
Constrained Local and Global Consistency for
Semi-supervised Learning

Celso A. R. Sousa, Gustavo E. A. P. A. Batista
Instituto de Ciências Matemáticas e de Computação
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Abstract—One of the widely used algorithms for graph-
based semi-supervised learning (SSL) is the Local and Global
Consistency (LGC). Such an algorithm can be viewed as a convex
optimization problem that balances fitness on labeled examples
and smoothness on the graph using a graph Laplacian. In this
paper, we provide a novel graph-based SSL algorithm incor-
porating two normalization constraints into the regularization
framework of LGC. We prove that our method has closed-form
solution and generalizes two existing methods, being more flexible
than the original ones. Through experiments on benchmark data
sets, we show the effectiveness of our method, which consistently
outperforms the competing methods.

I. INTRODUCTION

In scenarios in which we deal with only a few labeled
examples, semi-supervised learning (SSL) algorithms can be
effective in comparison to purely supervised approaches.
Among all SSL algorithms, graph-based methods have gained
increased attention in the last few years [1], [2] partially due to
their empirical effectiveness on benchmark data sets [3]. Most
graph-based SSL algorithms are based on the optimization
of a convex cost function that uses a Laplacian regularizer
term as smoothness functional. Such an optimization problem
is possibly subject to some fitting and/or normalization con-
straints. Formally, the Laplacian regularizer term is a smooth-
ness penalty term that tries to reflect the intrinsic geometric
structure of the data marginal distribution.

A widely used method for graph-based SSL is the Local
and Global Consistency (LGC) [4], which achieves state-
of-the-art classification performance with respect to graph
construction and parameter selection on several data sets [3],
[5]. LGC can be formulated as a convex optimization problem
that balances fitness on labeled examples and smoothness on
the graph through a Laplacian regularizer term.

Another state-of-the-art graph-based SSL algorithm is the
Robust Multi-class Graph Transduction (RMGT) [6], which in-
corporates two normalization constraints into the regularization
framework of the Gaussian Fields and Harmonic Functions
(GFHF) [7] algorithm. RMGT has been generalized for any
positive semidefinite (PSD) matrix in [8]. Such a method is
called Robust Multi-class Graph Transduction with Higher Or-
der Regularization (RMGTHOR) and can naturally deal with
a variety of graph Laplacians. Moreover, RMGTHOR con-
sistently outperforms other state-of-the-art graph-based SSL
algorithms [8].

In this paper, we focus on the problem of graph transduc-
tion. Consequently, we want to classify the unlabeled examples
using a weighted graph generated from the training sample
and (scarce) label information without the necessity to provide
generalization for the entire sample space. Specifically, we
provide in this paper a novel graph-based SSL algorithm based
on LGC, generalizing RMGT and RMGTHOR.

A. Motivation

Recent experimental evaluations [5], [9], [3] show the
effectiveness of RMGT and RMGTHOR over state-of-the-
art graph-based SSL algorithms on benchmark data sets with
respect to graph construction and parameter selection. In many
experimental settings, RMGT and RMGTHOR outperformed
the competing methods by a large margin [9].

RMGT was specifically designed for the combinatorial
Laplacian, which may not be the most appropriate graph
Laplacian for a given application [10]. Our method can nat-
urally deal with a variety of graph Laplacians, being more
flexible than RMGT. Moreover, we can also apply higher order
regularization in our method, which can be effective on general
SSL tasks [11]. Therefore, we expect that our method achieves
better classification performance than RMGT in general SSL
tasks.

In [3], the authors showed that LGC consistently outper-
forms GFHF. Since RMGT and RMGTHOR are based on
GFHF and our method is based on LGC, we expect that our
method achieves slightly better classification performance than
RMGT and RMGTHOR.

B. Contributions

The contributions of this paper are summarized as follows:

• we provide a novel graph-based SSL algorithm, based
on LGC, called Constrained Local and Global Con-
sistency (CLGC);

• we show that our method has closed-form solution;

• we prove that our method generalizes RMGT and
RMGTHOR;

• we show the effectiveness of our method on bench-
mark data sets against state-of-the-art graph-based
SSL algorithms.
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C. Outline

The remainder of this paper is organized as follows. Section
II provides a background on graph-based SSL. Section III
formulates our method. Section IV provides our experimental
evaluation. Finally, Section V describes our conclusions.

