised by Karsch et al. warps 
candidate depths, based on SIFT (scale-invariant feature 
transform) flow [19]. This procedure is then followed by a 
global optimization that encourages smoothness across the 
estimated depth. Depth estimation by parameter transfer 
(DEPT) algorithm was proposed in [20] to estimate realistic 
depth map by modeling the correlation between images and 
their depth information using parameter transfer.  The way in 
which associated depths of candidate images are fused is an 
important issue in such data-driven methods. In this paper we 
argue that having only a global perspective in fusion phase is 
insufficient to predict depth maps that are both visually 
pleasing as well as quantitatively accurate. Hence, we propose 
to capture both global and local information from various cues 
by exploiting depth relevant features from the entire image and 
image patches respectively. More specifically, we estimate 
depth value of an input image in a patch-based framework 
using a nearest neighbor regression type idea in both image 
level and patch level. 

The rest of this paper is organized as follows. Section II 
presents the proposed depth estimation algorithm. The 
performance of our proposed method is evaluated in Section III 
and finally Section IV concludes the paper.   

 

II. PROPOSED METHOD 

As discussed in the previous section, we aim to use the 
merits of both global and local information of a scene for 
estimating its depth map. To this end as depicted in Fig. 1, 
given an input image and a database, we first perform a nearest 
neighbor search in Similar Image Retrieval stage to retrieve 𝐾 
images most similar to the input image, from 3D database. In 
Fig.1 we call a database containing image/depth pairs as 
RGBD. The 𝐾 candidate images along with their 
corresponding depth maps act as our new 3D training set. 
Afterward, instead of globally fusing 𝐾 candidate depths 
[2,16,17], we proceed by adopting a patch based framework to 
consider local aspects of images in addition to their global 
structure (to have both local and global perspective). 
Specifically we collect non-overlapping patches of size 16×16 
from both candidate images and the input image in Image 
Patch Formation stage. Next, for each patch of the input 
image, a set of similar patches is retrieved from all the patches 
of our new 3D training set in Similar Patch Retrieval stage. 
The corresponding depth patch is estimated for each patch of 
the input image, by fusing candidate depth patches through 
Depth Patch Fusion stage. Then in Stitching stage, all the 
estimated depth patches are stitched together to form the 
overall initial depth map. Finally, we refine the initial depth 
map from patch level to pixel level to reconstruct the final 
depth map in Depth Refinement stage. 

In the following, four main stages of our algorithm are 
discussed in detail.  

Image Patch Formation

Input Image

Similar Patch Retrieval

Depth Patch Fusion

Stitching

Similar Image Retrieval

Initial Depth Map

Final Depth Map

Depth Refinement

K' Candidate Patches

K Candidate Images

RGBD Database

 

Fig. 1. Block diagram of our depth estimation model 

 

A. Similar Image Retrieval  

It has been known that in a large scale 3D dataset, there 
exist two kinds of images, those that have similar structure to 
the input image and therefore are relevant for estimation of its 
depth and those that are  irrelevant. The  latter  case  should  be 
rejected from 3D repository to reduce or even remove the 
influence of potential outliers in the training set. GIST [15], as 
a set of high level image features is used to characterize the 
global structure of the images. The structure similarity between 

the input image (𝐼) and 𝑛𝑡ℎ color image (𝐼𝑛) in the training set 
is measured by computing the sum of squared differences 
(SSD) of the corresponding image feature descriptor as 
follows:  

𝑆𝑆𝐷 = ‖𝐺(𝐼) − 𝐺(𝐼𝑛)‖2 

where 𝐺(𝑋) is the GIST feature vector of image 𝑋. We then 
discard all image/depth pairs from dataset but the top 𝐾 nearest 
neighbors with respect to SSD and consider them as the new 
training pairs, which are relevant for learning depth. In Fig. 2, 
we show four nearest neighbor search results for two outdoor 
input images from Make3D dataset [21] (see Section III), 
retrieved by  comparing  the  SSDs  of GIST features  with 
each other.   Despite the fact that none of the  four   candidates  
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Fig. 2. Color image and depth field of two 2D input (first row) and their four 

nearest neighbors (rows 2-5). 

