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Abstract—PCANet is a simple network using Principal 

Component Analysis (PCA) for image classification and obtained 

high accuracies on a variety of datasets. PCA projects explanatory 

variables on a subspace that the first component has the largest 

variance. On the other hand, Partial Least Squares (PLS) 

regression projects explanatory variables on a subspace that the 

first component has the largest covariance between explanatory 

and objective variables, and the objective variables are predicted 

from the subspace. If class labels are used as objective variables 

for PLS, the subspace is suitable for classification. Stacked PLS is 

a simple network using PLS for image classification and obtained 

high accuracy on the MNIST database. However, the performance 

of Stacked PLS was inferior to PCANet on the others. One of 

differences between Stacked PLS and PCANet is network 

architecture. In this paper, we combine the network architecture 

of PCANet with PLS and propose a new image classification 

method called PLSNet. It obtained higher accuracies than PCANet 

on the MNIST and the CIFAR-10 datasets. Furthermore, we 

change how to make filters for extracting features at the second 

convolution layer, and we call it Improved PLSNet. It obtained 

higher accuracies than PLSNet. In addition, we give it deeper 

network architecture, and we call it Deep Improved PLSNet. It 

obtained higher accuracies than Improved PLSNet. 

Keywords—Deep Learning; Convolutional Neural Network; 

PCANet; Partial Least Squares Regression; Stacked PLS; PLSNet;  

 

I.  INTRODUCTION 

In recent years, we are easily able to treat a lot of images 
because of spread of internet, smart phone, and digital camera, 
etc. For example, we use surrounding words around images or 
tags annotated by human to find them. However, we sometimes 
are not able to find them correctly if the words and tags are 
mismatched. Furthermore, there are images without tags. 
Therefore, automatic image classification by computer is 
required to find images without those metadata. 

In recent years, researches based on Convolutional Neural 
Network (CNN) have been widely done in computer vision after 
the success on ImageNet Large Scale Visual Recognition 
Challenge 2012 [1]. They obtained high accuracies on image 
classification [1, 2, 3, 4], fine-grained image classification [5], 
video classification [6], object detection [3, 7] and other tasks [8, 
9]. Furthermore, CNN which pre-trained large-scale dataset as 
ImageNet [10] is useful as a powerful feature descriptor [11]. 

One of reasons why CNN gives the state-of-the-art accuracy is 
hierarchical feature extraction. 

PCANet is a simple network using PCA for image 
classification [12]. First it crops a lot of local regions from 
training images and applies PCA to the regions. It considers 
weights obtained by PCA to be filters for extracting features and 
convolutes the filters on images. Almost the same processes are 
repeated, and it obtains some feature maps. Finally, it encodes 
the feature maps and classifies images by classifiers such as 
nearest neighbor [13] and Support Vector Machine (SVM) [14]. 
It obtained high accuracies on a variety of datasets such as the 
MNIST database [15] and the CIFAR-10 dataset [16]. 

PLS regression is widely used in chemo-metrics [17]. PCA 
projects explanatory variables on a subspace that the first 
component has the largest variance. On the other hand, PLS 
regression projects explanatory variables on a subspace that the 
first component has the largest covariance between explanatory 
and objective variables, and the objective variables are predicted 
from the subspace. If class labels are used as objective variables 
for PLS, the subspace is suitable for classification. Consequently, 
the subspace is more suitable for classification than PCA [18]. 
In recent years, PLS regression was also used in computer vision 
and obtained high accuracy on pedestrian detection [18]. 

Stacked PLS is a simple network using PLS for image 
classification [19]. First it crops a lot of local regions from 
training images and applies PLS to the regions. We consider 
weights obtained by PLS to be filters for extracting features and 
convolute the filters on images. Next, it carries out pooling and 
normalization in reference to CNN. Almost the same processes 
are repeated, and it obtains some feature maps. Finally, it 
concatenates the feature maps and classifies images by SVM. It 
obtained high accuracy on the MNIST database. However, the 
performance of Stacked PLS was inferior to PCANet on the 
others. One of differences between Stacked PLS and PCANet is 
network architecture. 

In this paper, we combine the network architecture of 
PCANet with PLS and propose a new image classification 
method called PLSNet. First it applies PLS to a lot of local 
regions cropped from training images and convolutes weights 
obtained by PLS on images in reference to Stacked PLS. It 
repeats almost the same processes to obtain some feature maps 
and encodes the feature maps in reference to PCANet. Finally, 
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it classifies images by SVM. Furthermore, we change how to 
make filters for extracting features at the second convolution 
layer, and we call it Improved PLSNet. In addition, we give it 
deeper network architecture, and we call it Deep Improved 
PLSNet. 