II. BACKGROUND

Consider a training sample X := {xi}ni=1 ⊂ Rd, in which
the first l (usually l � n) examples are labeled with one of
c classes; the remainder u := n − l examples are unlabeled.
Let B := {0, 1} and Na := {i ∈ N∗|1 ≤ i ≤ a}, ∀a ∈ N∗.
Assume that xi, i ∈ Nl, has label yi ∈ Nc. Let Ni ⊂ X be the
set of neighbors of xi and x(k)i ∈ X the k-th nearest neighbor
of xi. Let Y ∈ Bl×c be a label matrix in which Yij = 1 if and
only if xi has label yi = j. Consider 1n and 0n n-dimensional
1-entry and 0-entry vectors, respectively. Let Ai,· ∈ R1×b and
A·,j ∈ Ra be the i-th row and j-th column vectors of a matrix
A ∈ Ra×b, ∀a, b ∈ N∗.

Let W ∈ Rn×n be a weighted matrix generated from X
and F ∈ Rn×c be the output of a given graph-based SSL
algorithm. Assume that F and Y are subdivided into two
submatrices while all other matrices are subdivided into four
submatrices. For instance:

W :=

[
WLL WLU
WUL WUU

]
Y :=

[
YL
YU

]
where WLL ∈ Rl×l and YL ∈ Rl×c are the submatrices of W
and Y, respectively, on labeled examples, WUU ∈ Ru×u and
YU ∈ Ru×c are the submatrices of W and Y, respectively,
on unlabeled examples, and so on. By definition, YU = Ou×c
in which Ou×c is the u-by-c null matrix. Since we focus on
multi-class problems, we have YL1c = 1l.

Let L ∈ Rn×n be a graph Laplacian generated from
W and In the n-by-n identity matrix. For instance, the
unnormalized Laplacian is defined by LU := D −W where
D := diag(W1n) and the normalized Laplacian is defined by
LN := In−D−1/2WD−1/2. Although LU and LN are the most
commonly used graph Laplacians in the SSL literature [2], [1],
there are other graph Laplacians that can also be applied in
SSL as well [12], [13]. For instance, the iterated Laplacian
is defined by LI := Lp in which p ∈ N∗ is the Laplacian’s
degree.

A. Unconstrained graph-based SSL

Given a graph Laplacian L, we are able to apply graph-
based SSL algorithms to perform classification. The GFHF
algorithm1 [7] can be viewed as the following optimization
problem:

min
F∈Rn×c

tr
(
F>LF

)
s.t. FL = YL

where tr(·) is the trace of a matrix. Since L < 0, we obtain
the following closed-form solution:

1See [14] for a nice review on the GFHF algorithm.

F =

[
YL

−L−1UULULYL

]
(1)

The LGC algorithm2 [4] can be viewed as the following
optimization problem:

min
F∈Rn×c

tr
(
F>LF + (F−Y)>Σ(F−Y)

)
(2)

where Σ :=

[
ΣL Ol×u

Ou×l ΣU

]
∈ Rn×n is a diagonal matrix

that contains the regularization parameters. In the original
formulation, we have Σ = µIn where µ ∈ R∗+ is the “global”
regularization parameter. Since L < 0, we obtain the following
closed-form solution:

F = (L + Σ)
−1

ΣY (3)

Proposition 1 ([14]): If ΣU = Ou×u and Σ−1L → Ol×l,
(3) is reduced to (1).

B. Constrained graph-based SSL

In [6], the authors proposed the following two normaliza-
tion constraints for graph-based SSL: (1) F1c = 1n; and (2)
F>1n = nω where ω ∈ Rc can be the class prior probabilities
or the uniform class distribution (ω = 1c/c). These constraints
were incorporated into the GFHF algorithm for L = LU.
Mathematically, the RMGT algorithm [6] can be viewed as
the following constrained optimization problem:

min
F∈Rn×c

tr
(
F>LUF

)
s.t. FL = YL, F1c = 1n, F>1n = nω

(4)

The closed-form solution of (4) is given by:

F =

 YL

−(LU)
−1
UU (LU)ULYL +

(LU)
−1
UU1u

1>u (LU)
−1
UU1u

ζ

 (5)

in which

ζ = nω> − 1>l YL + 1>u (LU)
−1
UU (LU)ULYL

The RMGTHOR algorithm [8] is a generalization of (4) for
any graph Laplacian. The closed-form solution of RMGTHOR
is given by:

F =

 YL

−L−1UULULYL +
L−1UU1u

1>u L−1UU1u

ζ +
1

c
ν1>c

 (6)

in which

2See [15] for a nice review on the LGC algorithm.
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ζ = nω> − 1>l YL + 1>u L−1UULULYL

ν = 1u + L−1UULUL1l −
L−1UU1u

1>u L−1UU1u

(
u+ 1>u L−1UULUL1l

)
Corollary 1 ([8]): If L = LU, (6) is reduced to (5).

III. PROPOSED METHOD

This section formulates our method, called CLGC, and
highlights its strenghts and weaknesses based on theoretical
and experimental results in previous research [4], [8], [9].

A. Regularization framework

Our method is based on the regularization framework
in (2), incorporating the normalization constraints in [6].
Mathematically, our method is formulated as the following
optimization problem:

min
F∈Rn×c

tr
(
F>LF + (F−Y)>Σ(F−Y)

)
s.t. F1c = 1n, F>1n = nω

(7)

Proposition 2: The closed-form solution of (7) is given
by

F = ΘΣY +
Θ1n

1>n Θ1n
ζ +

1

c
ν1>c (8)

where

Θ = (L + Σ)−1

ζ = nω> − 1>n ΘΣY

ν = 1n −ΘΣY1c −
Θ1n

1>n Θ1n

[
n− 1>n ΘΣY1c

]
Proof: The Lagrangian corresponding to (7) is given by

L(F, ξ,λ) = tr
(
F>LF + (F−Y)>Σ(F−Y)

)
− ξ>(F1c − 1n)− λ>

(
F>1n − nω

)
where ξ ∈ Rn and λ ∈ Rc are the Lagrange multipliers.
Zeroing ∂L/∂F, we obtain:

F = Θ

(
ΣY +

1

2
ξ1>c +

1

2
1nλ

>
)

(9)

where Θ = (L + Σ)−1. Substituting (9) in the constraint
F1c = 1n, we obtain:

ΘΣY1c +
c

2
Θξ +

1

2
Θ1nλ

>1c = 1n (10)

Substituting (9) in the constraint F>1n = nω, we obtain:

λ> =
2

1>n Θ1n
λ(0) (11)

in which

λ(0) = nω> − 1>n ΘΣY − 1

2
1>n Θξ1>c

Substituting (11) in (10), we obtain:

ξ =
2

c

(
Θ− Θ1n1>n Θ

1>n Θ1n

)−1 (
1n −ΘΣY1c − ξ(0)

)
(12)

in which

ξ(0) =
Θ1n

1>n Θ1n

(
n− 1>n ΘΣY1c

)
Substituting (11) in (9), we obtain:

F = ΘΣY +
Θ1n

1>n Θ1n
ζ +

1

2
$ξ1>c (13)

in which

ζ = nω> − 1>n ΘΣY

$ = Θ

[
In −

1n1>n Θ

1>n Θ1n

]
Substituting (12) in (13), we obtain (8).

B. Special cases

In this section, we provide special cases of our method.
Specifically, Proposition 3 shows that our method generalizes
RMGTHOR and RMGT. Corollary 2 shows that the con-
straint F1c = 1n is always satisfied under certain conditions.
Therefore, such a constraint can be dropped to the original
optimization problem (under conditions in Corollary 2) without
changing the closed-form solution.

Proposition 3: If ΣU = Ou×u and Σ−1L → Ol×l, (8) is
reduced to (6). If we also impose that L = LU, (8) is reduced
to (5).