 

completely matches the corresponding input image, the overall 
underlying depth is somewhat correlated to the associated 
ground truth depth. 

B. Similar Patch Retrieval  

Relying only on global properties of images is insufficient to 
predict absolute depth values of such images accurately. On the 
other hand, since the 𝐾 retrieved images are not aligned 
semantically with the input image, applying global fusion 
strategies on the associated depth maps results in over-
smoothing. To tackle the above shortcoming, considering 
image patches, we propose to find 𝐾′ patches in the new 3D 
dataset (obtained in the first stage) that have most similar depth 
to the input patch. The KNN search in this stage is based on 
effective local features applied to capture two monocular cues 
typically used to perceive depth by humans: texture and 
relative height. 

1) Texture 

Texture variation is a prominent monocular cue mostly 
used in human visual system (HVS) to perceive depth since 
object’s‎texture‎looks‎different‎depending‎on‎the‎distance‎from‎
the viewer [4]. To capture this significant cue, histogram of 
local binary pattern (LBP) is computed per patch. LBP 
provides a robust means of describing patterns in a texture 
which has been widely used in various pattern recognition 
applications [14]. Entropy is another texture feature we used 
along with LBP to capture texture cue more effectively.   

2) Relative height 

In addition to texture, relative height provides a cue for 
depth perception in a sense that objects with higher vertical 
position in the image, appear to be more distant. To show the 
correlation between depth value of a point and its relative 
height, we conducted an experiment by computing the average 
value of all depth images in Make 3D dataset, depicted in Fig. 
3. As can be inferred from the average depth map in Fig. 3, the 
bottom of the image corresponds to the regions that are closer 
to the camera; specifically the distance of a point from the 
viewer usually increases as its height in the image increases.    

RGBD Database

d :

 

Fig. 3. The relation of depth values and relative height 

At the end of this stage, we attempt to demonstrate that 
above-mentioned features are of critical importance in 
obtaining good performance in depth estimation. In other 
words, we illustrate the fact that image patches with similar 
features have roughly similar depth values. To this end we 
compute the correlation between our proposed feature vectors 
extracted from image patches. The root mean square errors 
(RMSEs) of associated depth patches are also calculated. 
Furthermore, the probability that the RMSE of depth patches 
being equal to zero, given various correlation values between 
feature vectors, is computed and reported in Table I. The 
results in this table show that the higher the correlation of 
image feature vectors, the higher the histogram peak at zero 
which are good evidence that the employed features are highly 
correlated with depth values.    

TABLE I.  THE RELATIONSHIP BETWEEN IMAGE FEATURE VECTORS AND 

DEPTH VALUES 

Correlation 𝐏(𝐑𝐌𝐒𝐄 = 𝟎) 

[0,0.2] 2.35 × 10−4 

(0.2,0.4] 3.66 × 10−4 

(0.4,0.6] 5.71 × 10−4 

(0.6,0.8] 0.001 

(0.8,1] 0.021 
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C. Depth Patch Fusion 

The selected depth patches 𝐷𝑘 , 1 ≤ 𝑘 ≤ 𝐾′ obtained in the 
previous stage, should be combined to get the depth of input 
patch. Two fusion approaches were considered in this paper to 
reduce the influence of potential outliers: the median and 
weighted average operator on the 𝐾′ candidate depth patches. 
In the former case, we compute the depth values of each patch 
(at pixel level) by applying median operator across the selected 
depth patches at each spatial location 𝑥 according to (2): 

𝐷(𝑥) = median{𝐷𝑘(𝑥) |  1 ≤ 𝑘 ≤ 𝐾′} 

Depth patch combination in the second strategy is inspired 
by the assumption that the patches with analogous image 
structure are expected to have similar depth distribution. 
Accordingly, the contribution of each selected depth patch in 
our final depth estimate is proportional to the similarity of the 
input patch with associated color patch. Specifically, the 
weighted averaging process across 𝐾′ candidate depth patches 
can be defined as: 

𝐷 = ∑ 𝑤k𝐷k

𝐾′

𝑘=1

 (3) 

where 𝐷𝑘 is the average value of 𝑘𝑡ℎ candidate depth patch and 
𝑤𝑘 is a weight function representing the contribution degree of 
that patch. Denoting 𝐹(𝑃) and 𝐹(𝑃𝑘) as the feature vectors for 

input patch and 𝑘𝑡ℎcandidate patch (employed for matching 
patches), we define 𝑤𝑘 as: 

𝑤k =
1

‖𝐹(𝑃) − 𝐹(𝑃𝑘)‖2
 (4) 

Eventually, as the result of (3), 𝐷, a preliminary estimate of 
input patch, is obtained. 

