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Abstract—Scene text is one of the most important information
sources for our daily life because it has particular functions
such as disambiguation and navigation. In contrast, ordinary
document text has no such function. Consequently, it is natural to
have a hypothesis that scene text and document text have different
characteristics. This paper tries to prove this hypothesis by
semantic analysis of texts by word2vec, which is a neural network
model to give a vector representation of each word. By the vector
representation, we can have the semantic distributions of scene
text and document text in Euclidean space and then determine
their semantic categories by simple clustering. Experimental
study reveals several differences between scene text and document
text. For example, it is found that scene text is a semantic subset
of document text and several semantic categories are very specific
to scene text.

I. INTRODUCTION

Scene text tells something to us and we fully utilize it
for our life. Intuitively, scene text might have a different
function from ordinary document text. Some of these particular
functions of scene text are disambiguation and navigation. For
example, text on a shop sign disambiguates the type of the
shop. Text on a street sign disambiguates our location. The
text on a traffic sign suggests where to go. Text on a door
suggests suitable operations, such as “push” and “pull.” Both
of those functions are strongly related to the environmental
context around the scene text. In contrast, document text is
not expected to have such functions and is not related to any
environmental context.

The purpose of this paper is to understand what scene text
tells us by analyzing its typical semantic categories. For this
purpose we use a large scene text dataset containing 16,517
English words. To the authors’ best knowledge, this paper
is the first trial to analyze the semantic categories of scene
texts. If we know the semantic categories, we can quantify the
textual information from scene. In addition to this scientific
contribution, we can utilize the quantification result in several
applications, especially in scene text recognition. Specifically,
the frequency of each semantic category can be used as a
general (or even language-independent) prior probability for
scene text recognition.

In our semantic analysis of scene text, each word is
embedded into an Euclidean space as a vector, while re-
flecting their meaning. In general, if two words have a
similar meaning, their corresponding vectors are similar
to each other; for example, Vec(“avenue”) ∼ Vec(“street”).
Furthermore, the semantic difference between two words
is quantified by their difference vector; we therefore
can expect that Vec(“father”)−Vec(“mother”) is similar to
Vec(“son”)−Vec(“daughter”). This vectorization is realized by
word2vec [1], [2], whose mechanism will be reviewed later.

Fig. 1. Examples of scene text images retrieved with the keyword “sign.”

Consequently, the vector representation will result in more
substantial analysis than a simple word histogram or a wordle1

representation of the dataset.

Semantic categories of scene texts are finally analyzed
by clustering the vectors. Each cluster is a set of words
with similar meaning and therefore representing a semantic
category. By observing large clusters, it is possible to under-
stand major semantic categories of scene texts. In addition,
by comparing the clusters with those of document texts, it is
possible to analyze the semantic difference between scene text
and document text.

Since the definition of scene text is somewhat vague, we
will use scene texts from sign. More precisely, the scene texts
of our dataset (i.e., the above-mentioned 16,517 words) are
collected from 3,000 scenery images retrieved by the keyword
“sign”. With this keyword-based selection, we can ignore texts
in ordinary paper documents captured in scenes. The selected
images are similar to the images used in recent competitions on
scene text detection and recognition [3], [4], where scene text
from signs is the main target. Figure 1 shows several image
examples. It is noteworthy that we do not exclude complete
sentences from our target, although text on signs is often a
short phrase or just a single word.

A. Contributions of This Paper

The main contributions of this paper are summarized as
follows:

• This is the first experimental trial to analyze the se-
mantic categories of scene text through a comparison

1http://www.wordle.net/

2016 23rd International Conference on Pattern Recognition (ICPR)
Cancún Center, Cancún, México, December 4-8, 2016

978-1-5090-4846-5/16/$31.00 ©2016 IEEE 4036



with that of document text.

• It is proved that scene text is a semantic subset of
document text by combining vector representation by
word2vec [1], [2] and clustering.

