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Abstract—Learning new global relations based on an initial
affinity of the database objects has shown significant improve-
ments in similarity retrievals. Locally constrained diffusion pro-
cess is one of the recent effective tools in learning the intrinsic
manifold structure of a given data. Existing methods, which
constrain the diffusion process locally, have problems - manual
choice of optimal local neighborhood size, do not allow for
intrinsic relation among the neighbors, fix initialization vector
to extract dense neighbor - which negatively affect the affinity
propagation. We propose a new approach, which alleviate these
issues, based on some properties of a family of quadratic opti-
mization problems related to dominant sets, a well-known graph-
theoretic notion of a cluster which generalizes the concept of a
maximal clique to edge-weighted graphs. In particular, we show
that by properly controlling a regularization parameter which
determines the structure and the scale of the underlying problem,
we are in a position to extract dominant set cluster which is
constrained to contain user-provided query. Experimental results
on standard benchmark datasets show the effectiveness of the
proposed approach.

I. INTRODUCTION

Retrieval has recently attracted considerable attention within
the computer vision community, especially because of its
potential applications such as database retrieval, web and
mobile image search. Given a user provided query, the goal is
to provide as output a ranked list of objects that best reflect the
user’s intent. Classical approaches perform the task based on
the (dis)similarity between the query and the database objects.
The main limitation of such classical retrieval approaches is
that they do not allow for the intrinsic relation among the
database objects.

Recently, various techniques, instead of simply using the
pairwise similarity, try to learn a better similarities that con-
sider manifold structures of the underlying data. Qin et al.
[1] try to alleviate the asymmetry problem of the k-nearest
neighbor (k-NN) using the notion of k-reciprocal nearest
neighbor. In [2] the notion of shared nearest neighbor is used
to build secondary similarity measure, which stabilizes the
performance of the search, based on the primary distance mea-
sure. In [3] shape meta-similarity measure, which is computed
as the L1 distance between new vector representation which
considers only the k-NN set of similarities fixing all others to
0, was proposed. Choosing the right size of the neighbor is
important. In [4], the notion of shortest path was used to built
a new affinity for retrieval.

Diffusion process is one of the recent effective tools in
learning the intrinsic manifold structure of a given data [5]-
[7]. Given data, a weighted graph is built where the nodes
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are the objects and the edge weight is a function of the
affinity between the objects. The pairwise affinities are then
propagated following structure of the weighted edge links in
the graph. The result of the affinity propagation highly depends
on the quality of the pairwise similarity [8], [9]. Inaccurate
Pairwise similarity results in a graph with much noise which
negatively affects the diffusion process. Constraining the diffu-
sion process locally alleviates this issue [5], [7], [9]. Dominant
neighbor (DN) and k-NN are two notions used by the recent
existing methods to constrain the diffusion process locally [5]-
[7]. In [5], it has been shown that affinity learning constraining
relation of an object to its neighbors effectively improves the
retrieval performance and was able to achieve 100 % bull’s
eye score in the well known MPEG datset. The author of
[5] put automatically selecting local neighborhood size (K)
as the main limitation of the approach and is still an open
problem. The influence of selecting different K values was also
studied which proved that the parameter is a serious problem
of the approach. For MPEG?7 dataset, the choice is insignificant
while for the other two datasets YALE and ORL choosing
the reasonable K is difficult which resulted in a decrease in
performance for the right value of K. Moreover, it is obvious
that the selection of k-NN is prone to errors in the pairwise
similarities [7]. Since any k-NN decision procedure relies only
on affinities of an object to all other objects, k-NN approach
is handicapped in resisting errors in pairwise affinities and in
capturing the structure of the underlying data manifold.

Yang et al. in [7], to avoid the above issues, proposed the
notion of dominant neighbors (DN). Instead of the k-NN, here
a compact set from the k-NN which best explains the intrinsic
relation among the neighbors is considered to constrain the
diffusion process. However, the approach follows heuristic
based k-NN initialization scheme. To capture dominant neigh-
bors, the approach first choose a fixed value of K, collect
the K nearest neighbors and then initialize the dynamics, the
dynamics which extracts dense neighbors, to the barycenter
of the face of the simplex which contains the neighbors. It
is obvious to see that the approach is still dependent on K.
Moreover, as fixing K limits the dynamics to a specified face
of the simplex, objects out of k-NN(g) which form a dominant
neighbor with ¢ will be loosed. The chosen k-NN may also
be fully noisy which might not have a compact structure.