D. Depth Refinement 

The initial depth map obtained up to this point is locally 
inconsistent with the color input image due to the patch-based 
nature of our proposed framework. As a result, this often leads 
to the lack of edges in estimated depth where sharp boundaries 
should occur and the lack of depth smoothness in some 
homogenous regions. Here, we refine it through a simple but 
effective post-processing, based on image-guided joint 
filtering. In particular, we employ weighted median filter 
(WMF), an edge-preserving smoothing filter proposed in [22], 
which accomplishes smoothing via 𝐿1 norm minimization. As a 
result, applying this stage makes the initial depth map to be 
smoothed out, while keeping its edges sharp and aligned with 
those of the input image. 

III. EXPERIMENTAL RESULTS  

In this section, we evaluate our single image depth 
estimation model on a popular dataset, which is available 
online: Make3D range image dataset [21]. The make3D dataset 
consists of 534 image/depth pairs depicting outdoor scenes 
with corresponding depth maps collected with laser scanner. 

The images are captured from various environments with 
different structures which makes Make3D dataset a challenging 
one for outdoor scenes. The color images and depth maps are 
of 2272×1704 and 55×305 resolution, respectively. 
Nevertheless, we resize them to 345×460 pixels for 
computational efficiency and preserving the aspect ratio of 
original images. The whole dataset was divided into 400 
training images and 134 test images. We examined our 
proposed method on the images of the test set and used the 
training set to perform our 𝐾 nearest neighbor search. It should 
be noted that all the experimental results are achieved by 
setting constant parameters 𝐾=20 and 𝐾′=10 empirically.  

For quantitative evaluation, we report error for three 
common error metrics which have been used extensively in 
previous works. We compute RMS error, relative error (Rel) 
and error in log10 scale as follows:  

RMS = √
1

𝑁
∑(𝐷(𝑥) −  𝐷∗(𝑥))2

𝑥

 

 

Rel =
1

𝑁
∑

|𝐷(𝑥) − 𝐷∗(𝑥)|

𝐷∗(𝑥)
𝑥

 

 

log10 =
1

𝑁
∑|log10(𝐷(𝑥)) − log10(𝐷∗(𝑥)) |

𝑥

 

 

Here 𝐷∗ and 𝐷 are the ground-truth and estimated depth 
respectively and 𝑁 is the total number of pixels in all the 
images. In addition, normalized cross covariance (NCC) which 
measures similarity between the estimated depth map and the 

ground-truth depth, is also used. Denoting  𝜇
𝐷

 and 𝜇
𝐷∗  as the 

mean value of 𝐷 and 𝐷∗and 𝜎𝐷 and 𝜎𝐷∗  as the corresponding 
standard deviations, NCC is defined as follows: 

𝑁𝐶𝐶 =
1

𝑁𝜎𝐷𝜎𝐷∗
∑(𝐷(𝑥) − 𝜇𝐷)(𝐷∗(𝑥) − 𝜇𝐷∗)

𝑥

 

We first present baseline comparisons to prove the 
superiority of jointly considering the global and local structures 
of images, compared with only reasoning globally. In order to 
compare our core idea for candidate depth fusion, with those of 
[2, 16, 17], all the stages, except the way of fusing 𝐾 candidate 
depths in two experiments, were considered the same. We 
applied median (Med) and weighted average (WA) operator on 
the whole depth candidates, globally, to simulate the fusion 
idea of [2] and [16, 17] respectively. The performance of 
algorithms has been captured by the average (Avg), and 
median of NCC, along with the average of three other error 
metrics across all 134 test images. Table II shows the 
numerical results. As can be observed, our method achieves 
better performance by jointly using global and local properties 
of images in a unified framework and a significant drop in the 
performance is visible when our patch-based framework is 
neglected. 
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TABLE II.  BASELINE COMPARISONS ON MAKE3D DATASET (BEST 

RESULTS ARE BOLDED). 

