
A Feature Fusion Framework for Hashing
I-Hong Jhuo1, Li Weng2∗ B, Wen-Huang Cheng3, D. T. Lee4

1Columbia University, New York, U.S.A.
2IGN - French Mapping Agency, LaSTIG/MATIS Lab, 94165 Saint-Mandé, France

3MCLab, CITI, Academia Sinica, Taipei, Taiwan
4Institute of Information Science, Academia Sinica, Taipei, Taiwan

∗(co-first author)

Abstract—A hash algorithm converts data into compact strings.
In the multimedia domain, effective hashing is the key to large-
scale similarity search in high-dimensional feature space. A limit
of existing hashing techniques is that they typically use single
features. In order to improve search performance, it is necessary
to utilize multiple features. Due to the compactness requirement,
concatenation of hash values from different features is not an
optimal solution. Thus a fusion process is desired. In this paper,
we solve the multiple feature fusion problem by a hash bit
selection framework. Given multiple features, we derive an n-
bit hash value of improved performance compared with hash
values of the same length computed from each individual feature.
The framework utilizes a feature-independent hash algorithm
to generate a sufficient number of bits from each feature, and
selects n bits from the hash bit pool by leveraging pair-wise label
information. The metric bit reliability is used for ranking the bits.
It is estimated by bit-level hypothesis testing. In addition, we also
take into account the dependence among bits. A weighted graph
is constructed for refined bit selection, where the bit reliability is
used as vertex weights and the mutual information among hash
bits is used as edge weights. We demonstrate our framework with
LSH. Extensive experiments confirm that our method is effective,
and outperforms several state-of-the-art methods.

I. INTRODUCTION

In the big data era, the rapidly growing amount of text,
audio and visual data on Internet is urging more effective
ways of exploration. Among related issues, an important
question is how to efficiently search for multimedia content
in large-scale systems. Thus the similarity search problem has
attracted increasing attention in data analysis or multimedia
research community. Content-based search typically utilizes
high-dimensional descriptors, such as SIFT [16], GIST [17],
VLAD [9], MFCC [4], or learnt features [10]. These descrip-
tors are effective, but their dimensionality is relatively large.
They are not suitable for in-memory search when the database
scale exceeds a certain level. In order to trade for efficiency,
more compact descriptors are needed. A promising solution
is multimedia hashing, which means to represent multimedia
objects as compact hash values. It is essentially an embedding
from a feature space to a Hamming space. A hash value is
typically an n-bit string, whose compact size can facilitate
in-memory indexing and search. Hash comparison can be
efficiently achieved by the XOR operation. Being different

This work was partly supported by Ministry of Science and Technology
under grants MOST 103-2911-I-001-531 and MOST 104-2911-I-001-506.

!"#$%&'()*+%,*-*(+*.%(/.*%

!!"""#

"!!!"#

!!"""#

!"#$%+"&-*%$#%&'#()*&+%&*&',#

$#%&'#&-.)/)-.)-0)#

12*34).&+#

5)+'2()6

&-.)/)-.)-'#

7+87#+*9:(&'74#

;<'(+0'#=)+'2()#4#

;<'(+0'#=)+'2()#"#

;<'(+0'#=)+'2()#>#

;<'(+0'#=)+'2()#4#

;<'(+0'#=)+'2()#"#

;<'(+0'#=)+'2()#>#

;<'

#4#

5)+'2()#)<'(+03:-#

#"#

Fig. 1: The proposed feature fusion framework. Each data
point is represented by multiple features. A hash bit pool is
generated by applying a feature-independent MH algorithm to
each feature. A refinement graph is used to select good bits
based on reliability and independence.

from other hash algorithms, multimedia hash (MH) algorithms
are robust, i.e., relevant content should result in similar hash
values. On the other hand, they are also discriminative, i.e.,
different content should result in different hash values.

In general, MH algorithms can be categorized as feature-
dependent and feature-independent [27]. The former integrates
with particular features, thus emphasizes feature extraction;
the latter applies to any feature in vector form, typically
focusing on feature transformation (learning) [23]. Depending
on the purposes, some MH algorithms are used for identifying
perceptual similarities, while some others are for semantic
similarities.

