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Abstract—In this paper, we present an efficient edge chain
detection algorithm by applying the Helmholtz principle on the
gradient magnitude map of an image. An edge chain validation
method is proposed which uses the “relative number of false
alarms” (RNFA) instead of the traditional “number of false
alarms” (NFA). The edge chains are detected first and then
validated according to their RNFA values. In this way, edge
chains that are weak in gradients but meaningful in vision can
be detected. To evaluate the proposed edge chain detector in
quantity, an edge chain detection benchmark which consists of
25 labeled images in different scenes was built. The proposed
edge chain detector was tested in this benchmark, and the
experimental results sufficiently demonstrate that the proposed
edge chain detector outperforms the state-of-the-art methods.

1. Introduction

Geometric structure detection on an image is an impor-
tant and classical problem in image processing and computer
vision, which has been studied for decades. Edge chains are
one of the most widely used geometric structures which can
be used to represent the silhouettes of an image. As a low
level information of an image, edge chains can be applied in
line segment detection [1], [2], object recognition [3], image
segmentation [4], and so on.

Based on the understanding: “edge is most often defined
as an abrupt change in some low-level image feature such as
brightness or color” [5], traditional edge detectors usually take
two steps to extract edge segments: feature image extraction
and feature image thresholding. Numerous edge detectors have
been proposed in the past decades [6]–[9] based on this idea.
The Canny operator [6] is a widely used edge detector which
finds the peak gradient magnitudes orthogonal to the edge
directions by applying a non-maximum suppression. However,
it uses the gradient magnitudes as information, which makes
it difficult to distinguish the faint edge pixels from the noise.
Wang et al. [10] proposes the “supporting range” to distinguish
those weak edge pixels from their surroundings and applied a
segment-based hysteresis thresholding approach to verify the
edge segments. Edge Drawing is a recently proposed edge
detector: “computes a set of anchor edge points in an image
and then links these anchor points by drawing edges between
them” [11]. Edge Drawing is fast and uses more direction
information than Canny on its novel edge linking process. In
the work of [12], the use of the Helmholtz principle gives
a new view on both boundary and edge chain detections.
However, this work mainly focuses on the geometric event:

a strong contrast along a level line of an image, thus to some
extent it can not be considered as a proper edge detector.
“Conversely, the detection algorithm provides a check tool to
accept or reject edges proposed by any other algorithm” [12].
EDPF [13] develops the original work of Edge Drawing into
a parameter-free edge detector by applying the Helmholtz
principle on the validation check of the detected edge chains.

The Helmholtz principle is popularly applied in the de-
tection of image structures like line segments [1], [14], [15],
edges and boundaries [12], [13], continuous curves [16] and
vanishing points [17]. The Helmholtz principle does not use
an a priori or learned model, but applies the a contrario
uniform random assumption. The a contrario assumption is
based on a certain background model. For example, in the
line segment detection [14], the background model is the im-
age’s gradient orientation map, and the assumption is that the
gradient orientations of pixels are independent and uniformly
distributed in the range (−π, π] on the gradient orientation
map. The LSD detector [14] first applies a region growing
method to obtain a line-support region, and then a rectangle is
fitted as an approximation of the region, finally the Helmholtz
principle is applied to validate the meaningfulness of this
region by calculating the “number of false alarms” (NFA) of
this region according to the number of aligned orientations in
it. In the edge and boundary detection [12], the background
model is the level lines of an image, and the assumption is
that the contrast (gradient magnitude) at a point on any level is
mutually independent. For a piece of level line E, the minimum
contrast u of pixels on E is searched and the meaningfulness
of the event “each pixel of E has a contrast larger than u” is
calculated via the Helmholtz principle.

Despite that the Helmholtz principle is well studied and
applied in both the orientation map and the level lines, its
application on the gradient magnitude map is still not well
discussed yet. The main reason is that the value of Nconf [18],
which is one of the key factors to calculate the NFA and
denotes the number of different possible configurations one
could have for the searched image structure such as edge chain
or line segment, is hard to be determined for the application
like the edge chain detection on a background model of the
gradient magnitude map. In this contribution, we firstly give a
new view on applying the Helmholtz principle on the gradient
magnitude map, and then propose an edge chain detection
algorithm which uses the “relative number of false alarms”
(RNFA) instead of the traditional “number of false alarms”
(NFA) to get rid of false alarms. To evaluate the proposed edge
chain detector in quantity, an edge chain detection benchmark
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(a) randomly distributed (b) a square structure
Figure 1. Example images with the size of 100 × 100 pixels: (a) 200
independent black pixels randomly distributed on the image; (b) an image
with a 5× 5 black square structure.

was built which consists of 25 labeled images captured from
different scenes.