Method 

Lower is better Higher is better 

RMS log10 Rel 
NCC 

(Avg) 

NCC 

(Med) 

Global 
WA 15.86 0.186 0.579 0.66 0.66 

Med 16.86 0.167 0.387 0.65 0.67 

Global 

+ 

Local 

WA 15.08 0.163 0.447 0.70 0.72 

Med 16.58 0.163 0.351 0.66 0.67 

 

We also compare our method with several popular state-of-
the-arts methods in Table III. All methods were trained on 400 
image/depth pairs and were tested on 134 images of the same 
dataset. We got the results of [18] and [19] by running the 
authors’‎ source‎ codes,‎ which‎ are‎ publicly‎ available1 and the 
numerical results of other references are directly taken from 
their tables. Dash signs indicate that those numbers were not 
reported in the mentioned reference. Most of the works in the 
literature compare their results with some of the mentioned 
metrics. We quantitatively evaluate our approach by NCC 
along with three other error metrics. 

 

TABLE III.  QUANTITATIVE COMPARISON WITH COMPETING ALGORITHMS 

Method 

Lower is better Higher is better 

RMS log10 Rel 
NCC 

(Avg) 

NCC 

(Med) 

[4] 16.7 0.198 0.530 - - 

[5] - 0.149 0.458 0.64 0.69 

[6] 15.8 0.168 0.362 - - 

[7] - 0.149 0.375 - - 

[8] - 0.320 1.423 - - 

[18] 15.9 0.161 0.376 0.66 0.68 

[19] 15.1 0.148 0.361 0.69 0.71 

[20] 16.9 0.182 0.489 - - 

Ours (WA) 15.08 0.163 0.447 0.70 0.72 

Ours (Med) 16.58 0.163 0.351 0.66 0.67 
 

Despite the fact that most of these algorithms employ 
computationally expensive optimization [19], sophisticated 
graphical model [4,5,6] or even the additional knowledge of 
pixel labels during training phase [7,8], we outperform them in 
three of the four metrics. Most notably, our method (using 
median operator) obtains significantly better results in terms of 
relative error (Rel). This improvement of the results is 
attributed to the integration of both global and local 
information and extraction of robust and effective depth aware 
features in a patch-based framework.  

                                                           
1  “http://www.kevinkarsch.com/”‎and‎

“http://make3d.cs.cornell.edu/code.html” 
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Fig. 4. Qualitative comparison with other approaches 

 

 

We further present a qualitative comparison between our 
estimated depth maps with those recovered by depth transfer 
[19] and Make3D [5] algorithms on representative images from 
Make3D data set. Qualitative results are given in Fig. 4. It can 
be observed that Make3D algorithm fails to capture the 
complicated structures in some cases and do not recover a 
visually pleasing depth map. Moreover, results of depth 
transfer algorithm tend to be over-smoothed due to the global 
optimization employed in depth interpolation process. In 
contrast, depth boundaries in our results are better aligned to 
those of the input color image. Clearly, our method leads to 
more visually pleasant estimates with sharper transitions, 
demonstrating the superiority of applying patch-based 
framework followed by proper depth refinement algorithm. 
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IV. CONCLUSION 

Estimating scene depth from a single monocular image is 
an inherently ambiguous task, requiring combination of both 
local and global information of the image. In this regard, we 
have presented a fully automatic technique using the merits of 
local features in addition to contextual information of the scene 
in a unified framework. Practically, we have formulated depth 
estimation as a nearest neighbor regression at two levels. After 
pruning the large scale 3D dataset with high level global 
features (KNN at image level), a set of depth related features 
which captures prominent monocular depth cues, is locally 
exploited from image patches for KNN procedure at patch 
level. The experiments showed that achieved results are 
superior compared with competing algorithms in both 
quantitative and qualitative comparisons. 
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