A challenge to multimedia hashing is to utilize multiple
features while maintaining hash compactness. An MH scheme
is essentially a classifier based on some feature(s). Due to
the compactness requirement and implementation complexity,
existing MH algorithms typically use single features, such as
shape features [28], pixel statistics [29], DFT coefficients [30],
DCT/DWT coefficients [25], [26], etc. According to the no-
free-lunch theorem [31], there is no single best classifier. In
order to boost search performance, it is necessary to combine
multiple features [11]. For example, a naive way is to hash
each feature separately and concatenate the results. Another
way is to concatenate the features and hash them together.
They demonstrate different trade-offs between compactness
and performance. On the one hand, compactness is the key
for efficiency – the speed of hash comparison and the size
of hash tables both depend on the hash length. On the
other hand, compactness also limits the ultimate performance.
Intuitively, an n-bit hash value can at most distinguish 2n

2016 23rd International Conference on Pattern Recognition (ICPR)
Cancún Center, Cancún, México, December 4-8, 2016

978-1-5090-4846-5/16/$31.00 ©2016 IEEE 2289

items. In practice, n is typically less than a thousand. In some
applications with real-time requirements, n is even less than
32 [21], which is not large enough to ensure low collision rates
in practice. Given a feature set and an arbitrary hash length n,
it is not straight-forward to generate optimal hash values. The
problem is further complicated with multiple features. Ideally,
we hope to benefit from more features without increasing n.

In this work, we propose a framework to solve the following
feature fusion problem:

Given m feature vectors Fi (i = 0, 1, · · · ,m − 1)
of the same multimedia object, generate an n-bit
hash value, which outperforms n-bit hash values
generated from any single Fi,

where Fi = [f0, f1, · · · , fdi
]T has di dimensions. Our goal is

to derive a generic solution that can be adapted to many MH
algorithms, so that multiple features can be easily incorporated
under constrained hash lengths. We use a feature-independent
MH algorithm to generate hash bits from each feature. These
bits are put into a hash bit pool. Finally, n bits are selected
from the pool. A novel metric is used for evaluating the
quality of hash bits. It is simple to compute because it
only requires pair-wise label information. In addition, the
dependence among hash bits is modeled as a graph. Effective
and independent bits are selected by sub-graph extraction.
Compared with other methods, our framework exhibits supe-
rior performance and flexibility.

II. RELATED WORK

Exploiting multiple features is related to feature pooling [3],
fusion [6], or selection [7]. Sometimes these terms are inter-
changeably used in literature.

Strictly speaking, our proposal is a hash fusion method
(different from general feature fusion), since we need a hash
algorithm to convert features into bits. There is not much work
on hash fusion. Some recent work considers hash fusion as
a bit selection problem. Liu et al. model hash bit selection
as a sub-graph selection problem [15], [33]. Hash bits are
represented as vertices in a graph representation. The weight of
a vertex is defined by its similarity preservation capability [24];
the weight of an edge is defined by the independence between
the two vertex bits. A sub-graph with heavy weights is
selected. A common challenge to graph-based approaches is
the construction of large-scale graphs. When the number of
hash bits is large, deriving relationship among hash bits can
be time consuming. These approaches belong to late fusion.

In fact, many dimension reduction techniques can be used
for feature fusion, such as principle component analysis
(PCA) or graph embedding [32]. However, they typically
need further processing, e.g., a quantization stage, to compute
hash values. On the other hand, there are feature-independent
hash algorithms, such as locality-sensitive hashing (LSH) [1].
Technically, a simple fusion method is to feed them with
the concatenation of multiple feature vectors, although the
performance is typically not the best. There are also hash
algorithms that support multiple features as input, such as
multiple feature hashing (MFH) [20] and multiple feature

kernel hashing (MFKH) [14]. However, they are not flexible
when the number of features is large, because the feature
data has to be present at the same time for computing. These
approaches belong to early fusion.

Our proposal is a novel bit selection method. It simultane-
ously considers semantic information and bit independence.
Compared with existing late fusion approaches [15], [33], we
use a novel metric bit reliability to estimate the importance
of each bit. This metric is different from the similarity
preservation [15], as it takes into account both robustness and
discrimination.