• It is determined that several semantic categories are
very specific to scene text and tend to be more
concrete than document text.

II. RELATED WORK

A. Scene Text Detection and Recognition

Recently, scene text gets much attention from pattern
recognition researchers. The most active task is scene text de-
tection and recognition. It is a similar task of ordinary OCR for
document text – however, scene text detection and recognition
is much more difficult than document text. This is because
scene text undergoes more image distortions, more variations
in font shape, and less regularities in layout. Consequently, it is
necessary to develop new detection and recognition techniques
specialized for scene text [5], [6]. MSER [7] and SWT [8] are
common techniques for the text detection task. For the scene
text recognition task, Convolutional Neural Networks (CNN)
have shown outstanding performance [9], [10], like in other
image recognition tasks (e.g., ImageNet Classification [11]).

We can find other research topics around scene text. Visual
attention of scene text is a classical topic in visual psychol-
ogy [12] and also a new topic in pattern recognition [13].
Distribution of foreground-background color contrast in scene
text was recently inspected [14]. The relationship between
scene text and its environmental context (i.e., its surrounding)
is also analyzed and utilized [15]–[17]. To the authors’ best
knowledge, however, the textual message from scene text, i.e.,
semantics of scene text, has not been researched yet.

B. Scene Text Dataset

For analyzing the semantic categories of scene text, we
need to have a large dataset of scene texts – however, there
is no dataset that satisfies this need. One remedy is to use
public datasets for scene text recognition, such as [3], [4],
[18], but even the largest dataset (ICDAR Robust Reading
Competition 2015 [4]) contains only about 4,200 words2. IIIT-
5K [18] contains 5,000 words but it is comprised of not only
scene text but also texts in born-digital images. Consequently,
it is necessary to prepare a larger dataset of scene texts for our
purpose.

C. Vector Representation of Words

The semantic analysis of scene text can be realized by
the recent progress of the vector representation of words (i.e.,
continuous representation of words). The purpose of vector
representation is to embed words into Euclidean space. The
simplest realization is so-called 1-of-K representation, where
K denotes the vocabulary size. It represents the word of the

2Those words are contained in the training set of “Task 4 (Incidental Scene
Text)” of the competition [4]. The test set of this task contains 2,000 words
but its word list is not publicly available. The dataset for “Task 2 (Focused
Scene Text)” contains much less words than Task 4. Note that the vocabulary
size of those 4,200 words was 488 by the screening process of Section III-B.
This size is less than half of our dataset (1,102).

i-th entry in the vocabulary as a K-dimensional vector where
only the i-element is 1 and the others are 0. For realizing a
more continuous embedding, i.e., a more semantic embedding,
Latent Semantic Analysis (LSA) has been used as a traditional
method [19]. LSA is sometimes called a global model because
it is based on occurrence of individual words in an entire
document.

After the proposal of word2vec [1], [2] in 2013, vector
representation has become a hotter and more practical topic
than before in natural language processing. The main idea
of word2vec is skip-gram, a rather simple neural network
model, which will be outlined in Section IV-A. Word2vec is
called a local model because it is based on occurrence of
individual words in a small window, which can be shorter
than a sentence. GloVe [20] is its alternative where a weighing
technique originated from the global model is introduced into
the local model. Word2vec has been extended to handle a
sequence of words, i.e., a paragraph [21] or a document [22].

Word2vec has a drawback in its ability on word sense
disambiguation (WSD). For example, the word “plant” can
refer to organisms in the kingdom Plantae or can be another
word for “factory” and therefore is ambiguous. In this paper,
however, we still use the original word2vec implementation,
because WSD did not become a serious problem. It will be
worthy to replace word2vec with its recent version with better
WSD ability, such as [23]–[25], in our future work.

A recent trend around word vectorization is its application
to image recognition tasks. The key idea is that the class labels
of visual object are a set of words and thus their semantic
relationship can be evaluated by using word2vec. The seman-
tic relationship is then utilized for visual object recognition
task [26]–[29]. For example, a CNN is trained to output similar
vectors for object classes with similar meaning [26]. This is
more natural than assuming 1-of-K output and extensible to
so-called zero-shot learning.

