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Abstract—We study the problem of identifying vehicle trajec-
tories from the sequences of noisy geospatial-temporal datasets.
Nowadays we witness the accumulation of vehicle trajectory
datasets in the form of the sequences of GPS points. However,
in many cases the sequences of GPS points are sparse and noisy
so that identifying the actual trajectories of vehicles is hard.
Although there are many advanced map-matching techniques
claiming to achieve high accuracy to deal with the problem, only
few public datasets that come with ground truth trajectories
for supporting the claims. On the other hand, some cities
are releasing their bus datasets for real-time monitoring and
analytics. Since buses are expected to run on predefined routes,
such datasets are highly valuable for map-matching and other
pattern recognition applications. Nevertheless, some buses in
reality appear not following their predefined routes and behave
anomalously. We propose a simple and robust technique based
on the combination of map-matching, bag-of-roads, and dimen-
sionality reduction for their route identification. Experiments on
datasets of buses in the city of Rio de Janeiro confirm the high
accuracy of our method.

I. INTRODUCTION

We have been witnessing the surging amount of geospatial-
temporal datasets gathered from various devices, such as, cell
phones and vehicles. Although the usage of such datasets with
personal information is often limited due to privacy concerns,
some cities such as Dublin' and Rio de Janeiro have recently
released the Global Positioning Systems (GPS) trajectories
of their bus fleets for optimizing their daily operations and
other analytics applications. Because such trajectories are often
labeled (buses usually follow predefined routes and stop at
fixed bus stops that are also released for public), they are
useful for Artificial Intelligent (AI) algorithms that require a
large amount of training datasets, such as, neural networks.

However, the usage of GPS trajectories of bus fleets is
limited due to several practical reasons. First, the GPS datasets
are noisy and sparse (collected in every several seconds up to
several minutes) so that sequences of roads traversed by the
vehicles cannot be obtained by simply connecting consecutive
GPS points. Fig. 1 depicts an example of a GPS sequence on a
road network with its corresponding route. We can see many
alternative routes that can explain the GPS sequence under
some assumption of noise distribution. Secondly, in reality
buses in cities like Rio de Janeiro sometimes behave anoma-
lously from their predefined routes, for example, they skip or

Thttps://data.dublinked.ie/dataset/dublin-bus- gps- sample-data-from-
dublin-city-council-insight-project
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Fig. 1. Left: A road network (black) and a GPS sequence (red). Right: The
route corresponding to the GPS sequence in the left (green).

visit specific regions, as shown in Fig. 2. This can be caused by
special events like festivals or unexpected traffic situations like
congestion or road closures. Thirdly, information of official
bus routes and bus stops is not always up-to-date and therefore,
does not reflect the latest routes, as we also confirmed in Rio
de Janeiro. On the other hand, there is a significant percentage
of buses that do not report their official bus routes probably
due to device failures.

To tackle anomalies of bus trajectories and information
of bus routes, we propose a simple but robust and accurate
machine learning method incorporating map-matching algo-
rithms. We transform input GPS sequences into sequences
of traversed road IDs by map-matching and then treat the
traversed road IDs as bag of features. Notice that the bag-
of-words model is a popular technique in image classifi-
cation, e.g., [1], [2]. Map-matchings transform a sequence
of high-dimensional GPS points into a sequence of roads
with lower dimensionality because there are less number
of roads traversed by vehicles than their GPS points. We
also observe that the number of predefined bus routes is
significantly smaller than the total number of roads by several
order of magnitude, and thus provides opportunities to exploit
dimensionality reduction techniques. We show that applying
dimensionality reduction on outputs of map-matchings prior
to classification can help achieve both high accuracy and
robustness in identifying routes as confirmed with experiments
over bus datasets of Rio de Janeiro.