III. THE PROPOSED FEATURE FUSION FRAMEWORK

The key idea of the proposed framework is to utilize feature-
independent MH algorithms, as illustrated by Fig. 1. The
fusion procedure consists of the following steps:

1) Each feature vector Fi is converted to a hash value of
ni ≥ n bits by a feature-independent MH algorithm;

2) All hash values are put into a hash bit pool of n′ =
∑
ni

bits;
3) An n-bit hash value is created by selecting n bits from

the hash bit pool.
This framework is flexible enough to adapt to different features
and MH algorithms as long as they are feature-independent.
More details are explained in the following.

A. The hash algorithm

We first need to adopt a feature-independent MH algorithm.
A good candidate is locality-sensitive hashing (LSH) [1]. It is
a generic framework for approximate nearest neighbor (ANN)
search. An LSH scheme is a distribution on a family H of
hash functions operating on a collection of objects, such that
for two objects x, y,

Prh∈H [h(x) = h(y)] = sim(x,y), (1)

where sim(x,y) ∈ [0, 1] is some similarity function defined on
the collection of objects, and Pr means probability. A popular
implementation of LSH is based on scalar quantization [19]. In
this work, our implementation of LSH is based on Charikar’s
work [5]:

hr(v) =

{
1 if v · r ≥ 0

0 otherwise ,
(2)

where v is a feature vector, r is a random Gaussian vector.
This implementation actually measures the angular similarity
between two feature vectors:

Pr[hr(u) = hr(v)] = 1− θ(u,v)

π
, (3)

θ(u,v) = cos−1 u·v
‖u‖·‖v‖ being the angle between u and v.

After the MH algorithm is chosen, ni hash bits should be
generated from each single feature vector Fi. An advantage
of LSH is that an arbitrary number of bits can be generated
by adjusting the number of random projections. Thus the hash
bit pool can be made arbitrarily large.

2290

B. Bit selection based on reliability

The most important part of the framework is the selection
of hash bits. In this paper, we select best n bits according to a
quality metric. There might be different metrics to measure the
quality of hash bits, such as similarity preservation [24]. We
find that a more suitable candidate is the recently proposed
bit reliability [22], [27]. Denoted by rb, it is defined as
a weighted average of the false positive rate and the false
negative rate of each hash bit. The concept of bit reliability
was originally proposed by Voloshynovskiy et al. [22] from
a channel coding perspective. It was generalized in [27] and
shown to be practical when evaluating hash bits from a single
feature. In this work, we find that this metric is also suitable
for multiple feature fusion.

Following the definition in [27], we consider an n-bit hash
value as n binary classifiers, each represented by a single bit.
The bit reliability can be evaluated by a hypothesis test. Denote
the difference between two hash values at position i as ei =
{0, 1} (i = 0, · · · , n−1). When two hash values are compared,
a decision is made from two hypotheses:
• H0 – the data points correspond to irrelevant content;
• H1 – the data points correspond to relevant content.

If ei = 0, H1 is chosen; otherwise H0 is chosen. The bit
reliability is characterized by the false positive rate pfp and
the false negative rate pfn of a hash bit:
• pfp = Probability {ei = 0|H0} ;
• pfn = Probability {ei = 1|H1} ,

which measure discrimination and robustness respectively.
Overall, the bit reliability is defined as:

rb = Cfp · pfp + Cfn · pfn , (4)

where Cfp and Cfn are weight factors (set to 0.5 in our
experiments). A smaller rb corresponds to better reliability.
After the reliability is computed, bit selection becomes a
sorting procedure. In practice, the weights can be adjusted ac-
cording to the application. For example, biometric applications
typically require small false positive rates, i.e. large Cfp.

Once we obtain some ground truths, such as label consis-
tency or feature distances, a training procedure in Alg. 1 can
be used for estimating bit reliability.

