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Abstract—In the past years, deep convolutional neural net-
works (CNNs) have become extremely popular in the computer
vision and pattern recognition community. The computational
power of modern processors, efficient stochastic optimization
algorithms, and large amounts of training data allowed training
complex tasks-specific features directly from the data in an
end-to-end fashion, as opposed to the traditional way of using
hand-crafted feature descriptors. CNNs are currently state-of-
the-art methods in many computer vision problems, and have
been successfully used in biometric applications such as face,
fingerpring, and voice recognition. In palmprint recognition
applications, CNNs have not yet been explored, and the majority
of methods still rely on hand-crafted representations which do
not scale well to large datasets and that usually require a complex
manual parameter tuning.

In this work, we show that CNNs can be successfully used
for palmprint recognition. The training of our network uses a
novel loss function related to the d-prime index, which allows to
achieve a better genuine/impostor score distribution separation
than previous approaches with only little training data required.
Our approach does not require cumbersome parameter tuning
and achieves state-of-the-art results on the standard IIT Delhi
and CASIA palmprint datasets.

I. INTRODUCTION

Computer vision and pattern recognition research has been
recently profoundly influenced by the deep learning paradigm.
Deep learning is a powerful tool allowing to learn better tasks-
specific data representations [1], [2], [3], [4], [5]. Its success
was especially dramatic in image classification [1], [6], [7],
shape analysis [5], [8], [9], [10], biometrics [11], [12], [13],
[14] and many others. While sometimes criticized in the past
for being “black boxes”, there has recently been a significant
progress in understanding and interpretation of what kind of
features deep architectures are capable of learning [15], [16].

The modern convolutional neural network (CNN) architec-
ture was introduced by LeCun et al. [17] in 1998. Unfortu-
nately, the limited computational power of the computers of
that time as well as the lack of large-scale datasets did not
allow training sufficiently complex models that could cope
with hard computer vision problems, and thus the capabilities
of this methodology have not been fully appreciated until
recently. Another popular Long-short term memory (LSTM)
architecture, has become widely used only very recently,
though introduced in 1997 [18].

In the domain of biometrics, one tries to produce a data
representation that achieves a good separation of the genuine
and impostor score distributions. Many successful face and

palmprint recognition methods employ classical image pro-
cessing techniques, trying to extract features by means of
image filters that emphasize the discriminative information and
attenuate the noise. Metric learning techniques and similarity
sensitive hashing techniques are used to create a compact fea-
ture vector [19], [20]. Such filters are typically hand-crafted,
and in general it is hard or even impossible to determine how
the choice of the filter would affect the genuine and impostor
distributions.

In this work, we approach the palmprint recognition prob-
lem with a deep learning paradigm we refer to as d-
prime CNN, allowing to learn optimal features for the gen-
uine/impostor separation task. The parameters of our neural
networks are learned to minimize a loss function related to
the d-prime discrimination index. Differently from previous
learning approaches, rather than working on the computed
scores directly (e.g., the siamese loss minimizing the distances
between genuine samples and maximizing the impostor dis-
tances), we approximate the genuine/impostor score distribu-
tions as normal distributions and maximize their separation,
trying to achieve the largest difference between the means
and smallest standard deviations. By considering the whole
distributions, rather than individual scores themselves, our
network learns more general representation of palmprints and
performs better on new, previously unseen, subjects.

The rest of the paper is organized as follows. In Section
2, we review the current state-of-the-art methods in palmprint
recognition as well as the use of deep learning in biometrics.
Section 3 describes the proposed d-prime CNN approach.
Section 4 presents evaluation of our approach on standard
palmprint databases, comparing our d-prime CNN to some
of the state-of-the-art methods. Finally, Section 5 concludes
the paper.