The results presented in this paper provide two interesting
implications. First, a recent work [3], that describes similar
challenges in working with noisy and anomalous GPS tra-
jectories of buses in Rio de Janeiro, proposes the use of
Convolutional Neural Network (CNN) to automatically detect
outliers and identify bus routes with high accuracy. They also
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Fig. 2. An example of trajectories of GPS sequences (blue dots) of buses
serving route 353 in Rio de Janeiro and their supposed route (red dots). The
total length of the trajectories is about 40 kilometers. Notice that most of
the time the buses follow the predefined route (as red dots are overlapped by
blue dots), but on the lower left we can see parts of the route not traversed
(dense red dots), parts of possible anomalous GPS sequences (blurred blue
dots). The black line segments inside the rectangle frame represent the coast
line.

argue that the usage of simple techniques such as nearest-
neighbor classification cannot deal with raw GPS trajectories.
On the contrary, we show that map-matching combined with
a simple bag-of-words model can achieve up to the same level
of high accuracy. Moreover, this is realized with significantly
less computational efforts and the results are easier to interpret.

The second implication is in showing the potential of
using public buses GPS trajectories for evaluating geospatial-
temporal algorithms in large-scale and real-time. Despite the
ease of gathering data from various sensors, it seems that there
are not many vehicular GPS datasets that come with ground-
truth labels available for public. Many proposed geospatial-
temporal algorithms like map-matchings were often based on
small labeled datasets that are produced with expensive manual
labor of labeling. We show that it is possible to process and
filter GPS trajectories and evaluate their similarities to official
routes for comparison of accuracy levels. We also plan to
release tools and datasets based on publicly available bus
datasets of Rio de Janeiro in the near future.

A. Related Work

Massive amount of geospatial-temporal sequences including
GPS sequences have become popular datasets for various
machine learning and pattern recognition algorithms. They can
be utilized for ecological research, e.g., tracking movement
patterns of wild animals [4], for tracking people behav-
ior [5], and vehicles that are becoming much more important
in the context of Simultaneuos Localizations and Mapping
(SLAM) [6]. Some of the obstacles in using those datasets
include the high noise and irregularity of such GPS sequences.
Various techniques have been developed to preprocess them,
see e.g. [7] for a survey. Sophisticated techniques to map noisy
and sparse GPS sequences of vehicles into road sequences
are map-matchings. See e.g. [8] for a survey, where Hidden

Markov Model (HMM) is one of the most active fields [9]—
[13].

Approaches based on Deep Learning (DL) have also been
used for trajectory identification, such as, an end-to-end ap-
proach using raw sequences of GPS [3] for anomaly detection
and route identification of buses in Rio de Janeiro, which is
very similar to our work. However, [3] only utilizes a small
fraction of GPS sequences (20 for each bus) and landmarks
(bus stops) to identify routes and detect anomaly. The main
purpose is to help bus operators by visualizing anomalous
buses. We believe map-matching can improve the visualization
by providing the comparison of their trajectories instead of
sequences of GPS points. Additionally, map-matching can
be used to uncover attributes of trajectories that are im-
portant for daily traffic management and analytics, e.g., to
predict travel time [14] and simulate traffic policies [15]. We
also believe that map-matching can be used for encoding
geospatial-temporal patterns, similar to [16] that proposes
Markov Transition Fields, to enable the use of feature learning
and classification in DL.

There have been many representative datasets used to eval-
uate geospatial-temporal algorithms, such as, T-drive [17],
[18], the Seattle datasets [9], and undisclosed datasets from
service providers [19]. The Seattle datasets were designed for
accuracy testing in mind with clear ground truth but only
contain sequences from one car traversing ad-hoc trajectories.
On the other hand, the T-drive datasets are popular for testing
scalability due to their large scale but no ground truth labels
are not provided. [20] used GPS sequences of several taxis in
Shanghai but as the T-drive, there are no ground truth labels.
[20] recovered the labels of 70 taxis by manually checking
GPS sequences and matching them to roads all performed
by two experienced volunteers. [21] tested its algorithms by
monitoring 85 volunteers. The closest to ours is [22] that used
4 bus routes in Singapore as ground truth for testing an online
map-matching algorithm.

II. NOTATION AND PROBLEM SETTING

We describe notations and problem settings. For ease of
explanation, we directly model the problem and notation to
work with bus trajectories, but it is easy to see that they can be
used in the broader context of vehicle trajectory identification.

We consider a set B of buses such that for each bus b € B
its sequence g, = (gv.1,---,9p,p,) of GPS points is given,
where gy ; consists of the latitude, longitude, and time stamp
of ¢-th GPS point of bus b and the sequence is ordered in the
increasing order of the time stamps. A directed road network
G = (V,A) is also given where V = {v; | i = 1,...,n}
and A = {a; | ¢ = 1,...,m} denote cross points and road
segments, respectively.