C. Tackle bit dependence

So far we have not taken into account the dependence
among hash bits. Ideally, a well designed hash algorithm
generates independent bits. In practice, bit correlation can be
removed to a certain extent by applying orthogonal transforms
to the features. However, when a de-correlation stage does not
exist, it might be necessary to cope with bit dependence. In this
work, we incorporate a graph-based approach. The basic idea
is to extract a dense sub-graph (maximal clique). Candidate
hash bits are considered as vertices and their dependence
is modeled by edges. We define the vertex weight by bit
reliability. In addition, the edge weight is defined by the mutual
information between a pair of vertex bits. Given the probability
p(bi) for the ith bit and the joint probability p(bi, bj) for ith

Data: hash values {hi} and corresponding labels {li}, weights
Cfn, Cfp

Result: bitReliability
n = |{hi}|, L=length(hi), positiveCounter={0}L;
falsePositiveCounter={0}L, falseNegativeCounter={0}L;
for i=1:n do

hash1=hi, label1=li;
for j=i+1:n do

hash2=hj , label2=lj ;
truthFlag=(label1==label2);
errorVector=(hash1 ⊕ hash2);
positiveFlag=(errorVector==0);
falsePositiveCounter+=(!truthFlag & positiveFlag);
falseNegativeCounter+=(truthFlag & !positiveFlag);
positiveCounter+=truthFlag;

end
end
negativeCounter=n · (n− 1)/2-positiveCounter;
falsePositiveRate=falsePositiveCounter/negativeCounter;
falseNegativeRate=falseNegativeCounter/positiveCounter;
bitReliability=Cfn·falseNegativeRate+Cfp·falsePositiveRate;

Algorithm 1: Estimate bit reliability

and jth bits, the edge weight measuring the independence
between ith and jth bits is empirically computed as:

wij = exp{−α
∑
bi,bj

p(bi, bj)log
p(bi, bj)

p(bi)p(bj)
}, (5)

where α > 0 is a scaling factor. Once we obtain the weighted
graph, different optimization approaches can be applied to
find a dense sub-graph, such as [18], [13]. In this paper, we
adopt the normalized dominant set [15] to discover the optimal
solution. In particular, since we define the vertex weight by bit
reliability instead of the commonly used similarity preserva-
tion (embedding loss), significant performance improvement
is achieved, shown and discussed in Section IV-C.

D. Discussion on performance and complexity

It is worth noting that the fusion method, as well as other
selection-based methods, is asymptotically guaranteed to be
effective, because the probability that the first n bits (i.e. no
selection) are the best choice is 1/

(
n′

n

)
, which is typically very

small and decreases with n′.
An advantage of our method is that the reliability of each bit

can be individually evaluated. That means the estimation can
be realized in a parallel or distributed way. This potentially
facilitates bit selection in a very large scale.

Assume the number of training items is Ntr. The compu-
tation cost for bit reliability estimation increases linearly with
the size of the hash bit pool n′, and exponentially with Ntr

(due to pair-wise comparison), so the overall training complex-
ity is approximately O(Ntr(Ntr−1)

2 ·n′). When Ntr is too large,
one can reduce the training cost by sampling the training items
into groups and performing pair-wise comparison within each
group. When there are k groups with N ′tr items per group, the
total training cost is O(

N ′
tr(N

′
tr−1)
2 · k · n′). If we further take

into account inter-bit relationship such as mutual information,
the additional cost typically increases exponentially with n′.

2291

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
u

e
 p

o
s
it
iv

e
 r

a
te

ROC curve comparison (mfeat, hash length=512)

fac

fou

kar

mor

pix

zer

proposed method

Fig. 2: ROC comparison: fea-
ture fusion vs. single features
(Case 1, n = 512, ni = 512,
n′ = 3072).

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

recall

p
re

c
is

io
n

Precision−recall curve comparison (cifar10, hash length=512)

SIFT

GIST

proposed method

random bit selection

Fig. 3: Precision-recall com-
parison: feature fusion vs.
single features (Case 2, n =
512, ni = 512, n′ = 1024).

The cost for hash generation does not necessarily increase
with the size of the hash bit pool, depending on whether we
know the internal mechanism of candidate hash algorithms.
If we know how each hash bit is generated, then only those
good generation functions are kept after bit selection, so that
at best the hash generation complexity is always O(n).

IV. EXPERIMENT

The experiments include two parts. First, we compare the
fusion performance with individual features’ performance.
Second, we compare our fusion method with other fusion
methods. Two application scenarios are considered:
• Case 1 – Handwritten number recognition (mfeat);
• Case 2 – Category based image retrieval (cifar10).

The former is an example of near-duplicate detection; the latter
involves more semantics. The results are obtained by plugging
LSH into our framework. It is straight-forward to adapt to
other hash algorithms.