Gordo et al. [30] have proposed a method which can
obtain a semantic vector directly from a scene text image,
without any word recognition step. If this method can be more
accurate with further improvement (e.g., a combination with
query expansion [31]), it is promising for larger-scale semantic
analysis of scene text; this is because we do not need to
annotate scene text images any more.

III. DATASET OF SCENE TEXT FROM SIGNS

A. The Original Dataset

Scene text was extracted from 3,000 scene images collected
from Flickr 3 under the copyright license of creative commons
BY 3.0. As noted in Section I, the keyword “sign” was used
for searching Flickr for images containing some text. From
those images, texts were manually extracted and gathered as
a dataset. The number of words in the dataset was 16,517. To
the authors’ best knowledge, this is the largest scene text (i.e.,
word) dataset created manually.

Figure 1 shows several examples of scene text. Most text
on signs is a short phrase or just a word, although some are
complete sentences. We, therefore, need to analyze semantics

3www.flickr.com
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Fig. 2. Skip-gram model in word2vec. Window size w = 2.

of scene text in a word-wise manner, rather than a sentence-
wise or image-wise manner. Note that an image may contain
a part of a word, like “GHLANDS” in Fig. 1. We treat it as a
word in the original dataset and then remove it by a screening
process before the semantic analysis.

We also use a dataset of document texts in the experimental
analysis of Section VI. The role of this dataset is twofold.
First, it is used as a training dataset for vectorizing words by
word2vec (as described in Section IV-B). Second, it is used
for analyzing the semantic characteristics of document text
and then clarifying that of scene text via comparison. We use
a public dataset text8. The dataset is provided along with the
source code of word2vec and comprised of ordinary document
text. More precisely, text8 contains English sentences collected
from Wikipedia and the number of words is about 16 million.

B. Screening

A screening process was applied to the original scene text
dataset for removing words which do not fit to our analysis
purpose and then getting the word vocabulary of the dataset.
First, if a word is not listed in the GSL (The General Service
List) dictionary4, it is considered as named entity or a part
of a word and then removed from the dataset. Similarly,
if a word is in the English stop word list5, it is removed.
Then, a stemming operation is applied to remove linguistic
variations. (For example, “fishing” and “fishes” will become
“fish” by stemming.) PorterStemmer implemented in NLTK6

was used for the operation. Finally, a “uniquifying” operation
is applied to remove duplicated words from the dataset. In
Section VI-A, we will observe the result of those screening
steps for understanding the characteristics of scene text.

IV. VECTORIZING WORDS BY WORD2VEC

A. Word2vec – A Brief Overview

Word2vec [1], [2] is a neural network-based technique for
converting a word into a vector. Assume a sentence with a
missing word, “She eats [ ] every morning”. We can imagine
several candidates for the missing word – “banana”, “egg”, etc.
Simply speaking, the key idea of word2vec is to increase the
probability that “banana” and “egg” are represented by similar
vectors because they are exchangeable in this context, i.e.,

4http://www.eapfoundation.com/vocab/general/gsl/
frequency/

5http://www.ranks.nl/stopwords
6http://www.nltk.org/

between the preceding words “She eats” and the succeeding
words “every morning”. In fact, the probability should be high
because they are still exchangeable in many different contexts.
The context can be wider; that is, it is possible to use w
preceding words and w succeeding words as the context. The
parameter w is called window size.

In word2vec, the above idea is implemented by the skip-
gram model7. The skip-gram is a three-layer neural network,
as shown in Fig. 2. It is similar to an auto-encoder because its
hidden layer will output a compressed expression of the input.
More precisely, the K-dimensional binary vector representing
the target word by the 1-of-K manner is fed to the input layer
and then a D-dimensional real-valued vector is generated from
the hidden layer. The output layer is expected to generate 2w
context words as 2w K-dimensional binary vectors, whereas
the output layer of the conventional auto-encoder is expected to
reproduce the input word. After training the skip-gram, the D-
dimensional real-valued vector from the hidden layer is treated
as a vector representing the semantics of the given input word.