Unique to the bus trajectory identification is that each bus
is assigned to one or more predefined routes. Let R be a set of
the predefined routes such that r; = (r; 1,...,r; 4, ) represents
the sequence of coordinates for each route ¢ € R. Note that
there are ¢ predefined routes, i.e., { = |R|.
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We consider two types of classification problems for trajec-
tory identification. The first is to identify the predefined route
i € R of each bus b € B given its sequence g, of GPS points,
the directed road network G(V, A), and the set R of predefined
routes. We assume that all the bus do not have any labels of the
predefined routes. In this problem setting, we assume that all
buses strictly follow their assigned routes, and therefore their
trajectories can be recovered from the sequence of roads listed
in the definition of the route. We call this type of unsupervised
classification problem P1. It is similar to clustering problems
where predefined routes denote the true centers of clusters to
evaluate the accuracy of clustering algorithms.

The second is to identify the predefined route of each bus
where predefined routes are not reliable; we found the situation
in Rio de Janeiro. In this case, we rely on the observation
that there should be a group of buses serving the same route,
and therefore, we predict the trajectory of an unknown bus
by comparing its trajectory to those of buses with known
routes. Formally, together with the road network and the GPS
sequences of all buses, we are also given the label [ for
b € B’, where B’ C B is a subset of the buses and I,y € R
denotes the ID of the predefined route served by bus b'. The
task is to identify the label [, for all b € B\ B’. We call this
type of supervised classification problem P2.

III. THE PROPOSED TRAJECTORY IDENTIFICATION

There are several difficult obstacles to determine the route
of bus b directly from its GPS sequence g. First, the lengths
of GPS sequences vary greatly among buses, and so do the
intervals between two consecutive GPS points in the sequence.
Moreover, some fraction of GPS points might be corrupted by
large amount of noises that make it even more difficult for end-
to-end predictors. [3] overcome these obstacles by considering
only 20 GPS points of each bus, and therefore might fail to
capture anomalies in trajectories if the sampled points are not
representative.

Our method transforms the input GPS sequences of both
the buses and the predefined routes in the same way. For
simplicity, we explain the case for a GPS sequence g of bus b.
We first apply map-matching to g to obtain sequences g;™ of
road segments. See the next section for more details of map-
matching. We then treat the the resulting sequences as bag of
roads, similarly as in the bag-of-words model for document
classification, to classify trajectories with various distances and
similarity measures. The bag-of-roads vector g is a sparse
vector of frequency counts of road segments traversed by bus
b, where i-th element g'gfi of g‘gr denotes the frequency of bus
b traversing road segment a; € A. Similarly we transform the
sequence r; of coordinates of predefined route j € R into a
sequence r™ of roads by map-matching and generate a bag-
of-road vector r}]’-‘. We can easily compare the bag-of-roads
vectors of the buses B and the predefined routes R because
the vectors have the same dimension m = |A|. We further
employ a simple dimensionality reduction technique to the
bag-of-roads vectors for even faster and accurate trajectory

identification. See Table I for the overview of the transforma-
tion of data.

A. Map-Matching of GPS Sequences

The GPS data may contain the measurement error and
the interval of measurement may be long and irregular. We
adopt the state-of-the-art map-matching algorithm with the
HMM in [12] because it is known to be robust to such cases.
The HMM-based map-matching generates hidden states (road
segments) around GPS points and looks for the sequence of
hidden states with the highest likelihood, which consists of the
initial, the emission, and the transition probabilities.

We basically follow the implementation in [12], [13], but
simplify the transition probability as follows

%QXP (_ d*(‘; Sl)) )

where (3 is a parameter and d*(s, s’) denotes the shortest path
distance from a midpoint s of a road segment to another s’ on
road network G(V, A). Intuitively, two consecutive GPS points
will likely be matched to road segments having shortest driving
distance. We verified the simplification does not make the
precision worse through preliminary experiments. Throughout
the experiments in this paper, we configure the map-matching
parameters by adjusting parameters in [12] appropriately with
Wy = 0 (the turn cost in [12]) of the transition probability.

