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Abstract—Deep learning methods are powerful approaches but
often require expensive computations and lead to models of high
complexity which need to be trained with large amounts of data.
In this paper, we consider the problem of face detection and
we propose a light-weight deep convolutional neural network
that achieves a state-of-the-art recall rate at the challenging
FDDB dataset. Our model is designed with a view to minimize
both training and run time and outperforms the convolutional
network used in [1] for the same task. Our model consists only of
113.864 free parameters whereas the previously proposed CNN
for face detection had 60 million parameters. We propose a new
training method that gradually increases the difficulty of both
negative and positive examples and has proved to drastically
improve training speed and accuracy. Our second approach,
involves training a separate deep network to detect individual
facial features whilst creating a model that combines the outputs
of two different networks. Both methods are able to detect faces
under severe occlusion and unconstrained pose variation and
meet the difficulties and the large variations of real-world face
detection.

1. Introduction

Face detection has been an active research area in the com-
puter vision field for more than two decades mainly due to the
countless number of applications that require face detection as
a first step [30,31,32,33]. Many non neural network methods
have been proposed and deployed in various commercial prod-
ucts like digital cameras or smartphones. The seminal work
of Viola and Jones [2] made it possible to detect faces in real-
time and later on inspired many cascade-based methods. Since
then, research in face detection has made remarkable progress
as a result of the availability of data in unconstrained capture
conditions, the development of publicly available benchmarks
and the fast growth in computational and processing power of
modern computers.

The original Viola-Jones detector used Haar-like features
and is fast to evaluate but fails in detecting faces from dif-
ferent angles. Some methods such as parallel cascade [5] and
pyramid cascade [6] address this issue by using one classifier
cascade for each specific facial view, while in [4] a decision
tree is used for pose estimation and then the corresponding

Figure 1: An example of face detection in various poses and
occlusions. The bounding boxes and scores show output of
the trained CNN.

cascade is used to verify the detection. However, these ap-
proaches require pose/orientation annotations while complex
cascade structures increase the computational cost. Numerous
methods also focused on alternatives to Haar-features while
others succeeded in improving the detection performance by
using more powerful learning algorithms. [8]. The main line
of research in this direction was based on the combination
of robust descriptors with classifiers [7,29]. Among the vari-
ants, Headhunter [9] provided an improved performance by
deploying the integral channel features method along with
22 cascades. The last method was extended by [28] where
it was proposed to use sub-sampled channel features to learn
a cascade of classifiers. Finally, a joint cascade-based method
proposed in [3] achieved state-of-the-art results by introducing
an alignment step in the cascade structure.

Another common family of face detection algorithms learn
and deploy a Deformable Parts-based Model (DPM) [10]
to model the information between facial parts. The DPM
detectors are more robust to occlusion than cascade based
methods but lack in computational efficiency and are pro-
hibitive for real-time detection. A unified DPM framework for
face detection, pose estimation, and landmark estimation was
proposed in [11]. A general approach for making DPM based
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methods faster is to build a cascade of classifiers from DPMs
[12]. A recent study based on a simple DPM, [13], provides
excellent performance and outperforms more complex DPM
variants. Finaly, a face detector called Deep Pyramid DPM,
[14], significantly improves the detection accuracy. The last
method, generates a deep feature pyramid and uses a linear
SVM for classification.

The recent resurgence of interest in deep neural networks
owes a certain debt to the availability of powerful GPUs which
routinely speed up common operations such as large matrix
computations. Deep convolutional neural networks have wide
applications in language processing, object classification and
recommendation systems. A deep network named Alexnet [15]
which was trained on ILSRC 2012, outperformed all other
methods used for large scale image classification and rekindled
interest in convolutional neural networks. In particular, the R-
CNN method proposed in [16] generates category-independent
region proposals and uses a CNN to extract a feature vector
from each region. Then it applies a set of class-specific linear
SVMs to recognize the object category. In [1] a face detector
called DDFD showed that a CNN can detect faces in a wide
range of orientations using a single model.

