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Abstract—The problems of hand detection have been widely
addressed in many areas, e.g. human computer interaction envi-
ronment, driver behaviors monitoring, etc. However, the detection
accuracy in recent hand detection systems are still far away from
the demands in practice due to a number of challenges, e.g. hand
variations, highly occlusions, low-resolution and strong lighting
conditions. This paper presents the Multiple Scale Faster Region-
based Convolutional Neural Network (MS-FRCNN) to handle
the problems of hand detection in given digital images collected
under challenging conditions. Our proposed method introduces
a multiple scale deep feature extraction approach in order to
handle the challenging factors to provide a robust hand detection
algorithm. The method is evaluated on the challenging hand
database, i.e. the Vision for Intelligent Vehicles and Applications
(VIVA) Challenge, and compared against various recent hand
detection methods. Our proposed method achieves the state-of-
the-art results with 20% of the detection accuracy higher than
the second best one in the VIVA challenge.

I. INTRODUCTION

The problems of hand detection have been studied for years
with the aim of ensuring the generalization of robust uncon-
strained hand detection algorithms to unseen images. However,
the detection accuracy in recent hand detection systems [1],
[2] are still far away from the demands in practice due to a
number of challenges. Particularly, the hand variations, highly
occlusions, low-resolution and strong lighting conditions, as
shown in Figure 1, are the important factors that need to
be considered. Meanwhile, blurring of colors due to hand
movement, skin tone variation in recorded videos due to
camera quality are also the other difficulties in this problem.

This paper presents a Convolutional Neural Network (Con-
vNet) based approach named Multiple Scale Faster Region-
based Convolutional Neural Network (MS-FRCNN) to han-
dle the problems of hand detection in given digital images
collected under challenging conditions, e.g. hand variations,
strong lighting, occlusions, low-resolution, etc. Our proposed
method extends the framework of Faster-RCNN [3] with the
significant modification in the multiple scale deep feature
extraction in both the Regional Proposal Network (RPN) and
the detection network in order to handle the challenging factors
to provide a robust hand detection algorithm in the wild. The
method takes the advantages of the Multiple Scale Regional
Proposal Network (MS-RPN) to introduce a set of region
proposals and the Multiple Scale Region-based Convolutional
Neural Network (MS-RNN) to extract the regions of interest
(RoI), i.e. regions of hands. Each RoI is then assigned to a
confidence score.

Fig. 1. Some examples of hand detection results using our proposed MS-
FRCNN method on VIVA database [5]. Our proposed method can robustly
detect hands across variations, occlusions, strong illumination and low reso-
lution conditions.

The design of the proposed deep network can be seen in
Figure 2. The deep learning Caffe framework [4] is employed
in our implementation. The experiments are presented on the
challenging hand database, i.e. the Vision for Intelligent Ve-
hicles and Applications (VIVA) Challenge [5]. Our proposed
method achieves the state-of-the-art results1 in the problem of
hand detection on VIVA database.

The rest of this paper is organized as follows. In section
II, we review prior work on hand detection, the standard
Faster-RCNN network in object detection and its limitations
in the problem of hand detection. In section III, we present
our proposed approach to detect hands from given input
images in the wild. Section IV presents experimental results
obtained using our proposed approach on the challenging hand
detection database, i.e. VIVA challenge database. Finally, our
conclusions on this work are presented in Section V.

II. RELATED WORK

In this section, we first review prior approaches in hand
detection. Then, we summarize a general deep learning frame-
work and the Faster-RCNN method. Finally, we present the
limitations of the Faster R-CNN method in the defined hand
detection problem.