2. Helmholtz Principle on Gradient Map

2.1. Helmholtz Principle

Figure 1 shows two simulated images, in Figure 1(a) there
is a image with 100 × 100 pixels, among which 200 inde-
pendent black pixels are randomly distributed. In the image
shown in Figure 1(b), there is a 5× 5 black square structure.
Comparing to the image shown in Figure 1(a), we will sense
that such a square structure shown in Figure 1(b) could not
be arose just by chance. But how to measure this sense in
quantity? The computational Gestalt theory and Helmholtz
principle [12], [18] give a systematic solution. Before we
have a deep look in the Helmholtz principle on the detection
of image structures, some basic concepts are introduced as
follows:

• event: a geometric structure on an image, for example
the black square shown in Figure 1(b).

• object: the basic element to form an event, for example
the pixels in the black square shown in Figure 1(b).

• quality: a common character that is shared by all the
objects of an event, for example the quality that all the
pixels in the black square shown in Figure 1(b) are all
“in black”.

In the Helmholtz principle, the sense “a structure could
not arise just by chance” is defined as the expectation of the
number of occurrences of this structure (event) under the a
contrario uniform random assumption, which is also known
as the “number of false alarms” (NFA). According to the
Helmholtz principle, an event is meaningful if the NFA of
this event is very small. The NFA is formulated as follows:

NFA = Nconf × B(n, k, p), (1)

where Nconf denotes the number of different possible config-
urations one could have for the searched event, which means
that there probably are Nconf events in theory on the image; p
represents the probability that a given object has a considered
quality; and B(n, k, p) is the tail of the binomial distribution
which means the probability that at least k objects out of
the observed n ones have this quality under the independence
assumption.

As a summary, there are three key factors in the Helmholtz
principle: (1) the perspective meaningful event; (2) the the-
oretical number Nconf of the event on the image; (3) the
probability p of the considered quality. Take the two images
in Figure 1 for example, in Figure 1(a) there is no perspective
meaningful structure (event) observed, while in Figure 1(b)
the black square is sensed as a meaningful structure. Assume
that we have already obtained the black square on the image
shown in Figure 1(b) by some detection methods, the rest
of the problem is how to calculate the Nconf and B(n, k, p).
In the case of the black square, the event now is “a square
made up of black pixels”, the object is “pixel” and the quality
is “pixel in black”. The definition of an event gives the
estimation of Nconf, as a square is determined by two diagonal
vertexes, each vertex can be any pixel on the image, thus
Nconf = (100×100)2. The probability of a 5×5 black square
is B(25, 25, 1

5 ) = ( 15 )
25, thus the NFA of the black square

is (100 × 100)2 × ( 15 )
25 = 3.3 × 10−10, which is a really

small value and means that this square can hardly occur in
a background model where the black pixels are randomly
and independently distributed with a probability of 1/5 , so
according to the Helmholtz principle the 5 × 5 black square
on the image shown in Figure 1(b) is perspective meaningful.

2.2. Helmholtz Principle on Level Lines

To apply the Helmholtz principle on edge chain detection,
the first problem we encounter is the definition of an edge
chain event, because an edge chain can be anywhere with any
shape and any length, which makes it difficult to be expressed
in a certain model. To solve this problem, in the work of [12]
the “level line” was introduced, and an edge chain is defined
as “a piece of level line along which the contrast of the image
is strong”, so the Nconf of the edge chain event is formulated
as:

Nconf =
∑
i

li(li − 1)/2, (2)

where li is the pixel number of the i-th level line. The
considered quality now is “each pixel of a level line E has
a contrast equal or greater than u”, and the probability of this
quality is formulated as:

H(u) =
1

M
#{x ∈ I|g(x) ≥ u}, (3)

where I is the image, g(x) denotes the contrast (gradient
magnitude) of a pixel x and M is the number of pixels
whose gradient magnitudes are not equal to zero on the image,
i.e., M = #{x ∈ I|g(x) ̸= 0}. So to apply the Helmholtz
principle on the edge chain detection based on the level lines,
first of all we should get the level lines of the image, then for
an edge chain with l pixels, the smallest gradient magnitude u
on this chain is found, and finally the NFA of this edge chain
is defined as Nconf ×H(u)l.

