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Abstract—Efficient detection of three dimensional (3D) objects
in point clouds is a challenging problem. Performing 3D de-
scriptor matching or 3D scanning-window search with detector
are both time-consuming due to the 3-dimensional complexity.
One solution is to project 3D point cloud into 2D images and
thus transform the 3D detection problem into 2D space, but
projection at multiple viewpoints and rotations produce a large
amount of 2D detection tasks, which limit the performance and
complexity of the 2D detection algorithm choice. We propose to
use convolutional neural network (CNN) for the 2D detection task,
because it can handle all viewpoints and rotations for the same
class of object together, as well as predicting multiple classes of
objects with the same network, without the need for individual
detector for each object class. We further improve the detection
efficiency by concatenating two extra levels of early rejection
networks with binary outputs before the multi-class detection
network. Experiments show that our method has competitive
overall performance with at least one-order of magnitude speed-
up comparing with latest 3D point cloud detection methods.

I. INTRODUCTION

3D object detection in point clouds is a challenging
problem due to discrete sampling, noisy scans, occlusions and
cluttered scenes, as illustrated in fig. 1. Many existing methods
focus on small-scale data [4], [5], [6], [7], [8] using 3D
descriptors. A few others work with large-scale data, mostly
urban street scans [9], [10], [12], [13], [14], [15]. Relatively
fewer take on industrial part detection[14], [1], where objects
are often more densely arranged, making segmentation more
difficult. Most methods utilize machine learning to select the
best description for a specific type of 3D object, so they can be
recognized reliably in a large point cloud scene. Many methods,
especially those based on descriptors, require prior segmenta-
tion or preprocessing of input data, to reduce the matching
complexity of descriptors. Regardless of domain focus, most
methods perform the detection process in 3D, either using
3D local descriptors [4], [9], [25], [5], [6], [7] or exhaustive
3D scanning-window search with object detector [14], [18],
[1]. Both types of approaches are time-consuming due to
the 3-dimensional search. Large-scale industrial or street data
contain 100’s of millions or billions of 3D points, motivating
the exploration for faster 3D detection methods.

On the other hand, 2D object detection in images has
improved dramatically, especially in the recent works with
convolutional neural network [2], [3]. This motivates a trans-
formation of the 3D object detection problem into a series of
2D detection problems [1]. The 3D-to-2D strategy has been

Fig. 1. 3D object detection in point clouds is a challenging problem due to
discrete sampling, noisy scans, occlusions and cluttered scenes.

previously used for 3D object model retrieval [26], [19], [20],
but our target is unsegmented noisy large-scale 3D point cloud
which is much more complex. To transform the 3D problem
into 2D space, 3D point cloud will be projected based on
depth information at multiple viewpoints and rotations. This
will generate a large amount (at least 10,000) of 2D detection
task between projections of scenes and objects, which put a
requirement on the speed of single 2D detection algorithm that
it must be very fast in processing all 2D images to finish the
overall 3D detection task in a reasonable time. As a result, this
limits the complexity of 2D detection algorithm, and thus the
overall performance of 3D detection.

To solve this speed-complexity trade-off, we propose to use
convolutional neural network (CNN) for 2D detection, which
has already been proved [2], [3], [16], [17] to be the most
powerful method for 2D detection. We use CNN to handle
multiple viewpoints and rotations for the same class of object
together with a single pass through the network, thus reducing
the total amount of 2D detection tasks dramatically. Moreover,
while the existing strategies usually require an individual
detector for each class of object, CNN can be trained with a
multi-class output, further saving tremendous processing time
when there are multiple objects to detect. To enable multi-class
CNN to detect object classes with varied sizes, we unify the
training sample sizes with padded boundary so the detector
will search for all object classes in a uniform-sized window.
On top of these, we further improve the detection efficiency by
concatenating two extra levels of early rejection networks with
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binary outputs, simplified architecture and smaller image sizes,
before the final multi-class detection network. Experiments
show that our method has competitive overall performance
with at least one-order of magnitude speed-up in comparisons
with state-of-the-art 3D point cloud object detection methods.

Our main contributions include:

• Introduce CNN to process all viewpoints together in
multi-view projection-based 3D object detection.