In this paper, we propose a new approach to retrieval which
can deal naturally with the above problems. Our approach
is based on some properties of a parameterized family of
quadratic optimization problems related to dominant-set clus-
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ters, a well-known generalization of the notion of maximal
cliques to edge-weighted graph which have proven to be
extremely effective in a variety of computer vision problems,
including (automatic) image and video segmentation, group
detection and tracking [10]-[14]. In particular, we show that
by properly controlling a regularization parameter which de-
termines the structure and the scale of the underlying problem,
we are in a position to extract dominant-set cluster which is
constrained to contain user-specified query.

The resulting algorithm has a number of interesting features
which distinguishes it from existing approaches. Specifically:
1) it is able to constrain the diffusion process locally extracting
dense neighbors whose local neighborhood size (K) is fixed
automatically; different neighbors can have different value of
K. 2) it does not have any initialization step; the dynamics,
to extract the dense neighbors, can start at any point in the
standard simplex 3) it turns out to be robust to noisy affinity
matrices.

The rest of the paper is organized as follows. In the next
section we will discuss the most related works to our approach.
Section IIT will introduces in detail our constrained dominant
set framework. The experimental results are given in section
Iv.

II. DIFFUSION PROCESS

Given a set of n objects, the relation among them can be rep-
resented as an undirected edge-weighted graph G = (V, E, w),
where V' = {1,...,n} is the vertex set, E C V x V is the
edge set, and w : E — R is the (positive) weight function.
Vertices in G correspond to data points, edges represent
neighborhood relationships, and edge-weights reflect similarity
between pairs of linked vertices. As customary, the graph G
is represented with the corresponding weighted adjacency (or
similarity) matrix, which is the n X n nonnegative, symmetric
matrix A = (a;;) defined as a;; = w(i,j), if (¢i,7) € E,
and a;; = 0 otherwise. A diffusion process then starts from
a predefined initialization, say V' and propagates the affinity
value through the underlying manifold based on a predefined
transition matrix, say 7, and diffusion scheme (S).

Off-the-shelf diffusion processes, which basically differ
based on the choice of V, 7 and S, the most related ones
to this work are [7], [15]. In both cases, the diffusion process
is locally constrained. While in [15] the notion of k-NN is used
to constrain the diffusion process locally, dominant neighbor
notion (DN) is used by [7].

A. Nearest Neighbors

In the first case, the edge-weights of the k-NN are kept
i.e define locally constrained affinity £ = ([;;) defined as
lij = w(i, ), if (i,j) € k-NN(g), and [;; = 0 otherwise. Then
the diffusion process, setting ) as the affinity A , is performed
by the following update rule.

Vi1 = LVL (D)

Nearest neighbors constrained diffusion process, alleviating
the issue of noisy pairwise similarity, significantly increases

the retrieval performance. However, the approach has two se-
rious limitations: First, automatically selecting local neighbor-
hood size (K) is very difficult and is still an open problem [5].
In [5] the influence of selecting different K values was studied
which proved that the parameter is a serious problem of the
approach. For MPEG7 dataset, the choice was insignificant
while for the other two datasets, YALE and ORL, choosing the
reasonable K was difficult which even resulted in a decrease in
performance, for ORL from 77.30% to 73.40% and for YALE
77.08% to 73.39%, for the right value of K. Moreover, it is
obvious that the selection of k-NN is prone to errors in the
pairwise similarities [7].

B. Dominant Neighbors

Yang et al. in [7], to avoid the above issues, proposed the
notion of dominant neighbors (DN). Instead of the k-NN, here
a compact set from the k-NN which best explains the intrinsic
relation among the neighbors is considered to constrain the
diffusion process. To do so, the author used the dominant set
framework by Pavan and Pelillo [11].

A dominant neighbor (DN) is set as a dominant set, say
DS, from the k-NN which contains the user provided query
g, lets call it DS(q).