We evaluated respective PLSNets on the MNIST database 
and the CIFAR-10 dataset. PLSNet, Improved PLSNet and 
Deep Improved PLSNet obtained 99.41%, 99.46% and 99.48% 
acuuracy on the MNIST database. Those accuracies is slightly 
higher than PCANet. On the other hand, PLSNet and Improved 
PLSNet obtained 79.15% and 80.73% accuracy on the CIFAR-
10 dataset. Although Deep Improved PLSNet has lower 
dimension than PCANet, the accuracy is higher than PCANet on 
the CIFAR-10 dataset. 

This paper is organized as follows. In section 2, we explain 
the algorithm of PLS regression briefly. In section 3, we describe 
the details of our new image classification method called 
PLSNet. In section 4, we show experimental results on the 
MNIST and the CIFAR-10 datasets. Finally, we state conclusion 
and future works in section 5. 

 

II. PARTIAL LEAST SQUARES REGRESSION 

PLS regression projects explanatory variables on a subspace 
that the first component has the largest covariance between 
explanatory and objective variables, and the objective variables 
are predicted from the subspace. In this paper, a matrix for 

explanatory variables is denoted as 𝑿 ∈ 𝑅𝑛×𝑑 where n denotes 
the number of samples and d denotes the number of dimensions 
per sample. A vector for objective variables is denoted as 𝒚 ∈
𝑹𝑛×1 where n denotes the number of samples. The most famous 
algorithm of PLS called Nonlinear Iterative Partial Least 
Squares (NIPALS) is as follows. 

 𝐶𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑿 𝑎𝑛𝑑 𝒚 

 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 

    𝒘𝑖 =
𝑿𝑇𝒚

‖𝑿𝑇𝒚‖
2

 

    𝒕𝑖 = 𝑿𝒘𝑖  

    𝒑𝑖 =
𝑿𝑇𝒕𝑖

𝒕𝑖
𝑇𝒕𝑖

 

    𝑐𝑖 =
𝒚𝑇𝒕𝑖

𝒕𝑖
𝑇𝒕𝑖

 

    𝑿 = 𝑿 − 𝒕𝑖𝒑𝑖
𝑇 

    𝒚 = 𝒚 − 𝒕𝑖𝑐𝑖  

 end for 

 𝑾 = [𝒘1, 𝒘2, ⋯ , 𝒘𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡] 

 𝑷 = [𝒑1, 𝒑2, ⋯ , 𝒑𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡] 

 𝑾∗ = 𝑾(𝑷𝑇𝑾)−1 

 

Fig. 1. The network architecture at the first convolution layer of respective 
PLSNets 

 

Fig. 2. The network architecture at the second convolution layer of 
Improved PLSNet 

 

Fig. 3. The network architecture at the output layer of respective PLSNets 

The number of components used for PLS is determined by 
using accuracy of validation samples. 𝑾∗  is a matrix which 
projects 𝑿 on a subspace that the first component has the largest 
covariance between 𝑿 and 𝒚. 

 

III. PROPOSED METHOD 

We explain the overview of our new image classification 

method called PLSNet. First it crops a lot of local regions from 

training images. We define them and their class labels as 𝑿 and 

𝒚 respectively and apply PLS to them. Next, it convolutes 𝑾∗ 

obtained by PLS as filters for extracting features on images. The 

subspace projected by 𝑾∗ is suitable for image classification 

because the first component has the largest covariance between 

the local regions and their class labels. Therefore, it obtains 

some feature maps for image classification by convoluting 𝑾∗ 

on images. It uses zero padding when it carry out the 

convolution. Almost the same processes are repeated, it extracts 

features hierarchically. Finally, it encodes them in reference to 

PCANet and classifies images by SVM. We describe the details 

of PLSNet as follows. 

A. The First Convolution Layer 

PLSNet crops a lot of local regions from training images and 
applies PLS to the regions. It convolutes 𝑾∗ obtained by PLS as 
filters for extracting features on images. If the number of 
components used for PLS is 𝐿1, it obtains 𝐿1 feature maps per 
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image. The network architecture at the first convolution layer of 

respective PLSNets is shown in Fig. 1. In Fig. 1, 𝑊1,𝐿1
∗1  means 

the 𝐿1 -th filter for extracting features at the first convolution 
layer learned from the local regions which are cropped from 
training images. 