Proof: Let Θ = (L + Σ)−1. If ΣU = Ou×u, we can
write: [

LLL + ΣL LLU
LUL LUU

] [
ΘLL ΘLU
ΘUL ΘUU

]
=

=

[
Il Ol×u

Ou×l Iu

]
This yields:

ΘLL = Γ−1Σ−1L
ΘUL = −L−1UULULΓ−1Σ−1L
ΘLU = −Γ−1Σ−1L LLUL−1UU
ΘUU = L−1UU + L−1UULULΓ−1Σ−1L LLUL−1UU

(14)
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in which

Γ = Σ−1L LLL + Il −Σ−1L LLUL−1UULUL

Therefore, Eq. (8) can be rewritten as:

F =

[
ΘLLΣLYL
ΘULΣLYL

]
+ β(0)β(1)

+
1

c

{[
1l −ΘLLΣL1l

1u −ΘULΣL1l

]
− β(0)β(2)

}
1>c

(15)

in which

β(0) =
1

τ

[
ΘLL1l + ΘLU1u

ΘUL1l + ΘUU1u

]
β(1) = nω> − 1>l ΘLLΣLYL − 1>u ΘULΣLYL

β(2) = n− 1>l ΘLLΣL1l − 1>u ΘULΣL1l

(16)

such that

τ = 1>l ΘLL1l + 1>u ΘUL1l + 1>l ΘLU1u

+ 1>u ΘUU1u

If Σ−1L → Ol×l, then Γ→ Il. Therefore, we have:

ΘLU ≈ Ol×u, ΘUU ≈ L−1UU , ΘLLΣL ≈ Il,

ΘLL ≈ Ol×l, ΘULΣL = −L−1UULUL
ΘUL ≈ Ou×l

(17)

Substituting the approximations in (17) in (16), we obtain:

β(0) ≈ 1

1>u L−1UU1u

[
0l

L−1UU1u

]
β(1) ≈ nω> − 1>l YL + 1>u L−1UULULYL

β(2) ≈ u+ 1>u L−1UULUL1l

(18)

Substituting β(0), β(1), and β(2) in (15), we obtain (6).
From Corollary 1, if L = LU in (6), we obtain (5).

Corollary 2: If ΣU = Ou×u, Σ−1L → Ol×l, and L = LU,
the closed-form solution of (7) is equivalent to the closed-form
solution of the following optimization problem:

min
F∈Rn×c

tr
(
F>LUF + (F−Y)>Σ(F−Y)

)
s.t. F>1n = nω

(19)

Proof: The proof can be done by following the steps in
Proposition 2.

C. Strenghts and weaknesses

Our method has the following strenghts:

• it has closed-form solution and is easy to implement;

• it generalizes two existing graph-based SSL algo-
rithms (RMGTHOR and RMGT), being more flexible
than its predecessors;

• it achieves state-of-the-art classification performance.

Our method has the following weaknesses:

• it runs in O
(
n3
)

time, which is the same time com-
plexity of widely used graph-based SSL algorithms
[6], [7], [4], [16]. This may be unfeasible even for data
sets with moderate size. Probably, this issue might be
solved by applying in our method recent approaches
that scale up graph-based SSL [17], [18];

• since our method generalizes the RMGT and
RMGTHOR algorithms, it may inherit their weak-
nesses. Specifically, since the RMGT and RMGTHOR
algorithms may not be effective on data sets with high3

unbalanced ratio [8], [3], [5], our method might also
be uneffective in this scenario;

• as opposed to the LGC algorithm, we do not have
an iterative method to solve (7) with convergence
guarantees. Such a method is still under development.

IV. EXPERIMENTAL EVALUATION

In this section, we empirically evaluate our method against
six state-of-the-art graph-based SSL algorithms. We used six
benchmark data sets in [1]4: USPS; COIL2; DIGIT-1; G-241N;
G-241C; and TEXT. We used the preprocessing described in
[3]5. Due to reasons concerning reproducibility, the source
code used in our experiments as well as our experimental
results are freely available6.

A. Experimental setup

We used the experimental protocol in [3] to compare our
results with those in [3], [8]. Specifically, we empirically
compare our method against the following graph-based SSL
algorithms7: GFHF [7]; LGC [4]; Laplacian Regularized Least
Squares (LapRLS) [16]; Laplacian Support Vector Machine
(LapSVM) [16]; RMGT [6]; and RMGTHOR [8].