1) The Dominant set Framework: The dominant set frame-
work is a well-known graph-theoretic notion of a cluster
which generalizes the concept of a maximal clique to edge-
weighted graphs. The approach has proven to be a fast and
efficient framework for various applications [11]-[13], [16].
A generalization of its ideas to hypergraphs and multigraphs
has recently been developed in [17], [18]. It has also proven to
be effective in capturing the structure of the underlying data
manifold [19].

In the dominant set framework, the data to be clustered
are represented as an undirected edge-weighted graph with no
self-loops. Note that all entries on the main diagonal of A are
Zero.

For a non-empty subset S C V, i € S, and j ¢ S, define

¢s(i,j) = aij — ﬁ > aw 2
kes
This quantity measures the (relative) similarity between nodes
J and 7, with respect to the average similarity between node ¢
and its neighbors in S. Note that ¢ (7, j) can be either positive
or negative. Next, to each vertex i € S we assign a weight
defined (recursively) as follows:

) 1, if |S]=1,
wg(i) = . : .
{Zjes\{i} ds\(iy (J, )wg 3 (j),  otherwise -(3)
Intuitively, wg (i) gives us a measure of the overall similarity
between vertex ¢ and the vertices of S\ {i} with respect to the
overall similarity among the vertices in S\ {i}. Therefore, a
positive wg (i) indicates that adding 7 into its neighbors in S
will increase the internal coherence of the set, whereas in the
presence of a negative value we expect the overall coherence
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to be decreased. Finally, the total weight of S can be simply

defined as
W(S) = ws(i) .
€S

A non-empty subset of vertices S C V' such that W (T') > 0
for any non-empty 7" C S, is said to be a dominant set if:

1) wg(i) >0, forall i €S,

2) wgygiy(i) <0, forall i ¢ S.
It is evident from the definition that a dominant set satisfies
the two basic properties of a cluster: internal coherence and
external incoherence. Condition 1 indicates that a dominant
set is internally coherent, while condition 2 implies that this
coherence will be destroyed by the addition of any vertex from
outside. In other words, a dominant set is a maximally coherent
data set.

Now, consider the following linearly-constrained quadratic
optimization problem:

“4)

maximize
subject to

f(x) =x'Ax

xeA )

where a prime denotes transposition and

A= {XER” : inzl, and x; ZOforallil...n}
i=1
is the standard simplex of R™. In [11], [20] a connection is
established between dominant sets and the local solutions of
(5). In particular, it is shown that if S is a dominant set then

its “weighted characteristics vector,” which is the vector of A

defined as, o
wg (i . .
xi:{w(s), if i€8,

0, otherwise

is a strict local solution of (5). Conversely, under mild condi-
tions, it turns out that if x is a (strict) local solution of program
(5) then its “support”

ox)={ieV : z; >0}

is a dominant set. By virtue of this result, we can find a
dominant set by first localizing a solution of program (5)
with an appropriate continuous optimization technique, and
then picking up the support set of the solution found. In this
sense, we indirectly perform combinatorial optimization via
continuous optimization.

A simple and effective optimization algorithm to extract a
dominant set from a graph is given by the so-called replicator
dynamics, developed and studied in evolutionary game theory,
which are defined as follows:

L o (ax1)

LT G ©

fori=1,...,n.

Yang et al. in [7], to find a dominant set in the k-NN, DS(q),
initialized (6) with the nearest neighbor of ¢ (k-NN(gq)). They
set, say the initial time is set as t = 1, z;(1) = 1/K if ¢ €
k-NN(q) zero otherwise. After the convergence of (6), say to

x*, DN (q) is set as the support of x*, i € DN (q) if and
only if i € o(x*). The edge-weights of the DA/ (g) are then
kept i.e define locally constrained affinity £ = (I;;) defined as
lij = w(i,7), if (i,j) € DN(q), and l;; = 0 otherwise. Then
the diffusion process, setting V' as the affinity A, is performed
by the same update rule as in (1).

The DN approach has proven to be more effective than the
k-NN approach [6], [7], [21]. The approach, while effective,
is rather heuristic in nature and has limitations. The approach
initializing (6) with the nearest neighbor of ¢ (k-NN(q))
limits the dynamics to the face of the simplex which contains
k-NN(g). Moreover, a fixed value of K should be chosen
for initializing (6), the approach, as it follows k-NN based
initializing scheme, is still dependent on K. However number
of nearest neighbors K may be different for different objects.
As fixing K limits the dynamics to a specified face of the
simplex, objects out of k-NN(g) which form a dominant set
with ¢ will be loosed. The chosen k-NN may also be fully
noisy which might not have a compact structure.