• Unify detector for multiple object classes with multi-
class CNN and uniform-size training samples.

• Increase detection speed by concatenating two early
rejection networks with binary outputs, simplified
architecture and smaller image sizes.

II. RELATED WORK

A. 3D Object Detection

Existing 3D object detection methods usually require prior
segmentation, and they are slow due to 3D complexity. Meth-
ods for object recognition in urban street data often require
segmenting objects from the ground [10], [12], [13], [15]. A set
of object types is then defined to train either a global detector
or a set of local descriptors. Golovinskiy et al. [12] extend the
targets to over twenty types of street objects, using classifiers
trained with global features, while requiring the scene to be
pre-processed based on ground estimation, so that candidate
objects are segmented before applying recognition algorithms.
Pang et al. [14] employ Adaboost to train a combination of
weighted 3D Haar-like features for detectors and exhaustively
searches for objects in 3D space, thus avoiding the requirement
for segmentation. However, this method only handles limited
rotation changes. Song et al. [18] use depth maps for object
detection with a 3D detector scanning in 3D space, which is
similar to the depth-based projections we use, but their method
focuses on RGB-D data rather than point clouds, and it is very
time-consuming due to the extensive costs for detector training.

B. 3D Descriptor

Local 3D shape descriptors are frequently used by existing
methods. Most popular are spin images (SI) [4] which encodes
surface properties in a local object-oriented system, as well
as others such as 3D shape context [9], fast point feature
histogram [25], signature of histograms of orientations [5]
and unique shape context [6]. However, 3D descriptor-based
recognition methods require prior segmentation of background
points, as well as descriptor computation and matching in
3D space, time-consuming processes that make these methods
inefficient.

C. CNN for Object Classification and Detection

Since the work of Krizhevsky et al. [3] on ImageNet,
convolutional neural network (CNN) [2] has became the
most successful method for image classification problem. For
object detection, R-CNN [16] is the state-of-the-art on 2D
RGB images, while Depth-RCNN [17] expanded the R-CNN
algorithm to adapt to RGB-D images. In the 3D domain,
3D ShapeNet [21] represented geometric 3D shape on 3D
volumetric grids and applied CNN for classification. For 3D
CAD model classification, Su et al. [20] took a view-based

Fig. 2. Comparison of pipelines for the original multi-view 3D point cloud
object detection algorithm [1] and our proposed algorithm with concatenated
CNNs.

deep learning approach by rendering 3D shapes as 2D images.
This method shares some similarities with ours, but 3D mesh
model classification and retrieval is a much different problem
than 3D object detection in large point clouds. For 3D point
cloud, Prokhorov [22] and Habermann et al. [23] explored 3D
point cloud object classification with CNN, but only focused on
pre-segmented street objects. VoxNet [24] converted 3D point
cloud into volumetric data and trained a 3D-CNN to classify
them, but the method still focused only on point cloud segment
from mostly street data, instead of more complex large-scale
industrial point cloud that we’re working on.

III. 3D OBJECT DETECTION WITH CNN

A. Multi-View 3D Object Detection

To detect 3D object in point cloud, we follow the idea of
multi-view projection-based 3D detection method as described
in [1], though many details have to be changed to adapt to the
introduction of CNN.

The core idea of [1] is to transform a 3D detection problem
into a series of 2D detection problem, thereby reducing the
complexity of an exhaustive 3D search into a fixed number of
2D searches. As shown in the (green-shaded) algorithm flow
in fig. 2, this is achieved by projection of 3D point clouds
at multiple viewpoints to decompose it into a series of 2D
images. To ensure that the original 3D information is not lost,
the 3D to 2D projection is done at multiple viewing angles
(evenly chosen on a sphere). Depth information is utilized
when projecting 2D images for each view, and kept for later
re-projection back into 3D for fusion of 2D results. After the
input 3D point cloud is projected into 2D images from multiple
views, each view is used to locate the target object. Lastly, all
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Fig. 3. Two types of CNN network structures we used. Note the different
number of classes in output.

2D detection results are re-projected back into 3D space for a
fused 3D object location estimate.