In order to compute a distance matrix Ψ ∈ Rn×n from
X , we chose the cosine distance for the TEXT data set and
the L2-norm for the other data sets. From Ψ, we generated
an adjacency matrix A ∈ Bn×n using symmetric k-nearest
neighbors (symKNN), which creates an edge between xi and
xj if xj is one of the k closest examples of xi or vice versa.
The values of k were chosen in the set {4, 6, 8, · · · , 40}.

3The results in [5] are related to data sets in which the majority class has
at least two times more examples than the minority class.

4http://olivier.chapelle.cc/ssl-book/benchmarks.html.
5http://sites.labic.icmc.usp.br/sousa/experiments graph SSL/.
6http://sites.labic.icmc.usp.br/sousa/constrained graph SSL/.
7Extensive results and parameter settings for GFHF, LGC, LapRLS,

LapSVM, RMGT, and RMGTHOR can be found in [3], [19], [8].
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TABLE I. BEST AVERAGE ERROR RATES (%) AND STANDARD DEVIATIONS (%) FOR THE SSL ALGORITHMS USING THE SYMKNN-RBF GRAPH.

l = 10 USPS COIL2 DIGIT-1 G-241N G-241C TEXT avg. ranking
GFHF 11.07 (3.33) 35.13 (6.92) 10.19 (4.27) 46.12 (7.60) 46.27 (6.98) 39.15 (5.69) 5.667
LGC 11.22 (3.07) 34.96 (6.69) 10.68 (4.91) 38.06 (6.91) 40.24 (5.13) 35.42 (5.58) 4.667
LapRLS 10.99 (3.05) 34.92 (5.98) 10.22 (4.25) 38.09 (6.76) 40.35 (6.23) 35.12 (5.68) 4.0
LapSVM 11.42 (4.03) 34.95 (6.81) 9.42 (3.97) 39.15 (6.07) 40.91 (6.08) 39.88 (6.01) 5.167
RMGT 16.62 (2.90) 31.05 (4.80) 8.63 (3.35) 44.99 (6.97) 38.44 (6.22) 30.42 (6.26) 4.167
RMGTHOR 13.32 (3.64) 30.98 (3.52) 7.42 (3.37) 36.11 (16.00) 26.94 (4.95) 30.22 (2.47) 2.5

CLGC 12.50 (3.23) 30.93 (5.34) 5.72 (2.57) 36.13 (15.98) 26.85 (5.06) 28.89 (1.94) 1.833
l = 100 USPS COIL2 DIGIT-1 G-241N G-241C TEXT avg. ranking
GFHF 3.30 (0.97) 1.14 (1.46) 2.22 (0.52) 32.38 (5.69) 37.89 (5.60) 24.79 (2.89) 5.333
LGC 3.56 (1.00) 1.17 (1.48) 2.46 (0.65) 22.38 (1.58) 29.98 (2.91) 24.26 (2.18) 5.167
LapRLS 3.29 (1.01) 0.80 (1.13) 2.17 (0.43) 22.14 (1.59) 28.73 (3.43) 24.36 (1.58) 3.583
LapSVM 4.10 (1.45) 0.80 (1.14) 2.18 (0.47) 21.64 (3.90) 25.51 (5.58) 23.74 (2.10) 3.583
RMGT 6.56 (2.24) 1.92 (1.74) 2.37 (0.43) 28.21 (8.55) 25.87 (2.39) 21.00 (1.24) 5.0
RMGTHOR 3.80 (1.05) 3.09 (1.79) 2.14 (0.40) 9.95 (0.87) 18.56 (0.93) 21.17 (0.92) 3.5

CLGC 3.17 (0.57) 2.79 (1.22) 1.99 (0.51) 9.90 (0.97) 17.18 (0.90) 20.68 (1.07) 1.833

In order to generate W from A and Ψ, we used the RBF
kernel8, which is defined by:

K(xi, xj) = exp

(
−Ψ

2 (xi, xj)

2σ2

)
such that σ ∈ R∗+ is the kernel’s bandwidth parameter and
Ψ : Rd ×Rd 7→ R is a distance function. For all data sets, we
estimate the value of the bandwidth parameter σ in the RBF
kernel by σ = 1

3n

∑n
i=1 Ψ

(
xi, x

(k)
i

)
, as suggested in [20].