III. CONSTRAINED DOMINANT SETS

Let G = (V, E,w) be an edge-weighted graph with n ver-
tices and let A denote its (weighted) adjacency matrix. Given
a subset of vertices S C V' and a parameter « > 0, define the
following parameterized family of quadratic programs:

f&(x) =x'(A— ozfs)x
XxeA

maximize
subject to

(7

where Ig is the nxn diagonal matrix whose diagonal elements
are set to 1 in correspondence to the vertices contained in
V'\ S and to zero otherwise, and the 0’s represent null square
matrices of appropriate dimensions. In other words, assuming
for simplicity that .S contains, say, the first k& vertices of V,

we have:
- 0 0
=0 n)

where I,,_j, denotes the (n — k) x (n — k) principal submatrix
of the n xn identity matrix I indexed by the elements of V'\ S.
Accordingly, the function f§ can also be written as follows:

S (x) = x'Ax — axlyxs

xg being the (n — k)-dimensional vector obtained from x
by dropping all the components in S. Basically, the function
f§ is obtained from f by inserting in the affinity matrix A
the value of the parameter « in the main diagonal positions
corresponding to the elements of V' \ S.

Notice that this differs markedly, and indeed generalizes,
the formulation proposed in [20] for obtaining a hierarchical
clustering in that here, only a subset of elements in the main
diagonal is allowed to take the o parameter, the other ones
being set to zero. We note in fact that the original (non-
regularized) dominant-set formulation (5) [11] as well as its
regularized counterpart described in [20] can be considered
as degenerate version of ours, corresponding to the cases
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S =V and S = (), respectively. It is precisely this increased
flexibility which allows us to use this idea for finding groups
of “constrained” dominant-set clusters.

We now derive the Karush-Kuhn-Tucker (KKT) conditions
for program (7), namely the first-order necessary conditions
for local optimality (see, e.g., [22]). For a point x € A to be
a KKT-point there should exist  nonnegative real constants
W1, -,y and an additional real number A such that

[(A—als)x]; —A+p; =0

forall 2 =1...n, and

n
Zﬂfim =0.
i=1

Since both the x;’s and the u;’s are nonnegative, the latter
condition is equivalent to saying that ¢ € o(x) implies p; = 0,
from which we obtain:

(A — ads)x]; {

=\, ifi€o(x)
< A, ifi ¢ o(x)

for some constant A. Noting that A = x'Ax — axlsxg and
recalling the definition of Ig, the KKT conditions can be
explicitly rewritten as:

(AX)I' — Qx;
(AX)i
(AX)Z'

= ifico(x)andi¢ S
ifico(x)andie S

if i ¢ o(x)

xX'AX — ax/gXg,
= X'AXx — axgxg,
< x'Ax — axiyxg,
(®)
We are now in a position to discuss the main results which
motivate the algorithm presented in this paper. Note that, in
the sequel, given a subset of vertices S C V, the face of A
corresponding to S is given by: Ag ={z € A :o(x) C S}.
proposition 1: Let S C V, with S # (). Define

x'Ax — (Ax);

max min -
x'x

XEAy\ 5 1€S

Vs = ©)
and let o > ~vg. If x is a local maximizer of f§ in A, then
o(x) NS #0.

Proof: Let x be a local maximizer of f& in A, and
suppose by contradiction that no element of o(x) belongs to
S or, in other words, that x € AV\ 5. By letting

x'Ax — (Ax);

1 = arg min y
x'x

JjeSs
and observing that o(x) C V' \ S implies x'x = x4xg, we
have:

x'Ax — (Ax);

x'Ax — (Ax);
XlgXg '

> 2 ;
x'x
Hence, (Ax); > x'Ax — ax/yxg for i ¢ o(x), but this violates
the KKT conditions (8), thereby proving the proposition. M
The following proposition provides a useful and easy-to-
compute upper bound for vg.
proposition 2: Let S C V, with S # (). Then,

Ys < )\max(AV\S) (10)

where Amax(Av\g) is the largest eigenvalue of the principal
submatrix of A indexed by the elements of V' \ S.

