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Abstract—Road detection from images is a challenging task in
computer vision. Previous methods are not robust, because their
features and classifiers cannot adapt to different circumstances.
To overcome this problem, we propose to apply unsupervised
feature learning for road detection. Specifically, we develop an
improved encoding function and add a feature selection process
to obtain robust and discriminative road features. Besides, a road
segmentation algorithm is proposed to extract road regions from
the learned feature maps, in which a tree structure is estab-
lished to represent the hierarchical relations of various regions
segmented by multiple thresholds, and a two-loop optimization
is then employed to select the most stable regions as road areas.
Experimental results on several challenging datasets justify the
effectiveness of our method.

I. INTRODUCTION

Vision-based road detection is a critical yet challenging task
for ADAS (Advanced Driver Assistance Systems). Since visual
data can provide rich information about driving scenarios,
vision-based systems have great potential in comprehensive
road scene understanding. However, current vision-based sys-
tems are far from being developed, many problems such
as instability and inefficiency in feature representation of
roads all cause obstacles for their practical application in real
driving. In this paper, we will focus on road area detection
from a single image captured by a front monocular camera.

As aforementioned, lack of robustness is the major short-
coming of existing road detection algorithms. One reason for
this is lack of adaptable road representations. In previous
works, multiple cues including colors [1], [2], vanishing
point [3], [4], shape [5], and their combinations [6] have
been explored, while most of these hand-designed features
are sensitive to the variety in circumstances like shadows,
underexposure, and occlusions, etc. Besides, there are road
features learned from deep convolutional networks [7], [8]
which fit to training data but might not adapt to unseen
scenarios. So, it is expected to automatically learn universal
representations for road detection.

Recently, much attention has been paid to unsupervised
feature learning, and K-means clustering algorithm has been
justified as a fast and effective method in learning new
representations [9]–[11]. Particularly, in [11], K-means learned
features directly from image patches and demonstrated su-
perior performance in object recognition tasks over other
unsupervised feature learning methods. So, it is natural to
apply K-means in our task to learn discriminative and robust
road features.
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Fig. 1: Algorithmic framework of our method.

In our previous work [12], we exploited K-means for road
feature learning, in which the framework of [11] was directly
plugged into our method. In contrast, in this paper, we have
a deeper look at this framework, and improve the discrim-
inability of the learned road features by modifying the feature
encoder and adding a feature selection process. In addition, we
propose a hierarchical threshold segmentation algorithm for
road area extraction. In particular, we first use a tree structure
to represent the hierarchical relations of segmented regions by
multiple thresholds, and then find the most ”stable” tree nodes
as the road area through a two-loop optimization process. Our
method is based on a simple assumption that, the closer to
the horizontal middle and the bottom of the image, the higher
probability a pixel will have of belonging to roads.

II. ROAD DETECTION ALGORITHM

Our road detection algorithm consists of three stages which
are illustrated in Fig. 1. First, the input road image is pre-
processed via blurring and brightness equalization. Then, in
the unsupervised feature learning stage, a feature dictionary
is learned from processed patches extracted from the image,
and encoded features are selected for the next stage. Finally,
in the segmentation stage, a threshold tree is constructed over
the feature maps. and the most stable tree nodes are selected
as road regions via a two-loop optimization process.

A. Image Preprocessing

First of all, blurring and brightness equalization are em-
ployed to preprocess the road image for learning better fea-
tures. On the one hand, there always exists texture diversity in
road surfaces caused by their varying distances to the camera,
which makes it difficult to obtain representative features for
the entire road area. To deal with this problem, image blurring
is adopted to remove such road texture variations. On the other
hand, there often exists brightness variation in road surfaces
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texture brightness
(a) Without preprocessing.

texture brightness
(b) After preprocessing.

Fig. 2: A comparison on brightness and texture among differ-
ent road areas (a) without and (b) after preprocessing.

due to reflection of sunlight from different angles, which is
also unfavorable to learning representative road features. To
fix this problem, brightness equalization is also applied to
balance the luminance of the road surface. Fig. 2 compares
road patches in different areas without and after preprocessing.

For blurring, we convolve the image with a low-pass Gaus-
sian filter

G(i, j, σ) =
1

2πσ2
e−

i2+j2

2σ2 (1)

where σ is the standard deviation of Gaussian distribution, and
i and j are horizontal and vertical distances (in pixels) from
a pixel to the filter center respectively.