From W, we generated the unnormalized Laplacian LU
as LU = ηD − W and the normalized Laplacian LN as
LN = ηIn − D−1/2WD−1/2 with η = 1.01, as suggested
in [3]. Since higher order regularization may be effective on
graph-based SSL [11], we used the iterated Laplacian LI in
our method. Since using LN in our method may lead to better
results than using LU in general SSL tasks [10], we chose LN
as the “basis” Laplacian. The Laplacian’s degree p was chosen
in the set {1, 2, 3, 4, 5}, as suggested in [8].

We set ΣU = Ou×u and ΣL = µIl for our method. This
setting achieved better classification performance on most data
sets in comparison to Σ = µIn. The values of µ were chosen in
the set {0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10, 50, 100}, as suggested
in [3] for the LGC algorithm.

B. Best case analysis

In this analysis, we evaluate the best error rates of the
SSL algorithms over all parameter values on each data set
and partition9. Table I shows the best average error rates with
corresponding standard deviations achieved by our method and
the competing SSL algorithms in the partitions of 10 and 100
labeled examples, respectively. In order to statistically evaluate
our results, we ran the Friedman test10 with the Bonferroni
post test using our method as “control” algorithm with a
significance level of 0.05. We applied the software Orange11

to run this statistical test using the average rankings shown
in Table I. In this table, the rankings for the SSL algorithms
that were statistically outperformed by our method on a given
partition are marked with a grey background.

8The symKNN-RBF graph is widely used in the SSL literature [2], [1].
9We used the same partitions proposed in [1].
10See [21] for a review on statistical tests for machine learning.
11http://orange.biolab.si/.

Table I shows that our method achieved the best perfor-
mance in most cases. Moreover, our method showed com-
petitive results in the other three settings. In the G-241C
and G-241N data sets, RMGTHOR and CLGC outperformed
the competing methods by a large margin in both partitions.
These results evidentiate the effectiveness of higher order
regularization on SSL.

Our method achieved the best average ranking in both
partitions, statistically outperforming GFHF in the partitions
of 10 labeled examples. Additional statistical differences might
be evidenced if we run experiments on more data sets.

C. Evaluation of classifier stability

In the evaluation of classifier stability [3], we analyze the
classification performance of the SSL algorithms with prede-
fined regularization parameters for a given graph construction
method with respect to k. For such purpose, we look to the best
classification performance and keep the corresponding values
of the regularization parameters. Then, we analyze the SSL
algorithm’s classification performance with respect to k for
these predefined regularization parameters.

Fig. 1 shows the average error rates of the SSL algorithms
with respect to k in the partitions of 10 labeled examples. In
the USPS data set12, our method achieved competitive results
to the other SSL algorithms for most values of k. Moreover,
our method showed similar performance to RMGTHOR for
k ≤ 10 and k ≥ 30.

In the COIL2 data set, our method achieved the best
performance for all values of k. In the DIGIT-1 data set, our
method outperformed the other SSL algorithms for k ≥ 10.
Moreover, our method outperformed GFHF, LGC, LapRLS,
and LapSVM by a large margin for k ≥ 10. Furthermore,
the constrained methods (RMGT, RMGTHOR, and CLGC)
showed almost stable performances with respect to k.

In the G-241C and G-241N data sets, our method showed
similar performance to RMGTHOR, achieving better results
than the other SSL algorithms for most values of k. In
the TEXT data set, the constrained methods showed similar
performance with respect to k, outperforming the other SSL
algorithms for k ≥ 10.

12USPS is an unbalanced data set with two classes such that the majority
class has four times more examples than the minority class. Therefore, we
consider that USPS is a data set with high unbalanced ratio.
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Fig. 1. Average error rates of the SSL algorithms with respect to k using the symKNN-RBF graph in the partitions of 10 labeled examples.

V. CONCLUSION

We provided a novel graph-based SSL algorithm based on
the LGC algorithm, incorporating the normalization constraints
in [6] into its regularization framework. We proved that our
method admits closed-form solution and generalizes RMGT
and RMGTHOR. Through experiments on benchmark data
sets, we showed that our method achieves good to exceptional
classification performance in comparison to state-of-the-art
graph-based SSL algorithms.
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