II. BACKGROUND

A. Palmprint biometrics

Hand recognition is a well-established subfield of biometrics
and a rather successful modality widely deployed commer-
cially. Palmprint recognition makes use of the central area of
a hand palm, which contains numerous wrinkles and creases.
In the last decade, palmprint recognition has attracted an
increasing attention, which resulted in the development of
various palmprint analysis methods and rapid increase in
performance.
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Broadly speaking, we can characterize palmprint recog-
nition techniques into five different categories [21]. Ridge-
based approaches [22], [23] are based on analysis of the
pattern of the ridges, position of the delta points, and the
location of the minutiae. Line-based approaches [24], [25]
typically perform edge detection followed by edge descriptors.
Subspace-based approaches [26], [27], [28] make use of
methods such as PCA, LDA, or ICA. Statistical approaches
perform image analysis using Zernike moments [29], Bank
of Binarized Statistical Image Features (B-BSIF) [30], etc.
Coding- or texture-based approaches include PalmCode [31],
FusionCode [32], Competitive Code [33], Ordinal Code [34],
or Contour Code [35], which are currently among the state-of-
the-art methods. Apart from these five main categories, there
are also hybrid approaches, which combine several methods.

B. Deep learning for biometrics

Deep learning methods have been recently explored in
the domain of biometrics. In particular, such approaches are
widely used for face recognition [11], [12], where they outper-
formed all the previous models, including the very challenging
settings of face recognition in the wild [36], [37]. An overview
of CNN architectures used for face recognition can be found
in [36]. CNNs have also been successfully employed for
fingerprint [13], [38] or voice recognition [14].

For palmprint recognition, we are only aware of two pre-
vious works. Jalali et al. [39] aim at contactless acquisition
and claim to be deformation invariant; nevertheless, the au-
thors did not evaluate their method on any of the standard
contactless datasets. Minaee et al. [40] employed a Scattering
CNN, which uses a static bank of wavelets and therefore no
learning is involved. The authors show a good performance
on the standard PolyU dataset, which is however captured
in a touch-based manner. To the best of our knowledge, the
approach proposed in this paper is the first use of CNNs for
contactless palmprint recognition.

III. OUR METHOD

A. CNN architecture

We use a CNN applied to a 128×128 image of the palmprint
region, extracted using a method such as [41], [42]. The CNN
consists of a sequence of convolutional layers applying banks
of filters to the input image or the output of the previous
layer, pooling (non-linear averaging and downsampling), and
linear combination. The weights of the filters are learnable
parameters of the network, selected by an optimization pro-
cedure minimizing a task-specific loss function (in our case,
a criterion of genuine/impostor separation defined in details
below) on a training set.

The architecture of our network is illustrated in Fig. 2
comprises four convolutional, one pooling, one fully con-
nected, and an output layer of 32 units. The output of the
CNN is thus a 32-dimensional feature vector describing the
input palrmprint image. The first two convolutional layers are
simplified version of the first two layers of AlexNet [1]. After
the first convolutional layer with rectified linear unit (ReLU)
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Fig. 1. Score distributions produced with a CNN trained using the classical
Siamese (a) and the proposed d-prime loss (b). Notice the better separation
of the genuine/impostor distributions with the new loss.

nonlinearity, we employ batch normalization [6] in order to
re-normalize the input to the zero mean and unit variance,
which improves convergence; all other layers do not use batch
normalization as it did not further improve performance nor
convergence.

The second convolutional layer has ReLU nonlinearity as
well and is followed by a max pooling layer [43]. As pointed
out by Yi et al. [11] in his work on face recognition, ReLU
nonlinearity followed by max-pooling layer tends to learn
sparse representations and discard information which leads
to decrease in performance in some settings. During our
experiments, we have observed the same behavior. Therefore,
the remaining two convolutional layers have scaled tanh
nonlinearity [44], [45] and are not followed by any pooling.

The output of the last convolutional layer is then fed to the
linear fully connected layer with dropout of 30%. This layer is
then connected to the last fully connected layer with 32 linear
output units. Therefore, our method produces feature vectors
of 32 values with 32-bit floating point precision, which is 128
byte in total.

B. d-prime loss

The key goal of biometric recognition systems is achieving
a separation of the genuine and impostor score distributions.
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Fig. 2. Our CNN architecture, containing four convolutional layers. The first layer has a stride of 2 and a ReLU nonlinearity. The second has a stride of
1, ReLU, and it is followed by max pooling. The last two convolutional layers have strides of 1 and scaled tanh nonlinearity. The convolutional layers are
followed by two fully connected layers, outputting a 32-dimensional feature vector.