For brightness equalization, we use Eq. (2) to reduce
brightness variations

Ieq(x, y, c) =
I(x, y, c)∑

i

∑
j

Igray(x+ i, y + j)G(i, j, σ)
(2)

where I is an input color image; Igray is the grayscale image
converted from I; Ieq is the equalized image; and x, y and c
are index values of pixels in a color image with 3 channels.
Actually, the denominator of Eq. (2) is I’s brightness map
which is estimated by blurring Igray using a Gaussian filter
whose σ is set to 0.5 empirically.

B. Unsupervised Feature Learning and Feature Selection

Remember that color-based road features extracted directly
from an image are not robust enough to various road situations.
So, it is desirable to convert the road image into robust and
discriminative representations to distinguish roads from non-
road areas. Inspired by the works in [11], we employ K-means
for unsupervised feature learning from pixels in a single road
image. However, we found that the algorithmic pipeline in
[11] has limitations in our road detection task which will
be detailed below. In addition, to tackle with the limits of
the pipeline in [11] for our road detection task, we further
propose two major improvements over the original framework,
i.e., introducing a new encoding method, and adding a feature
selection operation.

In the beginning, our method extracts n image patches with
size w × w × ch from every possible locations of the input
image Ieq , where w defines patch size and ch is the number
of color channels. For a 160× 120 image, if w = 6, then n =
(160−6+1)×(120−6+1) = 17825. Each patch is represented
by a d-dimensional vector x(i) ∈ Rd, i = 1, 2, ..., n where

dictionary (K=200)

(a)

Eq. (3) [Coates] our Eq. (4)

0 1

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

dictionary (scored and ranked)

15
29
43

...

(c)

Fig. 3: Feature training, encoding and feature selection on
Fig. 2b. (a) Learned dictionary with K = 200 bases. (b) A
comparison of encoded maps using Eq. (3) and our proposed
Eq. (4). All maps are normalized to [0, 1]. (c) Sorted dictionary
bases according to feature map scores using Eq. (5).

d = w×w× ch. Then, all image patches are normalized and
whitened to remove correlations in the data [11]. Next, in the
feature learning process, K-means algorithm is applied over
the patch data to learn a dictionary Dd×K which is composed
of K bases (i.e., clustering centroids) D(j) ∈ Rd.

Afterwards, in the encoding stage, distance from the i-th
patch to the j-th base is calculated as zij = ‖x(i) −D(j)‖2.
In [11], the following non-linear mapping function is used

f(zij) = max
(
0, mean(zi·)− zij

)
(3)

where zi· = [zi1, zi2, ..., ziK ] ∈ RK stores the distances from
one patch x(i) to all bases in the dictionary. However, when
applied to our road detection task, the resulting maps of Eq. (3)
lack spatial discrimination between road and non-road areas
as is shown in the left column of Fig. 3b. This is because Eq.
(3) sets nearly half responses to zero in each zi·, while it does
not consider the difference between road and non-road pixels
in the same response map z·j . To overcome this drawback, we
propose to use the following encoding function

f(zij) = max
(
0, mean(z·j)− zij

)
(4)

where z·j = [z1j , z2j , ..., znj ] ∈ Rn is the distance from all
patches to one base in the dictionary.1 As is demonstrated in
the right column of Fig. 3b, Eq. (4) assigns zero to about
half areas of each feature map, which provides better spatial
contrast between road and non-road areas than Eq. (3).

After feature mapping with Eq. (4), each feature map z·j is
linearly normalized to range [0, 1]. As can be observed from
Fig. 3b, each base gives its highest responses to different areas,
e.g., the four selected bases tend to represent road, bushes, sky,
or edge. Based on this observation, it is preferred to select the
feature maps which give high responses to the road areas and

1z·j also refers to a 2-D feature map in the following.
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discard those bases that mainly respond to non-road regions.
We use the following function to score each feature map

score(z·j) =

n∑
i=1

(
row(zij)−Rows/2

)
Rows/2

· zij (5)

where row(·) is the row position of zij in feature map z·j
(from top to bottom), and Rows is the total rows of the map.
The coefficient

(
row(zij) − Rows/2

)
/(Rows/2) assigns a

weight to each mapped pixel under a linear range (−1, 1],
which is based on the assumption that road areas are more
likely to appear in the lower part of the image. As a result,
feature maps which have larger bottom areas with higher
responses will receive higher scores. Then, the top m feature
maps with the highest scores are selected (e.g., the upper-
right map in Fig. 3b). Each selected feature map is denoted
as ẑ·j ∈ Rn, j = 1, 2, ...,m, and the selected feature vector at
each pixel is ẑi· ∈ Rm, i = 1, 2, ..., n.