B. Training Word2vec

The original open source code8 is used as the implementa-
tion of word2vec in this paper. By word2vec, each scene word
is represented as a 200-dimensional vector (i.e., D = 200).
For training word2vec, text8 dataset is used.

It is important to note that we analyze semantics categories
of scene text by word2vec trained with not scene text but
ordinary document text (i.e., text8) because of the following
four reasons. (i) Comparison between the semantic categories
of scene text and document text becomes easy by using the
same word2vec model. (ii) The scene text dataset is not large
enough for training word2vec by itself. (iii) Scene text is often
a short phrase or just a single word and thus sufficient context
(i.e., preceding and succeeding) words are not always available
at every word for training skip-gram9. (iv) The vocabulary of
our scene text dataset is, fortunately, a subset of that of text8 —
this means that we can always have the corresponding vector
for any word from our scene text dataset. In other words, we
cannot have a vector representation of a word which is not
contained in the training dataset.

The window size w on training skip-gram is an important
parameter. Bansal et al. [32] pointed out that a small w (say,
w = 1) makes a pair of words with high syntactical similarity
closer and a larger w (say, w = 10) makes a pair with high
topical similarity closer. We therefore set w = 5 as the best
compromise for our semantic analysis.

V. CLUSTERING TO OBTAIN TYPICAL SEMANTIC
CATEGORIES OF SCENE TEXTS

To understand the semantic categories of scene text, the
200-dimensional vectors of the words from the screened scene
text dataset are clustered by simple k-means. Words of a cluster
are expected to share similar semantics. Accordingly, observa-
tion of a cluster with many words is helpful to understand

7Word2vec has another model called CBOW but we use skip-gram in this
paper.

8https://code.google.com/p/word2vec/
9The window size w does not matter for vectorizing a word by the trained

skip-gram. It does matter in the training step.
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TABLE I. CHANGE OF THE NUMBER OF WORDS BY SCREENING STEPS.

scene text document text
original datasets(A) 16,517 (100) 15,943,811 (100)

non-GSL words (B) 7,134 (43.2) 6,291,288 (39.5)
stop words (C) 4,264 (25.8) 6,275,372 (39.4)

after removing non-GSL and 5,119 (31.0) 3,377,151 (21.2)stop words (D=A-B-C)
after stemming an uniquifying 1,102 (6.67) 2,535 (0.016)(=unique(stemming(D)))
The number in parentheses indicates the ratio (%) to the original dataset.

Fig. 3. Example of scene texts (highlighted by a blue box) belonging to the
four largest semantic categories.

a typical semantic category of scene text. Before clustering,
every vector was normalized to have a norm of 1. The metric
in k-means was cosine similarity.

The number of clusters, k, is an important parameter for
semantic analysis. If k is too small, a cluster will contain words
having different semantics. If k is too large, a cluster will
contain too few words. Accordingly, semantic category of the
cluster becomes ambiguous with inappropriate k. After several
preliminary experiments, k was set to 50 as one of the best
compromises. When k = 50, the maximum, minimum, and
average cluster sizes are 63, 5, and 23, respectively, for our
scene text dataset.

For each cluster, a label representing the semantic category
was attached manually by observing the words belonging to
the cluster. For example, the label “Food” is attached for a
cluster containing “meal”, “carrot”, “cake”, etc. If we have two
clusters of a similar semantic category, we attach a number for
each, such as “Food(1)” and “Food(2).” The semantic category
of a cluster was sometimes ambiguous or unclear even with
the best compromise k = 50. The semantic category becomes
especially ambiguous when its cluster size was small. In such
cases, a special label of “Misc” was used. In fact, it is not
always easy to attach a label that covers the meaning of all
words in a certain cluster. Nevertheless, manual attachment
was still much better than automatic attachment by choosing
the word closest to the cluster center as the label.