B. Detect 2D Projections with CNN

In the original multi-view 3D detection method [1], the 3D
object will be projected in about 50 viewpoints and searched
with 12 in-plane rotations to approximately cover all possible
orientation, and each of these view projections and rotations
need to be detected individually, resulting in thousands of 2D
detection tasks.

To alleviate this complexity, we propose to use convolu-
tional neural network (CNN) for the task of 2D detection.
CNN can be trained with all viewpoints and rotations together
for one object class. CNN actually synergize with the multi-
view projection method very well, because the large amount of
projections will produce enough training samples for the CNN
to train with. In the training phase, projections in all viewpoints
and rotations will be produced and supplied as training
samples for CNN so it can learn all possibilities. However,
in the detection phase, CNN-based detection can handle all
viewpoints and rotations for one object class together, saving
tremendous amount of detection tasks. Figure 2 shows the
new training and detection flow based on the original flow.

In most existing 3D object detection algorithms [14] [1],
each object class has its own detector or classifier, and they
have to be applied individually, costing proportionally more
time when there’re several different object classes to detect.
We use CNN-based detection to improve this as well, because
CNN can be trained with a multi-class output, capable of
detecting all object classes together in one pass.

In implementation, we used two types of network architec-
ture, as shown in fig. 3. One type of network has less layers
with a 2-class output for fast object/non-object classification,
in order to efficiently reject most non-object negative windows.
The other is a more complicated network with multi-class
output to decide the specific class of objects, and reject much
harder non-objects. The relationship and setup of the two types
of networks are explained in sec. IV-A.

C. Training Sample Generation

The positive training samples are generated by projecting a
raw 3D point cloud object instance into 2D images at different
viewpoints with different in-plane rotations. The projections

Fig. 4. Some examples of CNN training samples: (a) Positive; (b) ”Easy”
negative; (c) ”Hard” negative.

are performed based on depth as seen from each viewpoint.
The 3D space is discretized into cells. Cells with at least one
point are considered occupied. The cell size is set so that each
projected object has roughly 100-150 pixels in size on average,
and fixed for each dataset. Parallel projection rays from each
view then sample the scene by extending rays from pixel array.
The occupied cell closest to the viewpoint sets the depth value
of that pixel, similar to the idea of z-buffering.

CNN generally requires a large amount of training samples
to be effective. Therefore, we further expand the size and
diversity of our positive samples with more random ”jittering”.
This includes adding random depth shift, small in-plane trans-
lation, noise, dilation or erosion on the edges, and synthetic
occlusions. In implementation, we projects the objects at
100 viewpoints distributed on a 3D sphere, and rotate each
projection in 20 rotations, then generate 5 samples for each
rotations with random ”jittering”. This gives us 10000 positive
samples for each raw 3D object instance. Figure 4(a) shows
some examples of the positive training samples.

In order to perform detection for multi-view and multi-class
together, an uniform search window size must be enforced for
all viewpoints and classes. This requires the training samples
to all have the same size without distorting the object. Our
solution is to find a minimal window size that can enclose all
views and classes, then pad empty pixels on image border so
that all positive training samples are enlarged to that size. The
empty pixels may further be filled during the random ”jittering”
process.

Negative training samples are generated in point clouds
without any object class.The negative point cloud is projected
according to depth in the same way at random viewpoints, then
cropped at random location of the required size into negative
samples, as shown in fig. 4(b). These randomly generated
negative samples are usually not very representative. They are
used with the positive samples to train CNN, then perform
detection on negative projected image, and all false alarms are
considered ”harder” negative samples, as shown in fig. 4(c),
which are fed back into the training set to fine-tune the network.
This process will be repeated 2-3 times until the network has
been trained with good classification capability.

IV. CONCATENATED NETWORKS

A. Concatenated CNN for Fast Negative Rejection

Object detection in the projected 2D images is executed
as an exhaustive scanning window search. However, due to
the nature of the point cloud data, many search windows are
actually almost blank or contain mostly primitive shapes. The
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Fig. 5. Concatenate two levels of early rejection network for fast negative
window filtering, before the final level of multi-class detection network.

Fig. 6. (a) Negative windows rejected in the first level of early rejection
network are mostly simpler backgrounds. (b) Negative windows rejected in
the second level of early rejection network are more complicated non-objects.