C. Hierarchical Threshold Segmentation

After feature learning, we aim to extract road areas using
the selected feature maps. Although the features have been
scored and filtered, there are always non-road responses in
the selected maps. In addition to these non-road distractors, in
some cases, the road surface is separated by lanes (e.g., the 11-
th image in Fig. 5) which makes it difficult to determine road
regions. So, in order to detect road areas automatically, we
propose a multi-threshold segmentation algorithm, in which
thresholds are determined based on the assumption on road
positions and road feature reconstruction errors.

In [13], an unsupervised framework for optimal cluster
extraction is designed for clustering algorithms. A tree-like
hierarchical structure is first generated by adjusting some
parameter, where each node represents an unsplit cluster in
the feature space. Then, on the path from any leaf to the root
of the tree, the node with the optimal ”stability” is selected as
a final cluster. In this paper, we extend the framework of [13]
to segmentation tasks with two major variations. In particular,
a tree structure is constructed in image’s spatial space instead
of pixels’ feature space, and a discrete threshold parameter
rather than a continuous variable is used to control nodes’
generation and split. Moreover, we enhance the assessment of
each node’s stability by incorporating its pixels’ position and
their reconstruction errors, and find the road segmentation with
a two-loop optimization process.

First of all, the average map of the selected features, i.e.,
z̄ = [z̄1, z̄2, ..., z̄n], is segmented by L thresholds to construct
a tree, where z̄i = mean(ẑi·) and z̄i ∈ [0, 1]. In detail,
first, L evenly spaced thresholds, i.e., 0/L, 1/L, ..., (L−1)/L,
are used to segment the map z̄. At each level, all connected
components (4-connected) with no less than minPts pixels
are found by breadth-first search. Let Rlr denotes the r-
th connected region at l-th level (l = 1, 2, ..., L). Then, a
tree is constructed by parsing from higher to lower levels.
Briefly, for a higher region R(l−1)r at level l − 1, we find
the lower regions {Rls} in level l which are covered by
R(l−1)r. If at least two lower regions exist (i.e., |{Rls}| ≥ 2),

we set up new nodes for each regions. Otherwise, we put
the only region into the same node as the higher one (i.e.,
|{Rls}| = 1), or stop parsing this region (i.e., |{Rls}| = 0).
After tree construction, each tree node Vi contains regions
from one or more levels and has one region in each level,
i.e., Vi = {R(l)r0 , R(l+1)r1 , R(l+2)r2 , ...}. An example of tree-
construction from a feature map is illustrated in Fig. 4a.

After setting up the tree, we define the stability value to
evaluate each node. For each pixel z̄i in the average feature
map, its stability is defined as

S(z̄i, ẑi·) =
row(z̄i)−Rows/2

Rows/2

+
−
∣∣col(z̄i)− Cols/2∣∣+Rows/2

Rows/2

+ (−1) · λ · normalize
(
ei
)

(6)

where ẑi· is the feature vector corresponding to z̄i and is
involved in ei’s computation; row(·) and col(·) give the row
and column position of z̄i in the map; Rows and Cols are
the sizes of the map; and normalize(·) adjusts all ei, i =
1, 2, ..., n into range [0, 1] linearly. The first two items of Eq.
(6) are locational weights on each pixel in accordance with
our assumption that roads should locate in the bottom and
horizontal middle of the image. The third item of Eq. (6) is
an error between ẑi· and its reconstructed version based on
the road feature distribution which will be discussed below,
and λ is a regularizer that trades off between pixel’s location
and reconstruction error. According to Eq. (6), the stability of
z̄i should be positive if z̄i belongs to road (thus be vertically
lower and horizontally centered in the image, and with small
reconstruction error); otherwise, it should be negative. With
Eq. (6), the stability for a region is defined as

S(Rlr) =
∑

S(z̄i, ẑi·), ∀z̄i ∈ Rlr (7)

and further, the stability for a node is defined as

S(Vi) =
∑

S(Rlr), ∀Rlr ∈ Vi (8)

With the definition of node’s stability, the optimal nodes
are selected as road segmentations according to the following
object function

max
δi

∑
i

δiS(Vi)

s.t. δi ∈ {0, 1}∑
j∈Ih

δj ≤ 1, ∀h ∈ Leaf

(9)

where δi defines whether Vi is selected (δi = 1) or not
(δi = 0), Leaf stores all leaf nodes’ indexes of the tree,
and Ih = {j|Vj is ascendant of Vh except V1} includes all
nodes on the path from a leaf Vh to the root V1 but except
V1. The second constraint in Eq. (9) means that one or zero
node is selected on each path from a leaf to the root, since
no nodes are needed when all of them have stabilities below
zero. This is different from [13] which requires exact one node
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Fig. 4: Hierarchical threshold segmentation.

being selected on each path. Finally, the optimal nodes can be
found by a bottom-up tree-parsing algorithm as follows.