In this study, we present a novel CNN for face detection
that extends the work in [1]. More specifically, we trained two
different CNNs that were combined in a single architecture.
The first CNN was trained exclusively for the detection of
facial features (eg eyes, nose, mouth) while the second CNN
was trained for full face detection. This paper makes the
following contributions:

1) We propose a novel light-weight model, consisting of
only 113.864 free parameters, and we show that our
method despite its minimum complexity can provide
formidable results and is suitable for real-time detec-
tion with standard processing power as opposed to
most neural network based detection techniques.

2) We introduce a new approach of handling occlusions
and we show that the key to face detection is the
information provided by local facial parts.

3) We present a new training methodology according to
which the CNN is gradually supplied with training
examples of scaling difficulty. We show that our
method can drastically improve training speed and
significantly reduce the number of false positives.

4) We propose adding a pooling layer to the output of
the deep CNN to smoothen the produced heat map.

The proposed trained model is publicly available to the re-
search Community1. Figure 1 shows examples of face detec-
tion.

2. Proposed method

2.1. CNN Architecture

At first, we trained a fully-convolutional CNN comprised
of seven convolutional layers with images of size 32 × 32,
which is shown in Figure 2 and Table 2. Secondly, we trained a
network consisting of four convolutional layers interspersed by

1. https://github.com/danaitri/Face-detection-cnn

TABLE 1: Face detection CNN

layer kernel # filters input output
convolution 1 3 x 3 24 32 x 32 x 3 30 x 30 x 24
convolution 2 4 x 4 24 30 x 30 x 24 14 x 14 x 24
convolution 3 4 x 4 32 14 x 14 x 24 11 x 11 x 32
convolution 4 4 x 4 48 11 x 11 x 32 8 x 8 x 48
convolution 5 4 x 4 32 8 x 8 x 48 5 x 5 x 32
convolution 6 3 x 3 16 5 x 5 x 32 3 x 3 x 16
convolution 7 3 x 3 2 3 x 3 x 16 1 x 1 x 2

TABLE 2: Part-based CNN

layer kernel # filters input output
convolution 1 3 x 3 16 16 x 16 x 3 14 x 14 x 16
convolution 2 4 x 4 24 14 x 14 x 16 6 x 6 x 24
convolution 3 4 x 4 32 6 x 6 x 24 3 x 3 x 32
convolution 4 3 x 3 4 3 x 3 x 32 1 x 1 x 4

three dropout layers for the task of facial parts detection. The
network was trained with images of size 16× 16. The output
of the network is comprised of four detection scores, each one
corresponding to the four classes of the facial parts (e.g, mouth
,nose, eyes, irrelevant). The architecture of this CNN is also
summarized in Figure 2 and Table 1. The first three layers of
the facial parts CNN were connected in a parallel manner to
the first three layers of the second CNN as shown in Figure 3.
The output of the layers of the facial parts CNN, 11×11×24 is
concatenated with the output of the layers of the face detection
CNN, 11× 11× 32. The concatenation produces a volume of
11 × 11 × 56 which is entered as input to the layers conv4-
conv7 as shown in Figure 3. The combined model is trained
with RGB images of size 32×32. The 16×16 images of facial
parts occupy the 1/4 of the 32× 32 training face images. We
believe that the information provided by the detection of local
face parts is crucial for detecting face regions and should be
part of the initial stages of the detection process.

Our work follows the pipeline presented in [1], in a sense
that our method does not require any extra module (e.g SVM)
for classification as the CNN’s output is describing enough for
the task of face detection. As the model is fully-convolutional
it accepts images of arbitrary size and produces a heat map of
the face classifier. We trained the model presented in Figure 3
with images of size 32×32. In addition, no pooling layer was
used since there was no need or room to further decrease the
size of data volume flowing through the network. As stated in
[21], the use of the Parametric Rectified Linear Unit (PReLU)
function had a positive impact regarding the detection accuracy
of the CNN.