CNN classifier will perform the same amount of convolutions
and spend the same time no matter the complexity of the
search window. Therefore, we propose to concatenate multiple
CNNs trained with different network architectures and training
samples, aiming for different objectives.

We currently use a three-level structure with three networks,
as shown in fig. 5. The first two levels use gradually smaller
training images (the same size of search window but resized
for fast computation), and the network has less layers with an
output of only two classes, object or non-object. The final level
is a more complicated CNN with more layers and multi-class
output, in order to decide the final classification for different
object classes or much harder negatives.

The first level of CNN use 32x32 sized images mostly for
fast rejection of very simple negative windows. The second
level of CNN use 128x128 sized images to deal with slightly
harder negative windows. Figure 6 shows some examples of
the negative windows rejected by the first two levels of early
rejection networks, demonstrating different patterns between
them, with the first level filtering out mostly simpler back-
grounds, and the second level dealing with more complicated
negatives. During training, the class probability threshold is
set so that 99 percent of positive samples must pass through
the first two CNNs. Experiments show that the first CNN can
efficiently reject about 65 percent of total negative windows,

TABLE I. SPEED ANALYSIS FOR 3D OBJECT DETECTION METHODS

(Speed in seconds) Multi-view [1] Single CNN Multi-level CNN
Single 2D projection 0.005 5 0.8

Single class 3D 60 120 25
6-class 3D 350 130 28

* Detect objects with about 20k points in a 500k-point scene.

while the second CNN can reject roughly half of the remaining
ones, which means a total of 85 percent of negative windows
are rejected in the first two layers.

B. Speed Analysis

This section analyze the speed of the original multi-view
projection-based method [1], the single-level CNN method,
and multi-level concatenated CNN method. Table I provides
some numbers for the three methods.

The original multi-view method is much faster in terms of
detection speed in single 2D projected image because it utilized
binary operations. The CNN-based methods are much slower
due to the complexity of neural network, but the early rejection
networks can still bring a significant speed improvement.

However, the multi-view method has hundreds of different
viewpoints and rotations that all require individual detections,
while the CNN-based methods can handle them all together.
Therefore, for detection of a single-class object, the multi-view
method need about 1 minute, while single-level CNN need
about 2 minutes, which is already comparable to multi-view
method. With early rejections, it’s further reduced to about 25
seconds, faster than multi-view method even for single-class
detection. The first two levels of early rejection networks spend
about 5 seconds out of 25, to reject roughly 85 percent of
negative windows.

When there are much more classes of objects to detect,
the time cost of multi-view method scales up proportionally,
since each class requires a individual detector. Single CNN can
handle multi-class problem in almost the same time as single-
class problem just with a multi-class softmax layer as output.
multi-level CNN is even faster, with one-order of magnitude
speed-up compared to the original multi-view algorithm.

V. EXPERIMENTS

A. Experiment Settings

Our evaluation dataset consists three types of data, includ-
ing single objects, street data and industrial data, similar to the
setup in [1]. We incorporate some existing public datasets, such
as UWA 3D Object Dataset [8] for single object classification,
and CMU Oakland 3-D Point Cloud Dataset [27], Washington
Urban Scenes 3D Point Cloud Dataset [13] for street data. For
industrial data, there is no public data available (as far as we
know) so we use our own data. Original point cloud scans are
used for all street and industrial data, but virtual scans are used
for object retrieval data [8] with only mesh models.

The dataset contains varied data size and object density to
reflect different scale and complexity, including small segments
with two or three objects, and large scenes with more than
five objects and many background data points. Some scan
conditions are also tested, including occlusions with partially
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Fig. 7. Precision-Recall Curves on various test cases, compared to the original multi-view method [1] Spin Images [4], FPFH [25], SHOT [5] and 3D window-
scanning [14]. (a) Small segments with two or three object instances and few background points. (b) Large scenes with more than five object instances and
many background points. (c) Industrial sites scan. (d) Street level LiDAR. (e) Occluded scene with partially scanned objects. (f) Noisy scene with random noisy
points.

scanned objects, and noise from random points or point-
shifting with normal distribution.