The output of map-matching of g is a sequence gp™ of
connected roads that best explained the GPS sequence. Since
the number of roads is at most the number of road segments
s in the road network G(V, A), we can consider the map-
matching as a method to reduce the dimension of the vector
of GPS sequence.

B. Route Similarity and Comparison

We measure how close the bag-of-roads vectors of the buses
to those of the predefined routes for the problem setting P1.
For example, we can compute the L,, distance, for p = 1, 2, oo,
between ggr and r?r, and output the prediction of the route of
bus b by

: br br
arg min -1 |- 1
gmin g} — 17, 0
Another way is to compute the cosine similarity between bus
b to each j € R. Namely, The prediction for the route of bus
b is
arg max gbr ’ r? r
e por |
J€R ||gy Il

2

The similarity and distance computation in Egs. (1) and (2)
has a problem because the dimension m = |A| of the bag-of-
roads vectors g and rlj’»r is still high. However, we observe
that |R| = ¢ < |A| = m holds, e.g., m is more than 174K in
Rio de Janeiro, while ¢ is at most 500. Thus, we first project
the bag-of-roads vectors into the subspace spanned by the bag-
of-roads vectors of the predefined routes and then compute the
similarity and distance.

Let R = (r}",...,rY) be a matrix of dimension m x ¢
whose i-th column is the bag-of-road vector r’f of i € R.
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TABLE I
OVERVIEW OF THE TRANSFORMATION OF DATA.

Input GPS sequence Map-matching

(seq. of coordinates) (seq. of roads)
Bus GPS data b = gy
Predefined routes r; = r;‘.““

In this case, since the rank of R is at most ¢, we can
apply dimensionality reduction as follows. By Singular Value
Decomposition (SVD), we can find a decomposition of R such
that

R=UXV7,

where U is a m x m matrix whose columns are left-singular
vectors of R, V is a ¢ x ¢ matrix whose columns are right-
singular vectors of R, and 3 is a m x ¢ rectangular diagonal
matrix that has at most k& non-zero elements sorted in the non-
increasing order.

Letting U, be the top-d (where 1 < d < £) left singular
vectors in the above SVD of R, we compute the projection of
gl into the subspace spanned by U, to obtain g = UZglr
for each b € B. Similarly, we also compute the projection of
r¥ to obtain %" = UjrY for j € R. Notice that both g’ €
R and f?r € R? hold, and therefore, we can compute the
prediction of the route in Egs. (1) and (2) faster by substituting
gp' and r’" with )" and ", respectively, because d < £ < mn.

To deal with the problem setting P2, we compute nearest
neighbors of an unlabeled bus among the labeled buses by
using the bag-of-roads vectors. Namely, for a set B’ of buses
whose predefined routes are known, we predict the label of
be B\ B’ by L, distance

arg min |85 — &7/, 3)
We call it supervised nearest neighbor. Notice that it can be
performed efficiently with data structures for nearest-neighbor
computations, such as, the Ball Tree or the KD Tree.

IV. EXPERIMENTS
A. Datasets

We explain the details of the datasets we use for the
experiments. For the road network, we use the OpenStreetMap
(OSM) [23] that is also available for public. The numbers
of cross points and road segments are 85872 and 174323,
respectively, in the area we extracted. The GPS sequences and
predefined routes of buses in Rio de Janeiro are available for
public too. There are several types of data as follows.

Bus GPS data’: Real-time GPS data of buses. The data
consists of records of time, vehicle number, bus line number,
coordinates, velocity and direction. We use the time and
coordinates for map-matching, and the bus line number (when
available) for testing accuracy of trajectory identification.

We collected the bus GPS data every minute from 00:00 on
Feb 15,2016 to 12:14 on Feb 17, 2016. The data contains 6963
buses, 450 bus lines and 12.8 million records in total. Around

2http://data.rio/dataset/gps-de-onibus

Bag-of-roads
(vec. of freq., dim = m)

Dimensionality reduction
(vec. of freq., dim = d < m)

= gbgr = g'll}r
T »or
= r i = r i
TABLE 11

ToP 5 BUS LINES IN THE BUS GPS DATA. RECORDS WITHOUT BUS LINE
NUMBER ARE COUNTED AS ‘EMPTY.

bus line count | proportion
empty 2574509 20.11 %
864 129332 1.01 %
371 96931 0.76 %
803 92741 0.72 %
908 89089 0.70 %
others 9821611 76.70 %
total | 12804213 100.00 %

20% of records are lack of the bus line number (the entries
are left empty). Note that we are not sure whether the records
without bus line number were out of service or just missing
data, but we suspect this is a typical operational problem. See
Table II for the top 5 bus lines including the records without
bus line numbers.