A popular criterion is d-prime (also known as sensitivity- or
discriminative index) [46], modeling the genuine and impostor
score distributions as normal distributions N (µgen, σgen) and
N (µimp, σimp) respectively, and measuring their separation as

d′ =
µimp − µgen√
1
2 (σ

2
imp + σ2

gen)
. (1)

Well-separated distributions in the d′ sense should thus have
distant means and small variances. In this paper, we use a
novel similar criterion of separation referred to as d-prime,

` = σgen + σimp + µgen +max{0,M − µimp}, (2)

where the last term is a standard hinge loss trying to pull the
genuine/impostor means at least M apart.

Fig. 1 shows the genuine/impostor score distributions pro-
duced by our CNN using the proposed loss function (b),
compared to the traditional siamese loss (a) [47], [48] which
is applied to individual scores rather than to distributions

`siam =
1

2
‖x− x+‖2 +max{0,M − ‖x− x−‖}, (3)

where x,x+ and x− denote the feature vectors of a subject,
a genuine, and an impostor, respectively. Our d-prime loss
results in a better separation of the genuine/impostor score
distributions.

Given that samples are approximated by normal distribu-
tions, d-prime loss provides better generalization over training
data and allows to train well having only little training dataset
available.

We also have to derive the gradient of the introduced d-
prime loss, which is necessary since we use AdaDelta gradient
descent optimization algorithm. The gradient of the d-prime
loss is as follows:

∂`

∂digen
=

1

N

[
2
(
digen − µgen

)
+ 1
]

(4)

∂`

∂diimp

=
1

N

[
2
(
diimp − µimp

)
− J (µimp < M)

]
, (5)

where µgen = (
∑N

i=1 d
i
gen)/N , µimp = (

∑N
i=1 d

i
imp)/N ,

σ2
gen =

∑N
i=1(d

i
gen − µgen)

2/N , σ2
imp =

∑N
i=1(d

i
imp −

µimp)
2/N are the means and standard deviations of the normal

distributions and digen = ‖xi − xi+‖ and diimp = ‖xi − xi−‖
are the genuine and impostor distances respectively. N is the
number of samples in a training batch and J is full unit matrix.

C. Learning

The training process used in our experiments consisted of
400 epochs in total. In each epoch, we processes 30 batches
of 128 triplets of form (reference sample, positive sample,
negative sample). We employ AdaDelta [49] updates with ρ =
0.95 and weight decay using L2 regularization with µ = 10−4.
The initial learning rate was set to 0.01 and was decreased each
100 epochs, consecutively to 5× 10−3, 10−3 and 5× 10−4.

Previous palmprint recognition works perturb the feature
vectors while computing matching score in order to achieve
translation invariance. We incorporate translation and scale
invariance directly into our network during learning process
by performing data augmentation. In particular, each training
sample (palmprint image) is randomly shifted by a few pixels
or slightly scaled (up to the difference of 8 pixels).

IV. EXPERIMENTS

A. Data

We tested the proposed model on two standard contactless
palmprint datasets. The IIT Delhi database [50] contains 5
samples of segmented palmprint images for each of left and
right hands of 230 different subjects. We used only right
hand samples, and split the dataset into disjoint equally-sized
training and test datasets, containing different subjects. We
performed two-fold cross validation, always having 50% of
subjects for training and 50% for testing. This process was
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Fig. 3. Score distributions on the IIT Delhi dataset for two baseline
approaches (a,b) and the proposed method (c). Genuine and impostor distri-
butions are shown in green and red, respectively. Higher score corresponds to
smaller similarity between the palmprint images. Our d-prime CNN achieves
a better separation of the genuine/impostor score distributions.

repeated 8 times having different split of the subjects in
each iteration (in each iteration, we have 5 samples for each
subject and therefore we perform five times leave-one-out
cross validation and average the results to get the performance
for the current iteration).

The CASIA database [51] contains 5,502 images captured
from 312 different subjects with approximately 9 images per
subject (both left and right hands). The dataset did not provide

93 94 95 96 97 98 99 100

94

96

98

100

TRR (%)

TA
R

(%
)

Ordinal Code
Competitive Code
d-prime CNN
Siamese CNN

Fig. 4. ROC curve (tradeoff between acceptance and rejection rates) of the
evaluated methods on the IIT Delhi dataset.

TABLE I
PERFORMANCE IN TERMS OF EER (THE LOWER THE BETTER).