VI. ANALYSIS RESULTS

A. Observation of Screening Result

Before analyzing the semantic categories, several basic
differences between scene text and document text are observed
from the result of the screening steps of Section III-B. As
mentioned before, about 16 million words in text8 were used as
the original dataset of document texts. Table I shows how each
screening step reduces the number of words from the original
dataset. From this table, the following facts are confirmed:

• Scene text contains slightly more non-GSL words than
document text. In fact, scene text often contains named
entity, such as location names and shop names, and
word fragments.

• Scene text contains far less stop words than document
text. More precisely, 25.8% of scene text are stop
words, whereas 39.4% of documents text are stop
words. This supports that scene texts are often a short
phrase or just a single word.

• The difference between scene text and document text
in their word vocabulary size (1,102 and 2,535) is far
smaller than the difference in their original dataset
size (1.65 × 104 and 1.59 × 107). This suggests
that because our scene text dataset has a comparable
vocabulary variety to the document text vocabulary,
we can analyze the semantic categories of scene text.

B. Semantic Categories of Scene Text

The 1,102 words in the screened scene text dataset were
fed to the trained word2vec and then k-means clustering was
performed for dividing the resulting vector set into k = 50 se-
mantic categories. Table II shows the top 10 largest categories.
The category label was determined manually by observing the
words as noted in Section V. In the table, the word closest to
the cluster center and nine randomly-chosen words are shown
as examples of the words from the cluster. Readers can refer to
the supplementary material where all the words of each cluster
are listed.

Not all but most categories contain words consistent with
its label. This indicates that (i) word2vec could give similar
vectors to the words with similar meaning successfully, and,
more importantly, (ii) scene text has several clear semantic
categories. The latter point is more detailed in Section VI-C.
Figure 3 shows example images from the top 4 largest cat-
egories. Those top categories (except for the first one being
comprised of two sub-categories, “Tool” and “Body”) contain
frequent words in scene.

The distribution of the 50 semantic categories is visualized
in Fig. 4. Multi-dimensional scaling (MDS) was used for
this two-dimensional visualization of the categories, where the
distance between two categories are measured by Euclidean
distance between their centroid vectors. The label size is
relative to the cluster size. Since individual words with similar
meaning have similar vectors, similar semantic categories are
also located closely. For example, the categories related to
“life” (“Animal/Body”, “Animal” and “Tool/Body” ) are close
to each other.
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TABLE II. RANDOM EXAMPLES OF WORDS IN TOP 10 LARGEST SEMANTIC CATEGORIES OF SCENE TEXT.

Tool/Body Behavior Geography Transportation Atmosphere Public organization Social/Temporal Action with object Food(1) Misc.
44(4.0%) 41(3.7%) 38(3.5%) 37(3.4%) 37(3.4%) 36(3.3%) 36(3.3%) 32(2.9%) 30(2.7%) 30(2.7%)
circular begin bridge air belt act article accept bread active
finger follow canal busy close admission century apply butter change*
teeth immediately island industrial deep appointment development deliver eat control
weight join lake level dry* force headquarter develop food current
corkscrew* leave* mount lower extreme foreign history* enjoy greasy mark
lock left ocean network rainy government* late include juice open
ear limit river* rail* side national main provide* meat past
scrape spread road railway wet official recent receive milk preference
straight tray south station wind police science share roast* standard
drive turn town upper winter president world yield taste unfair
The top row is the category label. The second row is the number of words belonging to the category with its ratio (percentage) to the whole vocabulary.
The symbol “*” indicates the word closest to the cluster center.

TABLE III. RANDOM EXAMPLES OF WORDS IN TOP 10 LARGEST SEMANTIC CATEGORIES OF DOCUMENT TEXT.