We can see that applying the Helmholtz principle on the
edge chain detection is not a straight forward work because
the level lines should be obtained in advance. In the work
of EDPF [13], the level lines are replaced with edge chains
obtained by the Edge Drawing method for convenience with-
out convincing proofs. In fact, both the level lines based and
the edge chains based Nconfs are just approximations of the

1366



exact value of Nconf, and it is still difficult to find a convincing
method to calculate the value of Nconf for the edge chain event.

2.3. Helmholtz Principle on Gradient Map
Let I be w×h image and G be the integral gradient map

of I by applying a gradient operator on I. In our entire work
the 3×3 Sobel operator is applied, and the gradient magnitude
g(p) of a pixel p in I is calculated as follows:

g(p) =
√
(gx(p))2 + (gy(p))2, (4)

where gx(p) and gy(p) represent the gradients of the pixel p
in I in the horizontal and vertical directions, respectively.

For each integral gradient magnitude level u ∈ [1, gmax]
where gmax is the maximum gradient magnitude level in G,
the number of pixels whose gradient magnitude level is equal
or greater than u is denoted as k(u), thus the probability of the
considered quality that “a pixel on I whose gradient magnitude
level is equal or greater than u” is defined as:

P (u) = k(u)/M, (5)

where M = w × h is the size of I. This definition is similar
to that of Eq. (3) in form, but different in one of the basic
conception of the Helmholtz principle. As we have stated
before, the quality is a common character that is shared by
all the objects of an event, and the probability of the quality
represents the distribution of the background model. By setting
M as the number of pixels whose gradient magnitudes are
greater than zero on the image, Eq. (3) implies that the
background model is the level lines of an image, while Eq. (5)
means that the objects with this quality is distributed randomly
on the whole gradient map.

Definition of NFA - Number of False Alarms. Given an
event E (a detected structure) made up of l pixels on an image,
Nconf is the theoretical number of E on the image, u is the
minimal gradient magnitude of these pixels, the NFA of E on
the gradient magnitude map is defined as:

NFA = Nconf × P (u)l. (6)

In some applications, it is difficult to give a good approxi-
mation of the Nconf, for example the value of Nconf for edge
chain is hard to obtained as we have discussed in Section 2.2.
In this case, we proposed to use the “relative number of false
alarms” (RNFA) to validate edge chains.

Definition of RNFA - Relative Number of False Alarms.
Given an event E (a detected structure) whose binomial
probability is B(n, k, p), and Er is a minimal meaningful
event (MME) whose binomial probability is B(nr, kr, pr). The
relative number of false alarms of E to Er is defined as:

RNFA =
Nconf × B(n, k, p)

Nconf × B(nr, kr, pr)
=

B(n, k, p)
B(nr, kr, pr)

, (7)

where Nconf is the number of different possible configurations
one could have for the searched event, and we simply say that
the event is meaningful than the minimal meaningful event
(MME) if RNFA < 1. As we can see from Eq. (7) that, all
configurations of a given type of event on the image share
the same value of Nconf, which means that the exact value of
Nconf can be eliminated if a reference case can be found. In this
way, the problem of finding a good approximation of Nconf is

converted into the searching for the minimal meaningful event
(MME), which can be very simple in some cases.

3. Edge Chain Detection
In many cases, it is difficult to find a MME reference case,

but in the application of the edge chain detection, it works. The
basic idea is that “a meaningful line segment on the image is
also a meaningful edge chain”. So, given a w×h image I, first
of all we should get the minimum length Lmm of a meaningful
line segment, which can be very well solved according to the
works of LSD and CannyLines [14], [15]:

Lmm = −2.5 log(M)/ log(p), (8)

where M = w × h is the size of I and p = 1/8. Thus, we
can give the definition of the “minimal meaningful edge chain
event” of an image:

Definition of MMEedge - Minimal Meaningful Edge
Chain Event. A minimal meaningful edge chain event is
defined as the edge chain with a size of Lmm and a minimal
gradient magnitude equals to gmin.