B. The Second Convolution Layer 

PLSNet crops a lot of local regions from 𝐿1 feature maps of 
training images and applies PLS to the regions. It convolutes 𝑾∗ 
obtained by PLS as filters for extracting features on images. If 
the number of components used for PLS is  𝐿2, it obtains 𝐿1𝐿2 
feature maps per image. 

We change how to make filters at the second convolution 

layer of PCANet. PCANet applies PCA to 𝑿 ∈ 𝑅𝑛𝐿1×𝑑 where n 
denotes the number of local regions per feature map obtained at 
the first convolution layer and d denotes the number of 
dimensions per local region. This means that PCANet does not 
distinguish 𝐿1  feature maps and it applies PCA to all local 
regions which are cropped from 𝐿1  feature maps. However, 
every filter is orthogonal each other. Therefore, we consider that 
it should distinguish 𝐿1 feature maps and make filters for each 
feature map. In this paper, PLSNet which uses how to make 
filters of PCANet is called as PLSNet, and PLSNet which uses 
how to make filters for each feature map is called as Improved 
PLSNet. The network architecture at the second convolution 

layer of improved PLSNet is shown in Fig. 2. In Fig. 2, 𝑊𝐿1,𝐿2
∗2  

means the 𝐿2 -th filter for extracting features at the second 
convolution layer learned from the local regions which are 
cropped from the 𝐿1-th feature maps of training images at the 
first convolution layer. 

C. The N-th convolution Layer 

PLSNet crops a lot of local regions from ∏ 𝐿𝑖
𝑁−1
𝑖=1  feature 

maps of training images and applies PLS to the regions. It 
convolutes 𝑾∗ obtained by PLS as filters for extracting features 
on images. If the number of components used for PLS is 𝐿𝑁, it 

obtains ∏ 𝐿𝑖
𝑁
𝑖=1  feature maps per image. In this paper, PLSNet 

which has more than three convolution layers is called as Deep 
PLSNet. 

D. Output Layer 

PLSNet binarizes the feature maps obtained at the N-th 
convolution layer by positive or negative values. Next, it 

converts ∏ 𝐿𝑖
𝑁
𝑖=1  feature maps to ∏ 𝐿𝑖

𝑁−1
𝑖=1  feature maps by 

equation (1). 

 
𝐹𝑂 = ∑ 2𝑖−1𝐻(𝐹𝑁−1,𝑖

𝑁 )
𝐿𝑁

𝑖=1
, (1) 

In equation (1), 𝐹𝐿𝑁−1,𝑖
𝑁  denotes the i-th feature map at the N-

th convolution layer obtained from the feature map at the N-1-th 
convolution layer, H(∙)  denotes binarization function and 𝐹𝑂 
denotes converted feature map at the output layer. We convert 
the feature maps to real number by equation (1). Then, we 
consider the real number to be a bin of histogram. We consider 
a case 𝐿1 = 𝐿2 = 2. In this case, the minimum value of the real 
number in the feature map is 20 × 0 + 21 × 0 = 0 , and the 
maximum value of the real number in the feature map is 20 ×
1 + 21 × 1 = 3. We consider all possible value to be a bin of 
histogram, and the number of bin is 22 = 4. Since the number 

of feature map at the first convolution layer is 𝐿1 = 2 , the 
dimension of the feature is 2 × 4 = 8. When we expand PLSNet 
into N convolution layers, the number of bin 𝐵𝑑  of histogram is 
equation (2). 

 
𝐵𝑑 = ∏ 𝐿𝑖

𝑁−1

𝑖=1
∙ 2𝐿𝑁 (2) 

PLSNet divides the feature maps obtained by equation (1) 
into some blocks with overlap and makes histograms for every 
block. It obtains position invariance within every block by 
carrying out the process. Finally, we consider the concatenation 
of the histograms to be a feature vector and classify them by 
linear SVM. The network architecture at the output layer of 
respective PLSNets is shown in Fig. 3. 