Personality Communication(1) Social/Temporal Behavior Body condition Spatial Judgment Technology Art/Feeling Action with object
122(4.8%) 97(3.8%) 88(3.5%) 83(3.3%) 72(2.9%) 71(2.8%) 68(2.7%) 68(2.7%) 66(2.6%) 65(2.6%)
congratulate argument boast accept accidental angle* cruelly extra confidentially crack
cowardice common current admit anxiety edge deceit improvement crowd draw
curiosity commonsense heavily bring excess empty forbid level favorite dug
dishonor* detail influential build medical end permission load goodnight* float
doubtless direct list entrust* pain gap police mileage* grateful ground
eager prefer modern* give pressure log punish multiply joy hung
foolish qualification popular interfere reduction multiplication refusal refresh laugh scrape*
misery question solidly offer severe roughly suspicion test show stairs
shopkeeper recommend total operate sleepiness* row trial wrapper story sweep
stupidity sense* umbrella succeed sudden shape urgent yield theater touch
The top row is the category label. The second row is the number of words belonging to the category with its ratio (percentage) to the whole vocabulary.
The symbol “*” indicates the word closest to the cluster center.
The underlined words can be found in scene text.

C. Comparison between Scene Text and Document Text

Table III shows the top 10 largest semantic categories of
document text. The comparison between Tables II and III
reveals the following important semantic characteristics of
scene text relative to document text:

• Several semantic categories are very specific to scene
texts. Especially, the third (“Geography”), the fourth
(“Transportation”), and the ninth (“Food(1)”) cate-
gories are clear examples.

• Scene text has more concrete categories comprised of
concrete nouns than document text. This suggests that
scene texts need to be concrete for disambiguation
and navigation. Especially, words in the category
“Geography” are used for disambiguating the location,
as shown in Fig. 3. In contrast, document text has
more abstract categories (such as “Personality” and
“Communication”).

• The difference between scene text and document text
also appears in the words nearest to the cluster center.
Specifically, it is difficult to guess the category label
from the center word for document text, while it is
rather easier for scene text. This suggests that scene
text has a smaller variance in semantic space.

D. Scene Text Is a Semantic Subset of Document Text

Figure 5 shows the two-dimensional visualization of 50
semantic categories of document text. MDS is used for the
visualization like Fig. 4, whereas the color of each label
represents the percentage of words also found in scene text.
A warmer (colder) color indicates that the semantic category
contains more (less) words from scene text. The average
percentage is about 45% as indicated by the star mark in the
figure.

Figure 5 reveals the most important fact:

• Semantic categories of scene text exist locally in the
entire semantic distribution of document text. Specif-
ically, semantic categories labeled with warm colors
exist only around the center to top-right area in Fig. 5.
In other words, scene text is a semantic subset of
document text.

This is much more meaningful than the case that scene text
is just a vocabulary subset of document text. The above fact
allows us to grasp general prior probability of scene text. For
example, any word related to “City/Building” will have higher
prior probability than any word related to “Personality” or
“Communication.”

VII. CONCLUSION

This paper proved several semantic characteristics of scene
text, through experimental and comparative analysis using
large scene text and ordinary document text datasets. The
semantic analysis is done by representing each word as a vector
by word2vec [1], [2]. Qualitative evaluations by watching
the Euclidean clustering results of the vectors support that
word2vec can vectorize the meaning of words appropriately.
Main results found by the analysis are as follows: (i) Scene text
is a semantic subset of document text. (ii) Several semantic
categories such as “Geography” and “Transportation”) are
very specific to scene text. (iii) Scene text has more concrete
semantic categories, which are comprised of concrete nouns,
and thus has the functions of disambiguation and navigation.

In the future, we can utilize the prior probability of seman-
tic categories for scene text recognition directly. Furthermore,
like [26], we can expect a semantic level combination of words
and word images toward a novel formulation of scene text
recognition.
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Fig. 4. Two-dimensional visualization of the 50 semantic categories of scene
text. Various colors are used just for better visibility.
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