Old bus route data’: The trajectories of the predefined bus
line routes last updated in April 4, 2014. It is represented by
sequence of coordinates. There are 489 bus lines in the data,
but because the city has modified the bus lines and the old
bus route data is not necessarily up-to-date.

New bus route data*: Various data about the predefined
bus lines in the same sequence-of-coordinates format to update
the previous old bus route data on January 29, 2016. There
are 375 bus lines included. The datasets also contain bus-stop
data’® that we do not use.

We apply map-matching to the bus GPS data, old and new
bus route data to transform them into sequences of roads.

B. Results

We performed experiments on the problem P1 and P2 of
identifying trajectory of buses to measure accuracy.

In the unsupervised problem P1, for each b € B we are
given its sequence of GPS points g, (from the bus GPS
data), the road network G(V, A) (from the OSM), and the
set of predefined routes R, and its corresponding bag-of-roads
vectors R (from the new bus route data). We identify the
trajectory of b by computing the Euclid (Ls) distance and the
Cosine similarity between the bag-of-roads vector ggr with
each bag-of-roads vector r?r for 7 € R, as in Eqgs. (1) and
(2). The result is presented in Table III where the accuracy
by taking the top-k nearest predefined routes according to
the Euclid distance and Cosine similarity are shown. We
can observe that Cosine achieve higher accuracy than Euclid,

3http://data.rio/dataset/pontos-dos-percursos-de-onibus
“http://data.rio/dataset/onibus- gtfs
Shttp://data.rio/dataset/pontos- de- parada-de-onibus
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TABLE III
TOP-k UNSUPERVISED NEAREST NEIGHBOR PREDICTION ACCURACY OF
PROBLEM P1

Distance k

Measure 1 2 4 8 16 32
Euclid 0.75 | 0.79 | 0.81 | 0.82 | 0.82 | 0.82
Cosine 0.82 | 0.88 | 091 | 0.94 | 0.96 | 0.96

which reaffirms the fitness of cosine similarities for bag-of-
words models [24]. When only the top-1 nearest neighbor
route is used, the accuracy of Cosine is 0.82, while that of
Euclid is 0.75. We vary k£ = 2,...,32, and as the result
the accuracy of Cosine and Euclid saturate at 0.96 and 0.82,
respectively.

Table IV shows how the dimension d of bag-of-roads
vectors relates to the accuracy of trajectory identification for
both unsupervised and supervised prediction. At the row of
“Unsup” (Unsupervised), which corresponds to the Cosine
row in Table III, when we vary d = 4,...,256, the accuracy
becomes 0.82 when d = 256, where the optimal accuracy is
0.82 at d = 375 as in Table III (the size of R is 375). The
row of “Sup” (Supervised) in Table IV shows the accuracy of
route identification from other buses with known routes, i.e.,
for Problem P2, with the supervised nearest neighbor as in
Eq. (3). We evaluate the accuracy by 10-fold cross validation:
we randomly partition the data into 10 parts, use 9 of them as
known routes and the rest for testing. We find that the average
accuracy of “Sup” is 0.95 when dimensionality reduction is not
applied, which is much higher than that obtained in Problem
P1. Similar to the row of “Unsup” in the table, we test how
the accuracy changes as the dimension d = 4,...,256. We
observe that the accuracy is > 0.9 when d > 16, which is
much larger than “Unsup”.

In the supervised problem P2, R is not reliable so that
Egs. (1) and (2) are not appropriate for trajectory identi-
fication. However, we can utilize labels from other known
buses because buses serving a particular route will usually
follow similar trajectories. In this case, we can rely Euclidean
distance measures of supervised nearest neighbor to identify
their trajectories.