Proof: Let x be a point in Ay\g which attains the
maximum g as defined in (9). Using the Rayleigh-Ritz
theorem [23] and the fact that o(x) C V' \ S, we obtain:

XA\ gXs  xX'Ax
)‘maX(AV\S) > 5 7 . = o
XsXg x'x
Now, define vyg(x) = max{(Ax); i € S}. Since A is

nonnegative so is ys(x), and recalling the definition of vg we
get:

x'Ax _ x'Ax — v5(x)
T 7 =7s
x'x x'x
which concludes the proof. [ |

The two previous propositions provide us with a simple
technique to determine dominant-set clusters containing user-
selected vertices. Indeed, if S is the user provided query ¢, by
setting

(11)

we are guaranteed that all local solutions of (7) will have
a support that necessarily contains the user specified object.
As customary, we can use replicator dynamics or more so-
phisticated algorithms to find them [24]. Note that this does
not necessarily imply that the (support of the) solution found
corresponds to a dominant-set cluster of the original affinity
matrix A, as adding the parameter —« on a portion of the
main diagonal intrinsically changes the scale of the underlying
problem.

Given a query ¢, we scale the affinity and run the replicator
(6), say the dynamics converges to x*. The support of x*,
o(x*), is the constrained dominant set which contains the
query ¢, let us call it CDS(g). The edge-weights of the
CDS(q) are then kept i.e define locally constrained affinity
L = (l;;) defined as {;; = w(i,j), if (4,5) € CDS(q), and
l;; = 0 otherwise. The diffusion process is then performed by
the same update rule as in (1). For the proof of convergence
of the update rule we refer the reader to [6].

a > /\max (AV\S)

IV. EXPERIMENTS

The performance of the approach is presented in this sec-
tion. The approach was tested against three well known data
sets in the field of retrieval: MPEG7(shape), YALE(faces) and
ORL(faces). For all test data sets the number of iterations
for the update rule is set to 200. A given pairwise distance
D is transformed to similarity (edge-weight) using a standard
Gaussian kernel

A7 = 1izjexp(—D/25?)

where o is the free scale parameter, and 1p 1if P
is true, 0 otherwise. £ is then built, from A, using the
constrained dominant set framework. The diffusion process
is then computed using the update rule (1) which resulted in
the final learned affinity for ranking.

A similar experimental analysis as of [5] has been con-
ducted. In [5], a generic framework with 72 different variant
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of diffusion processes was defined which are resulted from
three steps: initialization, definition of transition matrix and
diffusion process. In our experiment, the update scheme is
fixed to (1) which has proven to be effective. The four
different types of initialization schemes are Affinity Matrix
A (A1) [25], Identity Matrix I (A2), Transition Matrix P
which is the standard random walk transition matrix (A3)
[26] and Transition Matrix P,y which is the random walk
transition matrix constrained to the k-nearest neighbors (A4)
[26]. Including our transition matrix (B6), we have in total
6 different types of transition matrices: P (B1), Personalized
PageRank Transition Matrix Pppr (B2) [26], Pryn (B3),
Dominant Set Neighbors Ppg [7] (B4), and Affinity Matrix A
(B5)

Metric: The Bull’s eye score is used as a measure of re-
trieval accuracy. It measures the percentage of objects sharing
the same class with a query ¢ in the top R retrieved shapes.
Let us say C is the set of objects in the same class of the query
g and O is the set of top R retrieved shapes. The Bull’s eye
score (B3) is then computed as B= \ola(:\

MPEGT7: a well known data set for testing performance of
retrieval and shape matching algorithms. It comprises 1400
silhouette shape images of 70 different categories with 20
images in each categories. Articulated Invariant Representation
(AIR) [27], best performing shape matching algorithm, is
used as the input pairwise distance measure. The retrieval
performance is measured fixing R to 40.

MPEG7 Bl B2 B3 B4  B5 B6(Ours)
Al 9991 9993 100 100 99.88 100
A2 99.92 9993 100 100 99.88 100
A3 99.93 9994 100 100 99.88 100
A4 99.92 9994 100 100 99.88 100

TABLE I: Results on MPEG7 dataset. Bull’s eye score for the first
40 elements

Table I shows bull’s eye score on MPEG7 dataset. Observe
that we were able to achieve 100% bulle’s eye score while
alleviating serious problems such as the problem of selecting
a reasonable local neighborhood size and initializing the
dynamics to find dense neighbors.