The gmin is a user defined parameter which is set constant,
in Section 4.2.1 we will demonstrate how to find the best value
of gmin for all the applications. Thus the RNFA of an edge
chain can be reformed as follows:

RNFAedge =
B(n, k, p)

P (gmin)Lmm
. (9)

If RNFAedge < 1, we simply say that the edge chain is
meaningful.

3.1. Edge Chain Detector

An edge chain should have the following qualities on a
gradient magnitude map: (1) made up of edge pixels (zero-
crossing pixels [6]); (2) smooth orientation deviations between
consecutive edge pixels. Based on this observation, an efficient
edge chain detector is proposed as follows:

(1) First, given a gray image I, the gradient magnitude
map G and gradient orientation map O of I are calculated
by applying a certain gradient operator (a 3 × 3 Sobel was
applied in our work).

(2) Then, the non-maximum suppression procedure is ap-
plied on G, the gradient magnitudes of those suppressed pixels
are set zero and the remaining ones are edge pixels, the set
of which is denoted as E.

(3) Third, the set E is sorted in descending order according
to the gradient magnitudes. The foremost unprocessed edge
pixel in E is selected as the initial seed pixel pseed. The 8-
neighborhood of the pseed is searched. If there exists a 8-
neighbor who is an edge pixel and the orientation deviation
between it and the seed pixel is less than θ, we consider this
pixel to be the next seed pixel and added it to the current edge
chain. The seed growing of the current edge chain is conducted
iteratively until all the pixels in this chain is processed, and
then we begin with another edge chain from the rest of E.

(4) Each edge chain detected in the step (3) is validated by
the Helmholtz principle on edge chain proposed in Section 2.3
to get rid of the false alarms.

It’s worth noting that there are two internal parameters in
the proposed edge chain detector: θ and gmin. The value of θ
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is set as π/4 for constant, so the performance of the proposed
algorithm can be adjusted by setting a customized gmin, and
the bigger the value of gmin is the more meaningful the final
edge chains are. In Section 4.2.1 we will demonstrate how to
find the best value of gmin for all the applications.

4. Experimental Results

4.1. Edge Chain Benchmark

To evaluate the performance of the proposed edge chain
detector, we built a benchmark with ground truth edge chains
labeled in a semi-automatic way. The reason why we don’t
use two widely used public databases: the BSDS dataset and
the RUG database is that both of these two databases are more
or less labeled based on objects instead of edge chains.

There are 25 images in our benchmark, which are semi-
automatically labeled by edge pixels collection with manually
selected seed pixels, most of which were selected from the
EDC dataset 1 [19] despite of several natural images that
are too difficult for human to label. The images cover a
range of textured and non-textured, man-made and natural
scenes. Figure 2 shows four representative images and the
corresponding labeled edge chains.

(a) Golfcart (b) Grater

(c) Picnic Basket (d) Videocamera
Figure 2. Four representative images and the corresponding ground truth edge
chains on the proposed benchmark.

To evaluate the accuracy of the edge chain detection result,
we use the same F -score metric as EDPF [13]. Let DC be the
set of edge pixels detected by a certain method, GT denotes
that of the ground truth data, the precision (P) and recall ratio
(R) are defined as follows:

P =
#{DC ∩ GT}

#{GT}
and R =

#{DC ∩ GT}
#{DC}

. (10)

The F -score is defined as F = 2PR/(P +R).

1. Available at http://marathon.csee.usf.edu/edge/edge detection.html
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Figure 3. Different performances of our proposed edge chain detection
algorithm with different values of gmin.

4.2. Evaluation on Edge Chain Detector

4.2.1. Choice of Best gmingmingmin. According to the definition of
MMEedge, gmin is the minimum gradient magnitude which
makes an edge chain with a size of Lmm meaningful on an
image. According to the work of Wang et al. [10], the gradient
magnitude of a pixel along with the “supporting range” of
this pixel determines its saliency. In our work, we only take
the gradient magnitude into consideration, and assume that an
edge chain is meaningful in vision if its gradient magnitude is
stronger than a certain threshold. To find out the best value of
gmin, we set gmin = 20, 40, 60, 80, 100, respectively. Figure 3
shows the edge chain detection results on the benchmark
with different values of gmin, we can see that gmin = 60
produces the greatest detection precision, which leads to the
highest F -score. So in our works, we set gmin = 60 for
constant. However, as we have stated in Section 3.1 that the
performance of the proposed algorithm can be adjusted by
setting a customized gmin, and the bigger the value of gmin is
the more meaningful the final edge chains are.