A. Datasets and experiment setting

Two datasets are used. Case 1 uses the mfeat dataset [2]. It
consists of features of handwritten numerals (‘0’–‘9’) extracted
from a collection of Dutch utility maps with 200 samples
per class (for a total of 2,000 samples). These digits are
represented by six features:

1) fac: 216 profile correlations;
2) fou: 76 Fourier coefficients of the character shapes;
3) kar: 64 Karhunen-Loeve coefficients;
4) mor: 6 morphological features;
5) pix: 240 pixel averages in 2 x 3 windows;
6) zer: 47 Zernike moments.
Case 2 uses the cifar10 dataset [12]. It consists of 60, 000

32 × 32 color images in 10 classes, with 6, 000 images per
class. Each image is represented by two features: 384-D
GIST [17] and 300-D bag-of-words using SIFT [16].

Two kinds of tests are considered. For Case 1, receiver
operating characteristic (ROC) curves are used as performance
benchmarks; for Case 2, precision-recall (P-R) curves are
used. Ten rounds of training and testing are performed. In
each round, the training set and the testing set are randomly
selected. For mfeat, we use 1, 000 images for training and
1, 000 for testing; for cifar10, we use 3, 000 images for training

TABLE I: Bit selection from multiple features (Case 1, 10
round average, n = ni = 512, n′ = 3072).

Feature name fac fou kar mor pix zer
No. of dimensions 216 76 64 6 240 47
No. of selected bits 133 10 1 312 33 23
Percentage (%) 26.0 2.0 0.2 60.9 6.5 4.5

and the whole dataset for testing with 1, 000 randomly selected
queries. Average results are presented.

B. Effects of feature fusion

We first focus on Case 1 and verify the effect of feature
fusion using the mfeat dataset. The numbers of feature di-
mensions sum up to 649. If one would like to utilize all the
feature information with a compact representation, a simple
approach is to sample some dimensions from each feature.
However, since different features have different numbers of
dimensions and their significance is unknown with respect to
the particular application, it is not straightforward to decide
which feature dimensions to select.

We consider a hash length n = 512, and apply the proposed
framework. The LSH algorithm (Eqn. 2) is used to compute
ni = 512 bits from each single feature, resulting in a total
of n′ = 3, 072 bits. An n-bit hash value is formed by the
proposed method.

Table I lists the results of the bit selection procedure. The
last row shows the proportions of features in the fused hash
value. There are some interesting observations. First, note
that the number of selected bits is not proportional to the
corresponding number of feature dimensions. The “fac” and
the “pix” features have the most dimensions, but they do
not contribute the most bits. The “mor” feature only has 6
dimensions, but provides more than half of the fused hash
bits. That means this is a very effective feature. On the other
hand, our method only selects 1 bit from the “kar” feature,
which is inconsistent with its number of dimensions (64), i.e.,
there is little information in this feature.

The results of pair-wise hypothesis testing are plotted in
Fig. 2. We compare the ROC curve of the proposed method
with the curves of individual features. For each feature, the
ROC curve is derived from the corresponding 512-bit hash
values computed by LSH. We observe that the performance of
an individual feature is not proportional to its bit contribution.
The “fac” feature has the best overall performance among all
the features, followed by “pix”. This is somewhat consistent
with their top two contribution (26.0% and 6.5%) to the fused
hash value. The “mor” feature contributes the most bits, but
its performance is only superior for large false positive rates.
The “kar” feature contributes the fewest bits (0.2%), but its
individual performance is better than “zer” (4.5%) and “fou”
(2.0%), which is unexpected. Above all, the proposed method
has the best performance. This proves the effectiveness of our
fusion framework.

We then look at Case 2. Table II lists the results of bit
selection using the cifar10 dataset. We still generate 512 bits
from each feature using LSH. The hash bit pool consists of

2292

TABLE II: Bit selection from multiple features (Case 2, 10
round average, n = ni = 512, n′ = 1024).