Method IIT Delhi CASIA Feature size

Competitive Code 2.33% 2.90% 384 Bytes

Ordinal Code 2.08% 2.41% 384 Bytes

Siamese CNN 6.08% 3.15% 128 Bytes

d-prime CNN 1.64% 1.86% 128 Bytes

extracted palmprint regions; we used a subset of subjects for
which at least in 5 images the palmprint region was extracted
successfully. The final dataset included 283 subjects for the
right and 282 subjects for the left hand, always with 5 images
per subject. The splitting and cross validation procedure was
done in the same way as for the IITD dataset.

In all the experiments, our CNN was applied to palmprint
images resized to a fixed 128×128 resolution. For comparison,
we provide the results of two state-of-the-art methods, Ordinal
Code and Competitive Code [52] using the code provided by
the authors. All the methods were compared in terms of the
ROC curves (tradeoff between acceptance and rejection rates),
equal error rate (EER), and d-prime index.

B. Evaluation

Tables I and Table II summarize the performance of dif-
ferent methods on the IIT Delhi and CASIA datasets. Our
d-prime CNN method outperforms the compared approaches
in terms of EER and performs well also in terms of the d-
prime index. The output feature vector size of our approach is
128 bytes, the smallest amongst the compared methods. Figs. 4
and 5 show the ROC curves of different methods. Our method
achieves significantly lower false acceptance rates, which in-
dicates its potential in large-scale applications. Figs. 3 depicts
the genuine/impostor score distributions, speaking clearly in
favor of our approach.

C. Feature visualization

In order to show what kind of information the output feature
vectors represent, we followed Zeiler’s visualization [53] in
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Fig. 5. ROC curve (tradeoff between acceptance and rejection rates) of the
evaluated methods on the CASIA palmprint dataset.

TABLE II
GENUINE/IMPOSTOR DISTRIBUTIONS SEPARABILITY IN TERMS OF

d-PRIME INDEX (THE HIGHER THE BETTER).

Method IIT Delhi CASIA

Competitive Code 3.32 4.72

Ordinal Code 3.92 5.75

Siamese CNN 2.91 2.20

d-prime CNN 4.84 5.73

Fig. 6. Representation of an input image by the output feature vector of our
CNN. The input image is in the top row on the left, the whole representation
by all the features is in the bottom row on the left (red color indicates the
relative importance of the pixel). The remaining four images on the right are
representation of the input image by four random dimensions of the output
feature vector.

our d-prime CNN in order to project features back through
the network to obtain the representation of the input image
mapped by a particular feature. We perform this evaluation
to visualize that our network is learning meaningful informa-
tion about the distinctive parts of the palmprint image. The
resulting representation and several individual dimensions of
an output feature vector are visualized in Fig. 6.

D. Cross-dataset learning

We have briefly investigated the possibility of learning the
model on one dataset and applying it on another, which would
be the ideal case. From our observations, there is a very good
potential of learning model that generalizes across different
datasets while performing regularization and augmentation
more carefully. In general, palmprint images across different
datasets have different contrast, brightness, sharpness, quality
of alignment, etc. Taking all these factors into account, we
observed that one can learn very good general model. We
however do not evaluate this further in the paper.

V. CONCLUSION

In this paper, we explored the use of deep learning tech-
niques for biometric palmprint image recognition. We pre-
sented a novel siamese-type convolutional neural network
architecture, which is designed specifically for contactless
palmprints. Unlike previous methods based on ‘handcrafted’
features requiring manual tuning, our approach automatically
learns the features from the data and does not need cumber-
some parameters tuning. Instead of training the network with
the traditional siamese loss (trying to maximize the distance
between positive and negative samples), we introduced a
novel d-prime loss, which aims to maximize the separation
of the genuine and impostor score distributions. We showed
that our approach tends to learn features that provide better
genuine/impostor score distributions separation, resulting in
an improved recognition performance and better scalability.

One of the advantage of our approach in comparison to the
non-learning counterparts is its simple transfer across different
datasets. The network architecture stays the same and it is only
necessary to retrain the filters. This way, one can obtain very
good classifier for any palmprint database without any need to
tune the parameters. Given the encouraging results (on par or
outperforming several state-of-the-art approaches on standard
benchmarks), we believe it is worthwhile to further explore
palmprint recognition using convolutional neural networks.
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