4.2.2. Comparison of Level Lines, Edge Chain and RNFA.
As we have mentioned in Section 2.2 that in the works of [12]
and EDPF [13], the level lines and the edge chains are used
to calculate the value of Nconf, respectively. In this section,
we will compare the performance of these two methods with
our proposed RNFA method on the benchmark we built. The
level lines were created with the level quantization step equal
to 2, the edge chains were detected by the method proposed
in Section 3.1, and the value of gmin was set as 60. Table 1
shows the average accuracies of these three methods on all
the 25 images in the benchmark. From Table 1, we can see
that the proposed RNFA method achieved the best scores on
precision and the F -score, which are close to the level lines
based method and better than those of the edge chain based
method. In fact the values of Nconf of the four images in
Figure 2 calculated based on the level lines and edge chains are
565950545, 402641165, 555485560, 414409382 and 785282,
961799, 469320, 1255510, respectively. In average, the values
of Nconf calculated based on level lines are around 800 times
those calculated based on the edge chains, which is the reason
why the edge chain based method gains the higher recall
ratios but lower precisions than the other two methods. As a
conclusion, the proposed RNFA method can achieve close or
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TABLE 1. COMPARISON BETWEEN LEVEL LINES, EDGE CHAIN AND
RNFA.

Methods Level Lines Edge Chain RNFA
Measurements R P F R P F R P F

Average 0.87 0.73 0.78 0.89 0.66 0.75 0.84 0.77 0.80

even better accuracy as the level lines based method, however
we don’t have to obtain the level lines of an image in advance.

4.2.3. Comparison with State-of-the-Art Methods. To suf-
ficiently evaluate the performance of our proposed RNFA
based edge chain detection method, we compared it with
other four state-of-the-art edge detection methods, including:
EDPF [13], ED [11], SREdge [10] and CannyPF [15]. The
source codes of ED and EDPF can be obtained from the
Edge Drawing library [20], the source code of our previously
proposed CannyPF is publicly available 2 and the source code
of SREdge was implemented by us according to the paper.
Table 2 shows the average accuracies of these algorithms
on all the 25 images in the benchmark. From Table 2, we
can see that the proposed RNFA method achieves the highest
values on both precision and F -score, which is much better
than the EDPF on the second place. The edge chain based
method SREdge also performs very well considering the fact
that it applies the saliency instead of the Helmholtz princi-
ple to validate the edge chains. We can also find out that
the algorithms EDPF and RNFA that apply the Helmholtz
principle as a validation procedure, achieve higher precisions
than those of CannyPF, ED and SREdge that do not apply
the Helmholtz principle, which proves the effectiveness of the
Helmholtz principle. Figure 4 shows the edge detection results
of these five algorithms on six test images in the benchmark.
We can observe from Figure 4 that the proposed RNFA method
achieves the best performance, EDPF and RNFA generate less
false alarms than the other three methods, which is consistent
with the conclusion drawn from Table 2.

5. Conclusion
In this work we developed the Helmholtz principle on the

gradient magnitude map of an image based on probability the-
ory, and proposed a new conception named “relative number
of false alarms” (RNFA) as a supplement of the “number of
false alarms (NFA) which is a key conception in the Helmholtz
principle. We apply the RNFA on the gradient magnitude map
for structure detection from image, and proposed an efficient
and useful edge chain detector. To evaluate the proposed edge
chain detector in quantity, an edge detection benchmark was
built which consists of 25 labeled images captured from differ-
ent scenes. Experimental results show that the proposed RNFA
based edge detection method achieves the highest F -score
comparing with four state-of-the-art edge detection methods.
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TABLE 2. COMPARISON OF RNFA, EDPF, SREDGE, ED AND CANNYPF.

Methods RNFA EDPF SREdge ED CannyPF
Measurements R P F R P F R P F R P F R P F

Average 0.85 0.77 0.80 0.81 0.65 0.71 0.79 0.61 0.65 0.83 0.55 0.62 0.88 0.49 0.59

Figure 4. Six test images in our benchmark in the first row, ground truth edge chains in the second row, and edge chains detected by RNFA, EDPF, ED,
SREdge and CannyPF from the third row to the final row, respectively.
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