Feature name sift gist
No. of dimensions 300 384
No. of selected bits 242 270
Percentage (%) 47.3 52.7

1024 bits. The outcome of bit selection looks more regular than
in Case 1. The two features have similar amounts of dimen-
sions (300 vs. 384), and they contribute proportionally (47.3%
vs 52.7%). Figure 3 shows a comparison of P-R curves. The
“gist” feature performs better than “sift”, as predicted by their
contribution. Since the two features contribute similarly (242
bits vs. 270 bits), we also show the curve of random bit
selection, which randomly selects 256 bits from each feature’s
hash value. It is interesting that this method almost does not
bring any improvement. Again our method is validated. More
tests are performed with other hash lengths. Similar trends are
obtained, but are not shown due to space limit.

C. Comparison with other fusion methods

Next, we compare our proposal with other fusion meth-
ods. Six baselines are considered. Four of them are feature-
independent algorithms (early fusion); the other two are bit
selection methods (late fusion). Multiple feature kernel hash-
ing (MFKH) [14] is a supervised method that takes multiple
features into account. It is set to use 300 anchor points.
Spectral hashing (SH) [24] is a well-known unsupervised
method based on graph partitioning. Iterative quantization
(ITQ) [8] is a recently proposed unsupervised method based on
PCA and supervised rotation. The fourth one is LSH [5] itself.
For the early fusion methods, the concatenation of feature
vectors is used as input. The random selection (RS) method
selects approximately an equal amount of bits from each
feature’s hash value. The normalized dominant set (NDom)
method [15] is a recently proposed bit selection based on sub-
graph extraction, which was the best performing bit selection
method to our knowledge.

Figure 4 shows a comparison of ROC curves for Case 1
with hash length n = 64. The proposed method exhibits
the best performance. Among the rest, NDom takes the lead,
followed by RS and ITQ. MFKH and LSH have slightly
worse performance than ITQ. It is surprising that SH has
the worst performance. This might be due to over-fitting,
because mfeat is a small dataset with many feature dimensions.
On the other hand, since there are sufficient features, the
influence of semantic gaps is diluted, so the untrained LSH
shows satisfactory performance. Figure 5 shows another ROC
comparison with hash length n = 128. The basic trend looks
similar, but randomized methods seem to improve. RS now
performs as well as NDom, followed by LSH. Above all, the
proposed method still performs the best.

Table III shows a performance comparison for other hash
lengths. Instead of ROC curves, we estimate the area under
the curve, which is an overall measure of performance. Larger
values indicate better performance. Our method achieves the

TABLE III: Area under ROC curve at different hash lengths
n (Case 1)

n ITQ MFKH SH LSH NDom RS Ours
32 .8830 .7568 .7860 .6328 .9300 .8577 .9542
64 .8542 .8364 .7517 .8362 .9398 .9032 .9666
128 .8491 .8298 .6998 .8698 .9384 .9357 .9691
256 .8495 .8553 .6561 .8821 .9375 .9461 .9673

largest values for all hash lengths, which proves its superior
performance. Among other methods, NDom is generally the
best, but it is outperformed by RS at n = 256. The good
performance of NDom and RS implies that late fusion is
better than early fusion in our application. Also note that the
performance of SH decreases with n (ITQ exhibits a similar
tendency), which means this method does not scale well.

Figure 6 shows a comparison of P-R curves for Case 2
with hash length n = 64. Our method exhibits the best
performance, followed by NDom, RS, MFKH, ITQ, LSH,
and SH. Since cifar10 is a relatively large dataset with severe
semantic gaps, it is not surprising that supervised methods
outperform unsupervised early fusion baselines. Unfortunately
SH as a trained method still performs poorly. It might be due to
the out-of-sample interpolation [24], which is problematic for
non-uniformly distributed data. It is interesting that RS works
as well as MFKH, which implies the potential advantages of
late fusion over early fusion.

Figure 7 shows a comparison of P-R curves for Case 2 with
hash length n = 128. Similar trends can be observed. Note that
for some algorithms the overall performance does not change
much with the hash length. This is typically a semantic hashing
scenario, where the hash value is supposed to carry categorical
information which is less than dlog2 10e = 4 bits. Increasing
hash length generally captures more perceptual information,
which does not necessarily convert to semantics due to the
small number (only two) of features. RS now works even better
than MFKH, which implies that the effect of supervised bit
selection degrades with the hash length.

Table IV shows a performance comparison with other hash
lengths. Instead of the P-R curves, we estimate the area under
the curve. Compared with Table III, similar trends can be
observed. Again our method performs the best.