 

IV. EXPERIMENTS 

We show experimental results on the MNIST database and 
the CIFAR-10 dataset. This section is organized as follows. In 
section A, we explain the datasets for experiments and 
implementation details. In section B, we show the accuracies on 
the MNIST database. In section C, we visualize the filters 
obtained by respective PLSNets on the MNIST database. In 
section D, we show the accuracies on the CIFAR-10 dataset. In 
section E, we visualize the filters obtained by respective 
PLSNets on the CIFAR-10 dataset. 

A. Datasets 

The MNIST is a dataset for handwritten digits recognition. 
It consists of 10 classes from 0 to 9. Each image is gray-scale 
with 28 × 28 pixels, and the dataset contains 60,000 training 
images and 10,000 test images. In experiments, we use the last 
10,000 training images as validation samples and the remaining 
training images as training samples. We choose the optimal cost 
of SVM by the accuracy of validation samples. 

The CIFAR-10 is a dataset for general object recognition. It 
consists of 10 classes such as airplane, automobile, bird, cat, 
deer, dog, frog, horse, ship, and truck. Each image is natural 
RGB with 32 × 32 pixels, and the dataset contains 50,000 
training images and 10,000 test images. In experiments, we use 
the last 10,000 training images as validation samples and the 
remaining training images as training samples. We choose the 
optimal cost of SVM by the accuracy of validation samples. 

B. Evaluation on the MNIST database 

We evaluate PLSNet on the MNIST database. In this 
experiment, the sizes of filters at the first and second convolution 
layers are set to 7 × 7, the number of components used for PLS 
at the both convolution layers are set to 8, the size of block at the 
output layer is set to 7 × 7 and the stride of block at the output 
layer is set to 3 × 3 in reference to PCANet. Furthermore, we 
evaluate Improved PLSNet and Deep Improved PLSNet. In 
experiment, we use the same hyper-parameters with the PLSNet. 
The difference between PLSNet and Improved PLSNet is how 
to make filters at the second and third convolution layers. If the 
number of components used for PLS at the third convolution 
layer is set to 5, the number of bin of Deep PLSNet is the same 
with the number of bin of PLSNet whose number of components 
used for PLS at the second convolution layer is set to 8 by 
equation (2). Therefore, the number of components used for PLS 
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TABLE I.  EVALUATION ON THE MNIST DATABASE 

 

 

Fig. 4. Filters at the first convolution layer by respective PLSNets on the MNIST 
database 

 

 

Fig. 5. Filters at the second convolution layer by PLSNet on the MNIST database 

 

 

Fig. 6. Filters at the second convolution layer by Improved PLSNet on the 
MNIST database 

 

at the third convolution layer is set to 5 in Deep Improved 
PLSNet. 

The results are shown in Table I. Table I shows that PLSNet 
obtained 99.41% accuracy. Improved PLSNet and Deep 
Improved PLSNet obtained 99.46% and 99.48% respectively, 
and these accuracies are higher than Stacked PLS. Since the 
accuracy of PCANet is high, the improvement of our method is 
not so large. However, we see that our proposed method 
obtained better accuracy than PCANet. 

 

 

TABLE II.  EVALUATION ON THE CIFAR-10 DATABASE 

 

C. Visualization of filters for the MNIST database 

We visualize filters obtained by respective PLSNets on the 
MNIST database. Fig. 4 shows the filters at the first convolution 
layer in respective PLSNets. From left to right shows the filters 
for the first component to the eighth components. Fig. 4 
demonstrates that respective PLSNets extracts a variety of edges. 

Fig. 5 and 6 show the filters at the second convolution layer 
obtained by PLSNet and Improved PLSNet respectively. From 
left to right show the filters for the first component to the eighth 
component in these figures. In Fig. 6, from up to down shows 
the filters made for the first feature map to the eighth feature map 
at the first convolution layer. Fig. 5 shows that PLSNet obtains 
only a kind of filters. On the other hand, Fig. 6 shows that 
Improved PLSNet obtains eight types of filters. We consider that 
this is the reason why Improved PLSNet obtained higher 
accuracy than PLSNet. 