We compare our algorithm with three state-of-the-art 3D
point cloud descriptors, including Spin Images [4], FPFH [25]
and SHOT [5]. The PCL 1.6.0 [11] implementations of
these descriptors are used, with scene segmentation, feature
extraction and matching implemented following [15]. Besides
descriptor-based methods, we also compare with the original
multi-view projection-method without CNN [1], and a 3D
window-scanning method using Adaboost and 3D Haar-like
features [14]. The resulting statistics are compared in recall
rate and precision curves, and also detection speed.

B. Precision-Recall Evaluation

The first set of experiments compares our algorithm with
others on different data sizes. As shown in fig. 7(a)(b), our
algorithm performs at about the same level as others, with
more advantages on larger scenes. This is because larger data
creates increasing numbers of feature points to be matched for
descriptor-based methods, especially when there is no good
criteria for prior segmentation. Compared to the original multi-
view algorithm, our algorithm shows more improvement on
smaller segments, thanks to the more stable CNN-based 2D
detection.

The second set of experiments compares our algorithm
with others on specific types of data, either from industrial
sites or urban street LiDAR. As shown in figure 7(c)(d), our
algorithm performs much better than others on industrial data,
since the generic scene shapes result in lower descriptive power

for descriptor-based algorithms. On street data, our algorithm
achieves similar levels of detection performance as others.
Our algorithm is generally an improvement in both scenarios
compared to the original multi-view algorithm.

The final set of experiments compares our algorithm with
others under occlusion or noise, both very common in real
world scan data. As shown in figure 7(e)(f), our algorithm per-
forms noticeably better than others under occlusion, thanks to
the mechanisms of multi-view projections and depth sections.
The original multi-view algorithm performs quite badly under
noise, as its simple 2D detection algorithm is susceptible to
noise. Instead, our CNN is trained with samples containing
noise, and thus bringing a significant improvement under noise.

C. Time Efficiency Evaluation

An important goal in the design of our algorithm is
fast detection speed while maintaining a good detection rate.
Table II lists the detection times of our algorithm, the original
multi-view method without CNN [1], the 3D window-scanning
method [14] and the descriptor-based methods. The task is
to detect 6 classes of objects ( 20k points each) in a mid-
size scene ( 500k points). The 3D Shape Context (3DSC) [9]
and Unique Shape Context (USC) [6] are also included,
though they are not included in the precision-recall comparison
because they are too slow. All experiments, including the
compared descriptors, are executed with the same 2.5GHz Intel
Core i7 CPU.

As shown in table II, the speed of our method is at
least two-order of magnitudes faster than all the descriptor-
based methods, and one-order of magnitudes faster than the
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Fig. 8. Example results of our 3D object detection algorithm on large-scale
3D industrial point cloud.

TABLE II. TIME COMPARISON FOR DETECTING 6 OBJECT CLASSES

Time Multi-level CNN Multi-View[1] 3D-Scan[14] FPFH[25]
6-Class 3D 28s 350s 450s 2400s

SpinImage[4] SHOT[5] 3DSC[9] USC[6]
2100s 2700s 39000s 30000s

others, thanks to the use of CNN and concatenated early
rejection networks. This provides our method significant speed
advantage in large-scale applications for 3D object detection
such as industrial site or urban street data, without sacrificing
detection performance. Figure. 8 shows some 3D object de-
tection example results when applying our algorithm on large-
scale 3D industrial point cloud [28].

VI. CONCLUSION

In this work, we propose to use convolutional neural
network (CNN) for 2D detection, when following the idea
to transform 3D object detection problem into a series of
2D detection problems. A trained network can handle all
viewpoints and rotations together for the same object class, as
well as predicting multiple object classes, without the need
for individual detector for each object class, thus reducing
the amount of 2D detection tasks dramatically. To make the
multi-class CNN able to detect object classes with varied sizes,
we unify the training sample sizes with padded boundary so
the detector will search for all object classes in a uniform-
sized window. In addition, we further improve the detection
efficiency by concatenating two extra levels of early rejection
networks with binary outputs, simplified architecture and small-
er image sizes, before the final multi-class detection network.
Experiments show that our method has competitive overall
performance with at least one-order of magnitude speed-up
in comparisons with latest 3D point cloud detection methods.
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