A. Hand Detection

Detecting and tracking of human hands have been widely
addressed in many areas, such as: virtual reality, human
computer interaction environment, driver behavior monitoring.
In this paper, we focus on hands in vehicles [5] (of a driver)
detection. Indeed, a robust hand detection system not only
helps to study driver behavior and alertness but also provides

1Submission date: Apr. 3rd, 2016, the VIVA hand detection ranking can
be seen at http://cvrr.ucsd.edu/vivachallenge/index.php/hands/hand-detection/

2016 23rd International Conference on Pattern Recognition (ICPR)
Cancún Center, Cancún, México, December 4-8, 2016

978-1-5090-4846-5/16/$31.00 ©2016 IEEE 562



document and human-machine interaction features. One of the
first well performing approaches to detect the human hands
was proposed by Mittal et al. [6]. They presented a two-stage
approach to detect hands in unconstrained images. Three com-
plementary detectors are employed to propose hand bounding
boxes. These proposal regions are then used as inputs to
train a classifier to compute a final confidence score. In their
method, the context-based and skin-based proposals with a
sliding window shape based detector are used to increase the
recall. However, these skin-based features cannot contribute
in our presented problem since all videos are recorded under
poor illumination and gray-scale level. Later, Ohn-Bar et al.
[7] introduced a vision-based system that employs a combined
RGB and depth descriptor in order to classify hand gestures.
The method employs various modifications of HOG features
with the combination of both RGB and depth images to
achieve a high classification accuracy. Ohn-Bar et al. [8]
also introduced the multimodal vision method to characterize
driver activities based on head, eye and hand cues. The fused
cues from these three inputs using hierarchical Support vector
Machines (SVM) enrich the descriptions of the driver’s state
allowing for evaluation of driver performance captured in
on-road settings. However, this method with a linear kernel
SVM for detection focuses more on analyzing the activities
of the driver correlated among these three cues. It does
not emphasize the accuracy of hand detection of drivers in
challenging conditions, e.g. shadow, low resolution, phone
usage, etc. Meanwhile, these proposed methods [9], [10], [11]
for hand tracking and analysis are only applicable in depth
images with high resolution. They are therefore unusable in
the types of videos used in this work.

Unlike all the previous approaches that select a feature
extractor beforehand and incorporate a linear classifier with
the depth descriptor beside RGB channels, our method solves
the problem under a deep learning framework where the
global and the local context features, i.e. multi scaling, are
synchronized to Faster Region-based Convolutional Neural
Networks in order to robustly achieve semantic detection.

B. Deep Learning Framework

Convolutional Neural Networks, one of the most successful
approaches to object detection, can be seen as a variant of mul-
tilayer perceptrons. The key ideas of ConvNet based methods
aim to simulate the animal visual cortex system containing a
complex arrangement of cells sensitive to receptive fields. In
the defined models, the implemented filters are designed as
human visual cells to spatially explore local correlations in an
observed image. It efficiently presents the sparse connectivity
and the shared weights since these kernel filters are replicated
over the entire image with the same parameters in each layer.
The pooling step, a form of down-sampling, has important role
in a defined ConvNet network. Indeed, max-pooling is one of
the most well-known pooling methods for object detection and
classification because it reduces the computational complexity
in upper layers. This step is processed by eliminating non-
maximal values and provides a small amount of translation
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Fig. 2. Our proposed Multiple Scale Faster RCNN approach to robust hand
detection. The Multiple Scale Regional Proposal Network and Multiple Scale
Region-based CNN share the first five convolutional layers. Then, the multiple
scale features from convolutional layers 3, 4 and 5 are used to enhance the
receptive field representation.

invariance in each level. ConvNet is efficiently to explore
highly discriminative deep features. However, this method
is computationally expensive. The computational cost in the
algorithm can be qualified when it is implemented in a
Graphics Processing Unit (GPU). The Caffe framework [4]
is a rapid deep learning implementation using CUDA C++ for
GPU computation. This framework also has a capability to
binding to Python/Numpy and MATLAB environment.