D. Evaluation on the CIFAR-10 dataset 

First we evaluate PLSNet on the CIFAR-10 dataset. In this 
experiment, we train two PLSNets with different hyper-
parameters in reference to PCANet and evaluate three PLSNets 
which are the two PLSNets and combination of the two PLSNets. 
The sizes of filters at the first and second convolution layer are 
set to 3 × 3 for one PLSNet and 5 × 5 for the other PLSNet, the 
number of components used for PLS at the convolution layer are 
set to 12 - 8 for one PLSNet and 28 – 8 for the other PLSNet 
where the former numbers (12, 28) denote the number of 
components at the first convolution layer and the later numbers 
(8, 8) denote the number of components at the second 
convolution layer, the sizes of block at the both output layers are 
set to 8 × 8, and the strides of block at the both output layers are 
set to 4 × 4 in reference to PCANet. For the convenience of time, 
we do not use Spatial Pyramid Pooling [3] which is used in 
PCANet. Furthermore, we evaluate Improved PLSNet and Deep 
Improved PLSNet. In these experiments, we use the same hyper-
parameters with the PLSNet. For the same reason as the 
experiments on the MNIST database, the number of components 
used for PLS at the third convolution layer is set to 5 in Deep 
Improved PLSNet. 

The results are shown in Table II. The numbers in each 
method denote the size of filters at the both convolution layers 
and the number of filters at the first and second convolution 

Method Accuracy [%] 

PCANet 99.38 

Stacked PLS 99.42 

PLSNet 99.41 

Improved PLSNet 99.46 

Deep Improved PLSNet 99.48 

Method (the size of filters, the component of PLS) Accuracy [%] 

PCANet (5 × 5, 40 - 8) 77.14 

PCANet (combined) 78.67 

PLSNet (3 × 3, 12 - 8) 76.78 

PLSNet (5 × 5, 28 - 8) 76.62 

PLSNet (combined) 79.15 

Improved PLSNet (3 × 3, 12 - 8) 78.3 

Improved PLSNet (5 × 5, 28 - 8) 79.07 

Improved PLSNet (combined) 80.73 

Deep Improved PLSNet (3 × 3, 12 - 8 - 5) 79.58 
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Fig. 7. Filters at the first convolution layer by respective PLSNets (5 × 5, 28 - 8) 
on the CIFAR10 dataset 

 

 

Fig. 8. Filters at the second convolution layer by PLSNet (5 × 5, 28 - 8) on the 
CIFAR-10 dataset 

 

Fig. 9. Filters at the second convolution layer by Improved PLSNet (5 × 5, 28 - 
8) on the CIFAR-10 dataset 

 

layers respectively. Table II shows that PLSNet (combined) 
obtained 79.15% accuracy. It is 0.48% higher than PCANet 
(combined). Furthermore, Improved PLSNet (combined) 
obtained 80.73% accuracy which is 2.06% higher than PCANet 
(combined). Deep Improved PLSNet (3 × 3, 12 - 8 - 5) obtained 

79.58% accuracy which is 1.28% higher than Improved PLSNet 
(3 × 3, 12 - 8). For the convenience of time, we do not evaluate 
Deep Improved PLSNet with the other parameters such as Deep 
Improved PLSNet (5 × 5, 28 - 8 - 5) and (combined). However, 
we will obtain higher accuracy if we select adequate hyper-
parameters. 

 

E. Visualization of filters for the CIFAR-10 dataset 

We visualize filters obtained by respective PLSNets on the 
CIFAR-10 dataset. Fig. 7 shows the filters at the first 
convolution layer in respective PLSNets (5 × 5, 28 - 8). From 
left to right show the filters from the first component to the 
twenty-eighth components. Fig. 7 demonstrates that respective 
PLSNets extracts a variety of features including simple and 
complex patterns. 

Fig. 8 and 9 show the filters at the second convolution layer 
obtained by PLSNet and Improved PLSNet respectively. From 
left to right show the filters for the first component to the eighth 
component in these figures. In Fig.9, the filters at top row are 
made for the first feature map at the first convolution layer. 
Filters at bottom row are made for the fourteen feature map at 
the first convolution layer. Fig. 8 shows that PLSNet obtains 
only a kind of filters. On the other hand, Fig. 9 shows that 
Improved PLSNet obtains fourteen types of filters. We consider 
that this is the reason why Improved PLSNet obtained higher 
accuracy than PLSNet. 

 

V. CONCLUSION 

In this paper, we proposed a new image classification 
method called PLSNet, Improved PLSNet and Deep Improved 
PLSNet. PLSNet obtained higher accuracy than PCANet and 
Stacked PLS on the MNIST database and the CIFAR-10 dataset. 

In experiments, hyper-parameters used for PLSNet are the 
same as PCANet for fair comparison. Therefore, we will obtain 
higher accuracy if we select hyper-parameters properly. This is 
a subject for future works. 
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