V. CONCLUSION

We propose a feature fusion framework for multimedia
hashing. Given a feature-independent hash algorithm and
several features, hash bits are generated from each feature
and put into a pool. A fused hash is generated by selecting
best bits out of the pool, which is solved by graph extraction.
Specifically, we use bit reliability to represent vertex weights
and mutual information to represent edge weights. We instan-
tiate the framework by adopting the classic LSH. Superior
performance is confirmed by extensive experiments in two
different scenarios, where our method outperforms several
state-of-the-art methods.

The proposed framework is generic. Different hash or
feature modules can be inserted. The performance may be
improved if a better module is used. Our work shows that

2293

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
u

e
 p

o
s
it
iv

e
 r

a
te

ROC curve comparison (mfeat, hash length=64)

proposed method

MFKH

SH

ITQ

LSH

NDom

random bit selection

Fig. 4: ROC comparison of
fusion methods (Case 1, n =
64, ni = 512, n′ = 3072).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
u

e
 p

o
s
it
iv

e
 r

a
te

ROC curve comparison (mfeat, hash length=128)

proposed method

MFKH

SH

ITQ

LSH

NDom

random bit selection

Fig. 5: ROC comparison of
fusion methods (Case 1, n =
128, ni = 512, n′ = 3072).

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4
Precision−recall curve comparison (cifar10, hash length=64)

recall

p
re

c
is

io
n

proposed method

MFKH

SH

ITQ

LSH

NDom

random bit selection

Fig. 6: P-R curve comparison
of fusion methods (Case 2,
n = 64, ni = 512, n′ =
1024).

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4
Precision−recall curve comparison (cifar10, hash length=128)

recall

p
re

c
is

io
n

proposed method

MFKH

SH

ITQ

LSH

NDom

random bit selection

Fig. 7: P-R curve comparison
of fusion methods (Case 2,
n = 128, ni = 512, n′ =
1024).

TABLE IV: Area under the precision-recall curve at different
hash lengths n (Case 2)

n ITQ MFKH SH LSH NDom RS Ours
32 .1520 .1307 .1293 .1110 .1486 .1274 .1730
64 .1252 .1367 .1139 .1188 .1575 .1361 .1830
128 .1277 .1391 .1159 .1220 .1642 .1500 .1896
256 .1279 .1386 .1160 .1225 .1683 .1587 .1906

classic algorithms such as LSH can boost performance and
even outperform state-of-the-art by proper utilization.

REFERENCES

[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions. In Proc. of IEEE Symposium
on Foundations of Computer Science, pages 459–468, 2006.

[2] K. Bache and M. Lichman. UCI machine learning repository, 2013.
[3] Y.-L. Boureau, J. Ponce, and Y. LeCun. A theoretical analysis of

feature pooling in visual recognition. In Proc. of the 27th International
Conference on Machine Learning (ICML), pages 111–118, 2010.

[4] P. Cano, E. Batlle, T. Kalker, and J. Haitsma. A review of audio
fingerprinting. Journal of VLSI Signal Processing Systems, 41(3):271–
284, Nov. 2005.

[5] M. S. Charikar. Similarity estimation techniques from rounding algo-
rithms. In Proc. of ACM Symposium on Theory of Computing, pages
380–388, 2002.

[6] B. Fernando, E. Fromont, D. Muselet, and M. Sebban. Discriminative
feature fusion for image classification. In Proc. of IEEE Conference on
Computer Vision and Pattern Recognition, pages 3434–3441, 2012.

[7] F. Fleuret. Fast binary feature selection with conditional mutual
information. Journal of Machine Learning Research, 5:1531–1555, Dec
2004.

[8] Y. Gong and S. Lazebnik. Iterative quantization: A procrustean approach
to learning binary codes. In Proc. of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 817–824, June 2011.

[9] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local
descriptors into a compact image representation. In Proc. of IEEE
Conference on Computer Vision and Pattern Recognition, pages 3304–
3311, 2010.

[10] I.-H. Jhuo, S. Gao, L. Zhuang, D. T. Lee, and Y. Ma. Unsupervised
feature learning for rgb-d image classification. In Proc. of Asian
Conference on Computer Vision, pages 276–289, 2014.