C. Faster R-CNN

Given a set of object proposals extracted from an image,
the Region-based Convolutional Neural Network (R-CNN)
method [12] employs a deep ConvNet to classify these pro-
posals. This method is able to achieve high accuracy in the
problem of object detection. However, it costs computational
time. Firstly, the object proposals in an image are generated
using Selective Search algorithm or Multiscale Combinatorial
Grouping (MCG) method [13]. These object proposals are
then used as inputs to train the deep ConvNet network and
fine-tunes it with a softmax regression layer in the final
step. By swapping the last layer with the Support Vector
Machines (SVM) and using the features from fine-tuned
ConvNet, the system is further trained for object detection.
Finally, it performs bounding-box regression. However, given
a large-scale image database, this system usually takes a lot
of time to extract features from each image and physically
store those extracted features in a hard disk, taking a large
amount of space. At test-time, the detection process takes 47s
for one image (with VGG16, on a GPU) due to the highly
computational time in the feature extraction steps.

Fast R-CNN method aims to reduce the computational
time in the detection network using the ROI-pooling layer.
However, the computational steps in the region proposal are
still beyond the network. Therefore, it remains a bottleneck,
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resulting in sub-optimal solution and dependence on the exter-
nal region proposal methods. Recently, Faster R-CNN [3] has
been introduced to address this problem by using the Region
Proposal Network (RPN). An RPN can be considered as a fully
convolutional network to predict the object bounds and the ob-
jectness scores. It uses anchors with different scales and shapes
to achieve translation invariance. The total computational time
for both the proposal and the detection steps are within 0.2
seconds using very deep VGG-16 model. It is because the
detection network shares the full-image convolution features
with the RPN network.

D. Drawbacks of Faster R-CNN in Hand Detection

Faster R-CNN has been employed in object detection, e.g.
persons, animals, vehicles, etc., on PASCAL VOC dataset with
the state-of-the-art detection accuracy. However, the objects
in this database usually occupy the majority of an image, i.e.
these objects have considerable numbers of pixels. However,
in our problem, we are interested in detecting human hands
in the wild that are usually small and have low resolution as
shown in Fig.1. Unfortunately, the detection network in Faster
R-CNN has trouble to detect such small objects since generally
it cannot find the human hands with small sizes. It is because
the ROI-pooling layer builds features only from one single
high level feature map. Indeed, the VGG-16 model employs
ROI-pooling from the ’conv5’ layer with an overall stride of
16. Therefore, given an object with the sizes smaller than 16
pixels, the region of the projected ROI-pooling will be less
than 1 pixel in the ’conv5’ layer, although the region provided
by the RPN is correct. In this case, the detection network
will be challenged to estimate the object class and regress
the bounding box location based on these limited extracted
features.

III. OUR APPROACH TO ROBUST HAND DETECTION

Our proposed Multiple Scale Faster-RCNN approach is pre-
sented to robustly detect hands in challenging hand databases.
Our approach utilizes both the global and the local deep
features to encode human hands in images. However, the
scaling ranges of the filter responses are in different from layer
to layer. Therefore, there is a process to further calibrate these
values. The average features for layers in Faster-RCNN are
employed to augment features at each location.

A. Multiple Scale Faster-RCNN

In the defined problem, human hands in observed im-
ages are usually collected under variations, low-resolution,
highly occlusion and strong lighting conditions. Therefore,
the standard Faster R-CNN is very hard to robustly detect
these hand objects. The receptive fields in the last convolution
layer (conv5) in the standard Faster R-CNN is quite large.
For example, given a hand ROI region of sizes of 64 × 64
pixels in an image, its output in conv5 only contains 4 × 4
pixels, which is insufficient to encode informative features.
To make it even worse, as the convolution layers go deeper,
each pixel in the corresponding feature map gather more

and more convolutional information outside the ROI region.
Thus, it contains higher proportion of information outside the
ROI region if the ROI is really small. The two problems
together, make the feature map of the last convolution layer
less representative for small ROI regions. Thus, an approach
to combine both global and local features to enhance the
robustness of the deep features can help to detect hands in
images in the wild. In order to enhance this capability of the
network, the feature maps from shallower convolution feature
maps, i.e. conv3 and conv4, are incorporated to the deeper
one, i.e. conv5, in both RPN and ROI pooling, as shown in
Figure 2. Therefore, in the ROI regions, the network can detect
lower level features containing higher proportion of human
hand features.