1: function OPTIMIZE(·)
2: for ∀h ∈ Leaf do . initialize all leaf nodes
3: if S(Vh) > 0 then
4: δh := 1
5: Ŝ(Vh) := S(Vh)
6: else
7: δh := 0
8: Ŝ(Vh) := 0

9: for ∀i ∈
(
{Vi} − Leaf − V1

)
do . bottom-up

10: if S(Vi) > 0 AND S(Vi) ≥
∑
Ŝ(Vi.child) then

11: δi := 1
12: Ŝ(Vi) := S(Vi)
13: δj := 0,∀j ∈ {j|Vj is descendant of Vi}
14: . set all lower nodes unselected
15: else
16: δi := 0
17: Ŝ(Vi) :=

∑
child Ŝ(Vi.child)

18: return δi, Ŝ(Vi)

where Ŝ(Vi) ≥ 0 stores intermediate values, and δi = 1 points
to the selected nodes.

In Eq. (6), the reconstruction error at z̄i is defined as

ei = ‖ẑi· −PPT ẑi·‖2 (10)

where P is a compression matrix computed via PCA (Principal
Component Analysis). Specifically, features from a predefined
road area Rroad are used to compute P, and 95% of road
data covariance are preserved. Then, for a non-road pixel,
there should be a large distance (error) between its original
feature ẑi· and the reconstructed version PPT ẑi·, while the
error should be small for road pixels. This method is also
known as one-class classifier [14], [15].

However, there exists a chicken-and-egg problem, in that
we do not have an exact road region Rroad in the beginning.
So, we propose a multi-iteration optimization process to solve
this problem. In the first iteration, we set P = I (i.e., let ei =
0). While in the following iteration(s), we set Rroad as the
area covered by the output node with maximum stability from
the previous iteration. The optimization algorithm is shown as
follows.

1: procedure ITERATIVEOPTIMINZATION
2: for it = 1 to Iteration do
3: if it == 1 then
4: P := I

857



5: else . PCA
6: P := PCA({ẑi· ∈ Rroad})
7: ei = ‖ẑi· −PPT ẑi·‖2, i = 1, 2, ..., n

8: Compute S(Vi) via Eq. (6) - (8)
9: δi, Ŝ(Vi) := OPTIMIZE(·)

10: j := arg maxi Ŝ(Vi) . select Vj as road
11: l := min l, ∀Rlr ∈ Vj . highest level of Vj
12: Rroad := Rlr . only Rl1 exists at highest level

Generally, we set Iteration = 2. And the regions pointed
by δi = 1 belongs to road areas. Before exporting the
result, we use a morphological dilate operation to fill the
gaps between segmented regions caused by edge patterns (e.g.,
lanes, skyline, etc).

III. EXPERIMENTS

A. Experimental Setting

We test our proposed road detection algorithm2 on 5
datasets, i.e., (1) After-Rain [16] with 251 images, (2) Sunny-
Shadows [16] with 754 images, (3) 280 road images captured
in Nanjing by our own camera, (4) Kitti-Layout [17] with
323 labeled images from the Kitti dataset [18], and (5) Road
Detection Evaluation of Kitti Benchmark [18] with totally 290
test images which are grouped into 3 categories based on
road types, i.e., Urban Marked (UM), Urban Multiple Marked
(UMM) and Urban Unmarked (UU). Particularly, no ground
truth is available for the test set of the Kitti Benchmark, and
our results are evaluated on a server. For the first three datasets,
we resize images to 160 × 120 pixels, while for the latter
two, we resize them to 397*120 pixels in accordance with the
original aspect ratio. Some examples from these datasets are
shown in Fig. 5.

To assess the detection performance on dataset (1) to (4),
we use the following measures [19]

P =

∑
i(Ai

⋂
Mi)∑

iAi
, R =

∑
i(Ai

⋂
Mi)∑

iMi
, F =

2PR

P +R
(11)

where P , R and F are precision, recall and F-score on one
dataset respectively. Ai, Mi and Ai

⋂
Mi denotes the number

of predicted pixels, ground-truth pixels and their intersections
respectively in the i-th image. For the Kitti Benchmark, we
adopt the maxF and AP values [18] reported by the server
which are evaluated under bird-eye-view.