[11] I.-H. Jhuo and D. T. Lee. Boosting-based multiple kernel learning
for image re-ranking. In Proc. of ACM International Conference on
Multimedia, pages 1159–1162, 2010.

[12] A. Krizhevsky and G. Hinton. Learning multiple layers of features from
tiny images. Technical report, Computer Science Department, University
of Toronto, 2009.

[13] S. Liu, H. Liu, L. J. Latecki, S. Yan, C. Xu, and H. Lu. Size adaptive
selection of most informative features. In Proc. of AAAI Conference on
Artificial Intelligence, pages 392–297, 2011.

[14] X. Liu, J. He, and B. Lang. Multiple feature kernel hashing for large-
scale visual search. Pattern Recognition, 47(2):748–757, Feb. 2014.

[15] X. Liu, J. He, B. Lang, and S.-F. Chang. Hash bit selection: a unified
solution for selection problems in hashing. In Proc. of IEEE Conference
on Computer Vision and Pattern Recognition, pages 1570–1577, 2013.

[16] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, Nov. 2004.

[17] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic
representation of the spatial envelope. International Journal of Computer
Vision, 42(3):145–175, May 2001.

[18] M. Pavan and M. Pelillo. Dominant sets and pairwise clustering. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29(1):167–
172, Jan 2007.

[19] M. Slaney and M. Casey. Locality-sensitive hashing for finding nearest
neighbors [lecture notes]. IEEE Signal Processing Magazine, 25(2):128–
131, 2008.

[20] J. Song, Y. Yang, Z. Huang, H. T. Shen, and J. Luo. Effective multiple
feature hashing for large-scale near-duplicate video retrieval. IEEE
Transactions on Multimedia, 15(8):1997–2008, Dec 2013.

[21] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large image
databases for recognition. In Proc. of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1–8, 2008.

[22] S. Voloshynovskiy, O. Koval, F. Beekhof, and T. Holotyak. Binary
robust hashing based on probabilistic bit reliablity. In Proc. of IEEE/SP
Workshop on Statistical Signal Processing, pages 333–336, Aug 2009.

[23] J. Wang, W. Liu, S. Kumar, and S. F. Chang. Learning to hash for
indexing big data – a survey. Proceedings of the IEEE, 104(1):34–57,
Jan 2016.

[24] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Proc. of
Conference on Neural Information Processing Systems (NIPS), pages
1753–1760, 2008.

[25] L. Weng, G. Braeckman, A. Dooms, and B. Preneel. Robust image con-
tent authentication with tamper location. In Proc. of IEEE International
Conference on Multimedia and Expo (ICME), pages 380–385, 2012.

[26] L. Weng, R. Darazi, B. Preneel, B. Macq, and A. Dooms. Robust image
content authentication using perceptual hashing and watermarking. In
Proc. of Pacific-Rim Conference on Multimedia, pages 315–326, 2012.

[27] L. Weng, I.-H. Jhuo, M. Shi, M. Sun, W.-H. Cheng, and L. Amsaleg. Su-
pervised multi-scale locality sensitive hashing. In Proc. of International
Conference on Multimedia Retrieval (ICMR), pages 259–266, June 2015.

[28] L. Weng and B. Preneel. Shape-based features for image hashing.
In Proc. of IEEE International Conference on Multimedia and Expo
(ICME), pages 1074–1077, 2009.

[29] L. Weng and B. Preneel. A novel video hash algorithm. In Proc. of ACM
International Conference on Multimedia, pages 739–742, Oct 2010.

[30] L. Weng and B. Preneel. A secure perceptual hash algorithm for
image content authentication. In Proc. of International Conference on
Communications and Multimedia Security (CMS), pages 108–121, 2011.

[31] D. H. Wolpert. The relationship between PAC, the statistical physics
framework, the bayesian framework, and the VC framework. In The
Mathematics of Generalization, pages 117–214, 1995.

[32] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin. Graph
embedding and extensions: A general framework for dimensionality
reduction. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 29(1):40–51, Jan. 2007.

[33] D. Zhang, X. Liu, and B. Lang. Hash bit selection using markov process
for approximate nearest neighbor search. In Proc. of International
Conference on Advances in Mobile Computing & Multimedia (MoMM),
pages 205–208, 2013.

2294