In our implementation, both Regional Proposal Network and
R-CNN are employed in multiple scales in order to train these
hand proposals at various scales. Our network includes five
sharing convolution layers, i.e. conv1, conv2, conv3, conv4
and conv5 as defined in [3]. In the first two convolution
layers of the network, there are an ReLU layer, an LRN
layer and a Max-pooling layer designed respectively after
each convolution layer. In the last three convolution layers,
each convolution layer is followed with only one ReLU layer.
Especially, in the last three convolution layers, i.e. conv3,
conv4 and conv5, their outputs are also used as the input
to three corresponding ROI pooling layers and normalization
layers as shown in Fig. 2. These weight normalization outputs
are concatenated and shrunk to use as the input for the next
two fully connected layers. In the final steps, there are both
a softmax layer for object classification and a regression
function to take care of bounding box refinement.

B. Weight Normalization

The limitations revealed in single layer feature extraction
triggered our implementation of the combination of multiple
convolution layers. However, without weight normalization
layers, the naive concatenation of the three feature map tensors
turns out to be problematic.

Convolution feature maps are generally different in terms
of their numbers of channels, scale of values and norm of
feature map pixels. In practice, our observation concludes that
the smaller-scaled values often appear in deeper layers while
larger-scaled values dominate the shallower layers. As a result,
by naively concatenating the feature map tensors, the result
often turns out to be less robust since the system fails to
tune the downstream parameters for each feature map tensor,
rendering the ”larger” features dominate the ”smaller” ones.

The normalization steps in each feature map tensor are
straightforward as the issue discussed above [14]. Additionally,
the number of channels of these tensors is able to be changed.
Therefore, a scaling factor for each tensor is employed in
order to scale the output and increase the robustness of the
system. In this implementation, each concatenated feature
map tensor passes through the normalization layer. Then,
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weight normalization is implemented within each pixel, i.e.
normalizing along the channel axis, in the tensor:

x̂ =
x

‖x‖2

‖x‖2 = (

d∑
i=1

|xi|)
1
2

where the x and x̂ stand for the original pixel vector and the
normalized pixel vector respectively. d stands for the number
of channels in each feature map tensor.

Then each channel in the tensor will multiply a scaling
factor γi:

yi = γix̂i

In the training steps, the scaling factor γ are recalculated. In
addition, the input x is also updated using back-propagation
and chain rule:

∂l

∂x̂
=

∂l

∂y
· γ

∂l

∂x
=

∂l

∂x̂

(
I

‖x‖2
− xxT

‖x‖32

)
∂l

∂γi
=
∑
yi

∂l

∂yi
x̂i

where y = [y1, y2, ..., yd]
T .

C. New Layer in Deep Learning Caffe Framework

In RPN, normalization layers are added to perform weight
normalization to each pooled feature map, i.e. from the third,
forth and fifth convolution layer. After that, the data are scaled
according to the scaling factor, which is initialized carefully
to ensure the downstream features in a similar scale as the
original work in Faster-RCNN.

In detection network, similar to RPN, two more ROI pooling
layers are used for extracting features from the third and forth
convolution feature maps. Normalization layers are then added
to perform weight normalization to each ROI pooling tensor,
which then scaled and concatenated the same manner as the
RPN. In order to return the same channel size as the Faster-
RCNN feature map tensors, an additional 1 × 1 convolution
layer is applied after concatenation layers both in RPN and
detection network, as shown in Fig. 2.

IV. OUR EXPERIMENTAL RESULTS

This section is organized as follows. Firstly, the experi-
mental databases are introduced in subsection IV-A. Then,
subsection IV-B describes the evaluation protocols using in this
work. Finally, subsection IV-C, we present the experimental
results on VIVA hand database.