2.2. The dataset

The CNN was trained with positive examples extracted
from the AFLW [17] and the MTFL [22] datasets. The first
consists of 21K images with 24K face annotations while the
second consists of 12K face annotations. Both datasets include
real world images with expression, pose, gender, age and
ethnicity variations. For AFLW we used the provided face
rectangle annotations. For MTFL we used the given facial
landmark annotations to produce face rectangles in a similar
manner with AFLW examples regarding the positioning of
faces.
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Figure 2: Up: The CNN trained for the task of full face detection. Down: The CNN trained for the task of facial parts detection

Figure 3: The combined model used for face detection during training and deployment.

The final training images of faces were resized to 32×32.
This is a relatively small image size compared to image sizes
typically used by AlexNet and other deep networks (e.g. in
[1] AlexNet is trained with images 225 × 225). However,
it has been proved that images of this size contain enough
information to train the CNN. The relatively small image
size allowed to reduce the image down to 1 × 1 (a face /no
face result) without the use of pooling layers. We used only
convolution and PReLU layers, each convolution producing a
feature smaller than its input layer.

In order to increase the number of positive and negative
examples we used horizontal mirroring (flip) of the images
with a probability 0.5. This has been proved very effective as
it increased the number of training examples and it also led
to a practically unlimited number of combinations of images
to be entered in each training batch, thus allowing better
generalization of the CNN. We also tried augmenting the face
dataset by horizontal and vertical displacement of face images

by 1 to 3 pixels along the horizontal and vertical axes. This
technique proved to be inefficient in experiments, it did not
give better results while training and testing and was finally
abandoned.

2.3. Proposed Training Methodology

The CNN was trained successively in a set of five different
data sets. Let NT be a collection of images that will serve as
a pool of negative examples. Let D0 be the original training
set consisting of the original set of positive examples P0 and
the set of negative examples N0 ∈ P:

D0 = T0 ∪N0 (1)

Once the training process is complete, we run the network
to the set of images NT and we recollect a new set of false
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positives F1 which is added to the original set of negative
examples N0:

N1 = N0 ∪ F1 (2)

The set F1 is selected according to the network’s score. During
each training round, we sort the false positives according to
their score and we select a predefined number of examples.
In order to maintain the same ratio of positive to negative
examples after each training round we increase the number
of positive examples proportionally. A new set of images
containing faces T1 is added to the original set of positive
examples P0

T1 = T0 ∪ P1 (3)

The aforementioned process of training and increase of
training examples is repeated after completion of training in
the set Di:

Ni+1 = Ni ∪ Fi+1 (4)

Di+1 = P ∪Ni+1 (5)

Pi+1 = Pi ∪ Ti+1 (6)

Hence, the sets Ni+1, Pi+1 contain a larger number of nega-
tive examples than the sets Ni, Pi.

The increasing difficulty of the described process as well
as the adaptation of the training set in the neural network’s
errors improved the network’s performance in unknown data.
The process of gradual training in i stages, as described
previously, resolves a significantly important issue which was
validated in practice. In the event of a training set being
unequally distributed between the two classes a training batch
may contain little to no actual examples of a class. As a result,
the network may be deprived of the presence of examples of
said class and the ability to identify between the two may be
negatively impacted.

In all our experiments we trained the CNNs using Stohastic
Gradient Descent (SGD). We start with a learning rate of 0.001
for the first 200.000 iterations and then we lower to 0.0001.
The parallel layers of the combined model shown in Figure 3
were initially locked as they had a fixed learning rate of zero
value. After training the layers conv4 to conv7 we unlocked
the locked layers to finalize the model. The weights of the
network were initialized according to the Xavier method [23].
Figure 4 shows the results of the described procedure for the
FDDB dataset.