We set the algorithm parameters for dataset (1) to (4) as
follows. In the preprocessing stage, we set σ = 1.5 for
blurring. In the feature learning and selection stage, 6× 6× 3
image patches are extracted for training, K = 200 bases are
obtained after 10 iterations, and 20% of the total features are
selected (i.e., m = 40). In the road segmentation stage, a tree is
constructed with L = 16 thresholds and minPts = 50, node
stabilities are computed with λ = 2, and we output the result
after 2 iterations. While for the Kitti Benchmark, we only
adjust σ to 2.5 for blurring, and the rest remains unchanged.

2Codes: http://github.com/JunkangZhang/UFL-HS-RoadDetection.

TABLE I: Road Detection Results

Dataset Method P (%) R(%) F (%)

After-Rain [16]
Kong et al.’s [3] 71.00 97.23 82.07
Xia et al.’s [12] 76.17 98.07 85.74

Our Method 93.56 96.95 95.22

Sunny-Shadows [16]
Kong et al.’s [3] 92.20 61.32 73.65
Xia et al.’s [12] 72.02 97.56 82.87

Our Method 90.49 94.23 92.32

Nanjing
Kong et al.’s [3] 93.49 65.62 77.11
Xia et al.’s [12] 87.28 95.44 91.18

Our Method 92.32 91.86 92.09

Kitti-Layout [17]
Kong et al.’s [3] 68.07 78.47 72.90

Xia et al.’s [12] 2 34.36 99.75 51.11
Our Method 76.65 72.33 74.43

TABLE II: Results on KITTI Road Detection Benchmark [18]

Method
UM UMM UU Total

maxF(%)AP(%)maxF(%)AP(%) maxF(%)AP(%)maxF(%)AP(%)

CN [17] 73.69 76.68 86.21 84.40 72.25 66.61 79.02 78.80
CN24 [7] 86.32 89.19 - - - - - -
Stixel [8] 85.33 72.14 93.26 87.15 86.06 72.05 89.12 81.23

Ours 69.85 65.22 82.63 83.60 62.15 55.93 71.75 68.97

B. Road Detection Result

In Table I, we list the road detection performance of our
algorithm on dataset (1) to (4), comparing with a vanishing-
point-based method [3] and our previous work [12]. Some
detection examples are shown in Fig. 5.

As can be seen in Table I, our algorithm outperforms
other methods. Specially, in the first three datasets whose
image aspect ratios are 4 : 3, the F-scores of our method
are consistently larger than 0.9. Whereas for Kitti-Layout in
where image aspect ratio is about 3.3 : 1, even though this
dataset contains much more complex road scenes which makes
it challenging for unsupervised methods, our algorithm still
achieves F = 0.74 which is a better and more practical result
than other methods.

In Table II, we compare our method with 3 deep supervised
learning models on the Kitti Benchmark. As can be seen, our
algorithm is not as good as those multi-layer networks, since
we only use shallow features. However, our method still has
the advantage of being unsupervised, whereas other models
rely on large-scale labeled data for model training.

C. Impact of Parameters

We also evaluate the impacts of two key parameters on road
detection accuracy. We choose two datasets for demonstration,
i.e., After-Rain and Kitti-Layout. During evaluation, other
parameters are kept the same as in Section III-A.

Firstly, the impact of the base number K in unsupervised
feature learning on F-score is shown in Fig. 6a. As can be seen,
when changing K in [108, 500], the fluctuations of detection
accuracy on both datasets are less than 0.02. This means that
the number of clustering centroids does not have an obvious
influence on detection accuracy. It might be caused by the
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Fig. 5: Experimental results. Yellow and red stand for our predicted road areas, while yellow and green belong to ground-truth.
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Fig. 6: F-score with different parameter settings. (a) K. (b) λ.

feature selection operation, since discriminative road features
always exist and thus can be retained.

Besides, we evaluate the impact of the weight coefficient
λ on the F-score. As can be seen in Fig. 6b, both datasets
achieve high detection accuracy with λ = 2.

IV. CONCLUSION

In this paper, we developed an improved framework based
on unsupervised feature learning for road detection from a
single image. On the one hand, we proposed a new feature
encoding method combined with a feature selection process
to obtain discriminative road features. On the other hand, we
designed a new segmentation algorithm to extract road areas
from the learned feature maps. A tree is constructed to repre-
sent the regions’ hierarchy via a multi-threshold segmentation,
and a two-loop tree-parsing optimization is applied to find the
most stable regions which is in accordance with the heuristic
assumptions on the position of roads and small reconstruction
error. Experimental results showed the effectiveness of our
method on various benchmark datasets.
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