A. Database Collection

The Vision for Intelligent Vehicles and Applications Chal-
lenge [5] consists of 2D bounding boxes around hands of
drivers and passengers from 54 videos collected in natu-
ralistic driving settings of illumination variation, large hand

movements, and common occlusion. There are 7 possible
viewpoints, including first person view. Some of the data was
captured in test beds, while some was kindly provided by
YouTube. In the challenging evaluation protocol, the standard
evaluation set consists of 5,500 training and 5,500 testing
images.

B. Evaluation Methods

To evaluate the performance on VIVA database, we compute
the average precision (AP), average recall (AR) rate, and frame
per section (PFS). AP is the area under the Precision-Recall
curve whereas AR is calculated over 9 evenly sampled points
in log space between 10−2 and 100 false positives per image.
A hand detection is considered true or false according to
its overlap with the ground-truth bounding box. A box is
positive if the overlap score is more than 0.5. The overlap
score between two boxes is defined as GT∩DET

GT∪DET , where GT
is the axis aligned bounding rectangle around area ground-
truth bounding box and DET is the axis aligned rectangle
around detected bounding box. The hand detection challenge
is evaluated on two levels: Level-1 (L1): hand instances with
minimum height of 70 pixels, only over the shoulder (back)
camera view. Level-2 (L2): hand instances with minimum
height of 25 pixels, all camera views. The proposed method
is evaluated on a 64 bits Ubuntu 14.04 computer with CPU
Intel(R) Core(TM) i7-4770K CPU@ 3.50GHz and Matlab
2014a.

C. Hand Detection on VIVA database

Table I summaries the performance of our proposed ap-
proach, Das et al. [1], and Bambach et al. [2] using the
measurements of AP, AR and FPS at both levels. Compare to
the state-of-the-art methods, our proposed approach is higher
17.5% on L2-AP and higher than 20.7% on L1-AP whereas
the AR obtained by our system is better from 24.7% to 30.3%
on L2-AR, L1-AR, respectively. Processing time by [1] was
not reported yet while the one by [2] takes 0.783 FPS on GPU
environment and our testing time is 0.234 FPS on GPU.

Fig. 3 visualizes the AP and the AR rates at both levels (L1
and L2). From Table I and Fig. 3, we can see that the proposed
MS-FRCNN outperforms others in higher AP, AR and less
processing time. From Fig. 3(a, b), our AP is almost [1], [2]
when Recall less than 0.2. As Recall increases from 0.2 to 1.0,
Precision obtained by [1], [2] dramatically regraded while our
Precision still remains at high scores. Some illustrations of
hand detection by our proposed method on VIVA database is
given in Fig.4

V. CONCLUSION

This paper has presented the MS-FRCNN approach to
handle the problems of hand detection in images collected in
vehicles under challenging conditions. The proposed method
employs a multiple scale deep feature to provide a robust hand
detection system. The method is evaluated on the challenging
hand databases, i.e. VIVA Challenge, and compared against
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Fig. 3. ROC curves on AP and AR obtained by [1] (green), [2] (red) and our proposed MS-FRCNN (blue) on VIVA database. (a): L1-AP, (b): L2-AP, (c):
L1-AR, (d): L2-AR. Our method achieves the state-of-the-art results on this database.

Fig. 4. Some examples of hand detection result using our proposed MS-FRCNN method on VIVA database [5].

TABLE I
PERFORMANCE OF DAS ET AL. [1], BAMBACH ET AL. [2], AND OUR

PROPOSED MS-FRCNN ON PRECISION-RECALL CURVE (AP), AVERAGE
RECALL (AR) RATE AND FRAME PER SECOND (FPS) AT BOTH LEVELS

(L1 AND L2)

Methods L1-AP L2-AP L1-AR L2-AR FPS
Das et al. [1] 70.1 60.1 53.8 40.4
Bambach et al. [2] 66.8 57.8 48.1 36.6 0.783
MS-FRCNN 90.8 77.6 84.1 65.1 0.234

various recent hand detection methods. Our proposed MS-
FRCNN is able to achieve the state-of-the-art results on VIVA
with 20% of the detection accuracy higher than the second best
one in the challenge.
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