3. Experiments

3.1. System analysis

We implemented the proposed face detector using the
Caffe library [18]. The output of the network shows the scores
of the CNN for every 32 × 32 window with a stride of 2
pixels in the original image. In order to detect faces smaller
or larger than 32×32 we scale up or down the original image
respectively. We apply the non maximum suppression strategy
according to which all bounding-boxes with a possibility lower
than the score of the maximum window multiplied by a con-
stant factor are removed. The system was able to detect faces
in the FDDB dataset that were not annotated. These detections

Figure 4: The results of the proposed training methodology
on the FDDB dataset for the face detection CNN. A similar
approach was used for the part-based CNN and the combined
CNN.

were removed as they would count for false positives and lead
to a deteriorated performance.

During deployment of the CNN, we add an extra max
pooling layer to the final output of the network. It has been
verified that this layer reduces the number of false positives.
The heatmap produced by the CNN is smoothened and only
the pixel coordinates having values greater than a specified
threshold are stored. Additionaly, the heatmap pixel coor-
dinates having neighbouring coordinates with similar values
are stored resulting in reduced false positives and improved
performance.

3.2. Comparison with the state of the art

We evaluate the proposed detector on the challenging
dataset Face Detection Data Set and Benchmark (FFDB)
[20]. Some of the recently published methods compared in
this section include: DP2MFD [24], DDFD, Faceness [25],
Headhunter, JointCascade [26], SURF [29], ACF [28] and
CCF [27]. For evaluation we use the toolbox provided by [19]
which includes corrected annotations for the aforementioned
benchmarks.

FDDB datase consists of 2845 images with 5171 face
annotations collected from journalistic articles and is one of
the most commonly used benchmark for face detection. It is a
really challenging dataset mainly due to the fact that it is rich
in occluded and out-of-focus cases. FDDB faces are annotated
with elliptic regions. As stated in [19] changing the output
format of detections to ellipses increases the overlap region
between the detections and ground truth boxes. However, our
detector achieves a high recall rate without this conversion.

Figures 6(a)-6(c) show the precision recall curves for the
FDDB dataset. Our method achieves a recall rate of 88.9
%, outperforming all recent published face detection methods
except Faceness and DP2MDF. Figure 5 shows some detection
examples.
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Figure 5: Examples of face detection in the FDDB dataset. The system is able to detect out-of-focus and occluded cases.

Figure 6: Comparison of different face detectors on FDDB dataset. Against deep architectures (a) Against other state-of-the-art
approaches (b),(c)
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3.3. Complexity

The complexity of the competitive algorithms is very large
compared to the proposed network. Indeed, the proposed deep
CNN has 113.864 free parameters whereas the previously
proposed deep CNN [1] had 60 million parameters. This issue
is very important during training and also during testing and
deployment. The proposed lightweight model can be easily
deployed to smart devices (e.g. smartphones, notepads, etc)
or robotic systems (e.g. drones) that do not have expensive
and energy consuming multiple GPUs installed. Additionally,
the proposed approach proves that when we have to deal with
a specific task (i.e., face detection), even if it is very complex,
we can design and train smaller and efficient architectures that
outperform deeper and larger networks in performance and in
execution time.

4. Conclusion

In this paper, we presented a novel deep convolutional
neural network for the task of face detection. Our experiments
on publicly available benchmarks show the success of our
method. Our detector is able to recognize faces in a wide range
of orientations and expressions. Our detector does not require
any extra modules usually used in deep learning methods such
as SVM or bounding-box regression. Our work, extends the
DDFD detector by using a light-weight model that improves
run time and training speed. Our model combines outputs of
two different networks trained for face detection and local
facial parts, showing that the information provided by the latter
is crucial for the specific task. It also outperforms the DDFD
detector in the challenging FDDB dataset by a magnitude of
4%. We show that a properly trained smaller model is efficient
and outperforms a more complex and large network used for
the same task.
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