The retrieval performance has also been tested by varying
the first R returned objects, the set in which instances of
the same category are checked in. For the purpose of this
experiment we used the best diffusion variants (B3 and B4
initialized with A2). The performance of the algorithms is
shown in Table II. As can be observed, in this case our
algorithm, besides giving flexibility, shows a small increment
in the results.

MPEG7 has been used, most frequently, for testing retrieval
algorithms. Table III shows the comparison against different
state-of-the-art approaches. The proposed approach and [5]
achieve 100% bulle’s eye score. However, [5] needs to set
an optimal neighborhood size whereas in our approach the
number of neighbors to individual items arises intuitively.

R 20 25 30 35 40

B3 94321 97.871 98.614 99.357 100
B4 94296 97.846  98.614 99.357 100
Ours 94.354 97.896 98.614 99.360 100

TABLE II: Results on MPEG7 dataset varying the first R returned
objects

Methods [28]

B 85.40

[29]
91.61

[27] [30] [7] [5]

9596 99.99 100 100

Ours

93.67

TABLE III: Retrieval performance comparison on MPEG7 dataset.
Up: methods, Down: Bull’s eye score for the first 40 elements

YALE: [31] a popular benchmark for face clustering which
consists of 15 unique people with 11 pictures for each under
different conditions: normal, sad, sleepy, center light, right
light, etc that include variations of pose, illumination and
expression. Similar procedures of [5], [32] were followed to
build the distance matrix. Down sample the image, normalize
to 0-mean and 1-variance, and compute the Euclidean distance
between the vectorized representation. The retrieval perfor-
mance, measured fixing R to 15, is demonstrated in table
IV. Our approach shows a small improvement in the retrieval
performance except in one where the affinity itself initializes
the diffusion process.

YALE Bl B2 B3 B4 BS B6(Ours)
Al 7174 7124 7559 7531 70.25  75.15
A2 7196 70.69 7730 7620 69.92 77.41
A3 72.07 70.57 7493 76.14 7030 75.37
A4 7223 70.74  77.08 76.10 70.25 77.36

TABLE IV: Results on YALE dataset. Bull’s eye score for the first
15 elements

Results of the algorithm on YALE data set varying R is
shown in Table V.

R 11 13 15 17 20

B3 71240  74.105 77.303  79.559  80.826
B4 70.854 72176  76.198  77.741  79.063
Ours 71.350 74.050 77.411 80.000 81.653

TABLE V: Results on YALE dataset varying the first R returned
objects

ORL: face data set of 40 different persons with 10 grayscale
images per person with slight variations of pose, illumination,
and expression. Similar procedure as of YALE data set was
followed and The retrieval performance is measured fixing R
to 15.

Results of the algorithm on ORL data set varying R is
shown in Table VII.

As can be observed from Tables VI and VII, the proposed
approach and [5] perform equally on the ORL face dataset.
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ORL BI B2 B3 B4 BS B6(Ours)
Al 72775 7348 7425 7390 70.58 74.25
A2 7275 73775 7742 7482 70.15 7742
A3 73.12 7375 7552 7535 71.05 75.52
A4 7312 73775 7732 7550 7140 77.32

TABLE VI: Results on ORL dataset. Bull’s eye score for the first
15 elements

R 10 13 15 17 20

B3 70.950 75250 77.425 79.275 80.550
B4 68.850  72.900 74.825 76.775  77.700
Ours  70.950 75250 77.425 79.275 80.550

TABLE VII: Results on ORL dataset varying the first R returned
objects

V. CONCLUSION

In this work, we have developed a locally constrained diffu-
sion process which, as of existing methods, has no problems
such as choosing optimal local neighbor size and initializing
the dynamics to extract dense neighbor which constrain the
diffusion process. The framework alleviates the issues while
improving the performance. Experimental results on three well
known data sets in the field of retrieval demonstrate that the
approach compares favorably with state-of-the-art algorithms.
Future work will focus on applying the framework on other
computer vision problems such as action retrieval and video
object segmentation and co-segmentation.
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