We also evaluate the supervised nearest neighbor based on
the old bus route data, where let Ryq be a matrix of bag-of-
roads vectors of the predefined routes of the old route data.
From the SVD of R4, we compute the projection g‘gr and
apply Eq. (3) to identify 0’s route. As we did in Table IV
based on the new bus route data, we evaluate the effect of
the dimensionality reduction of Rq and observe that it does
not affect accuracy by much: The accuracy of “Sup” when
no dimensionality reduction is performed is still 0.95, and the
accuracies of “Sup” when d = 4, 8 are 0.79, 0.87, respectively,
and when d > 16 the accuracy is > 0.91, which are not that
different from those in the row “Sup” of Table IV.

C. Discussion

We compare our approach with [3] that copes with the same
problem with ours and use the same source of datasets. [3]

TABLE IV
ToOP-1 NEAREST NEIGHBOR ACCURACY AND DIMENSION d OF
BAG-OF-ROADS VECTORS

Method Dimension d

4 8 16 32 64 128 256 375
Unsup 0.03 | 0.05 | 0.14 | 0.28 | 0.57 | 0.76 | 0.82 | 0.82
Sup 072 | 0.86 | 090 | 092 | 093 | 095 | 095 | 0.95

reported that the best prediction model based on Convolutional
Neural Network (CNN) had accuracy of 94.9%, which is close
to the accuracy of our simple and robust Sup-NN. The CNN
was trained with more than 20GB of bus data set, while our
supervised nearest neighbor is built upon much less data set
despite its robustness and high accuracy. Interestingly, [3] has
tried to implement K-nearest neighbors and K-means using bus
stops as bag-of-features but failed to achieve high accuracy
(exact numbers were not reported). Notice also that despite
based on the bag-of-word models that ignore the sequential
information of roads in the trajectories, our proposed method
achieved quite high accuracy. We have not explored the
reasons in depth but we believe it is because map-matching
algorithms already take into account sequential information
in their outputs. We tried to construct feature vectors by
bag-of-words of consecutive road IDs (for partially imposing
sequential information), but the accuracy did not improve and
often decreased due to high dimensionality problems.

We can use matched roads to detect spatial and temporal
outliers like [3], but map-matching also has important com-
plementary applications to analyze the urban traffic condition.
Once we obtain the correspondence between GPS points and
road segments, we can infer features of the road segments,
such as, the mean velocities of vehicles traversing the road
segments. Figures 3 (a) and (b) (created with Google Earth™)
are the heatmaps of mean velocity of road segments in Rio
de Janeiro at 10:00 and 18:00 on Feb 16, 2016, from map-
matching of the bus GPS data. For each GPS point of a bus and
its matched road segment, we assign its velocity to the road
segment. If a road segment has at least five velocity values,
we calculate their mean value as mean velocity. Line segments
with red color imply that the mean velocity is around 0, i.e.,
traffic congestion, those with green color imply those with
mean velocity over 50 km/h, i.e., free-flow traffic, and those
with yellow color are around 20-30 km/h. We can observe
different traffic patterns in the city depending on the time.
For example, one can notice that there were significant bus
trajectories (and delays) in the morning around Nilopolis and
Sao Joao de Meriti (upper middle of the figures), but not in
the afternoon.

V. CONCLUDING REMARKS

We showed a robust and accurate bus trajectory identifica-
tion based on the combination of map-matching and bag-of-
words model. Our choice of map-matching is the one based on
Hidden Markov Models because they are proven effective for
noisy and sparse GPS sequences. However, one should be able
to utilize other types of map-matchings and test their accuracy
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Google earth

(a) 10:00-10:30

(b) 18:00-18:30

Fig. 3. Heatmaps of mean velocity of buses on Feb 16, 2016 in two different periods: in the morning (a) and in the afternoon (b).

on the datasets. We showed that even though the route data
may not be up-to-date, trajectory identification is still possible
and can be performed accurately.

Finally, apart from the purpose of generic testing for
geospatial-temporal algorithms, the datasets themselves are
important for practical reasons. For example, there have been
many studies that focus on the punctuality of bus operations
[14], [25]. As cities like Rio de Janeiro have started releasing
datasets of their bus fleets, we believe they are ideal for both
scalability and accuracy testings: they are abundant, available
almost real-time, and come with ground truth labels.
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