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Abstract—Change detection, in multi-temporal satellite im-
agery, seeks to discover relevant changes and to discard irrelevant
ones. This task is usually achieved by modeling accurate decision
criteria that capture the user’s intention while being resilient to
many irrelevant changes including acquisition conditions. Among
existing change detection solutions, correlation-based models –
such as canonical correlation analysis (CCA) – are particularly
successful, but their success is very dependent on the quality of
alignments used to train these models.

In this paper, we introduce a novel interactive change detection
algorithm based on a new variant of CCA, referred to as
misalignment resilient CCA. Given a small sample of “changes”
and “no-changes” labeled by an oracle (user), our method learns
transformation matrices that map these data from different input
spaces, related to multi-temporal images, into a common latent
space which is sensitive to relevant changes while being resilient
to irrelevant ones including misalignments. These CCA transfor-
mations correspond to the optimum of a particular constrained
maximization problem that mixes a new soft-alignment term and
a context-based regularization criterion. Extensive experiments
conducted in interactive satellite image change detection, show
that our misalignment resilient CCA approach is highly effective.

I. INTRODUCTION

Satellite image change detection seeks to find instances
of relevant changes into a given scene acquired at instance
t1 with respect to the same scene taken at instance t0 < t1.
Early change detection solutions, introduced during the 70’s
are based on straightforward comparisons of multi-temporal
series, using image difference thresholding of vegetation
indices, principal components and vector change analysis [1],
[2]. One of the major applications in change detection is
damage assessment after natural hazards [3]; this consists in
finding relevant changes (such as building destructions, etc.)
while discarding irrelevant ones (due to occlusions, sensor
artifacts and alignment errors, etc.). The success of this task
is clearly dependent on the ability to i) attenuate the effect of
some irrelevant changes by aligning images1 and correcting
their radiometric effects, etc. (see for instance [4], [5], [6])
and also the ability to ii) make change detection resilient to
other irrelevant changes by considering them as a part of
scene representation and appearance modeling (e.g. [7], [8]).

1In this paper, the terminology alignment and registration refers to the same
concept.

In spite of their relative success, these two categories of
methods are highly limited by the huge variability due to
irrelevant changes resulting into several missing detections and
false alarms. Indeed, many existing change detection solutions,
mainly correlation-based methods (e.g., [9]), rely on a strong
assumption that satellite images are precisely aligned2, but this
may not hold in practice; more precisely, usual and efficient
approaches for alignments (that avoid expensive and possibly
erroneous digital elevation models), are usually powerless
to attenuate 3D residual and deformation effects into multi-
temporal images (including parallax, oscillations due to waiv-
ing objects such as trees, etc.). Furthermore, usual registration
methods (either 2D or 3D) may also fail when scenes are
subject to many changes, as interest points in these scenes
might not be repeatable through multiple images and hence
difficult to match using existing alignment algorithms [10],
[11]. As a result, one of the major challenges is to build
multi-temporal image representations which are robust against
irrelevant changes, such as residual misalignments that may
still occur even when satellite images are globally – and
reasonably – well registered.

Canonical correlation analysis (CCA) is one of the
correlation-based techniques that has been applied to change
detection; it consists in building latent representations which
are robust – at some extent – to irrelevant changes [12].
Generally speaking, CCA is a machine learning technique
that learns statistical correlation between aligned data. It has
been widely applied to many other pattern recognition and
machine learning tasks including image-to-text annotation and
multi-view tracking [13], [14]. Its general principle consists
in learning transformations that map aligned data from input
spaces – related to different data modalities (such as view-
points, sensors, etc.) – to latent spaces while maximizing their
statistical correlation. It is commonly agreed that the accuracy
of CCA is highly dependent on the quality of alignments which
are usually subject to errors. In this work, we address the
issue of misalignment in canonical correlation analysis and
its impact on the particular task of change detection in multi-
temporal satellite imagery.

In this paper, we propose a new formulation of canonical
correlation analysis referred to as misalignment resilient CCA
(MR-CCA); the latter learns transformations that map image

2Initially aligned or after achieving automatic alignment.
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regions (belonging to the same physical locations) from input
images to latent spaces while being sensitive to relevant
changes and resilient to irrelevant ones including misalign-
ment. Our formulation is based on the optimization of an
objective function mixing two terms; the first one partly similar
to standard CCA seeks to maximize the correlation between
aligned “no-changes” in satellite image data (taken at different
instants and under different acquisition conditions) while at
the same time it reduces the correlation between “changes”.
The second term is a regularization criterion that diffuses the
correlations (and also information about alignments) between
neighboring data thereby making CCA context-aware. The
novelty of the proposed CCA framework also resides in its
ability to model uncertainty when considering aligned and
non-aligned data, resulting into better performances as shown
through experiments in interactive satellite image change de-
tection.

II. INTERACTIVE CHANGE DETECTION AT A GLANCE

Besides irrelevant changes and acquisition conditions, the
challenge in change detection also resides in the difficulty to
characterize decision criteria as the frontier between targeted
and untargeted changes is highly dependent on the user’s
intention. Considering this issue, we adopt a user dependent
change detection strategy based on relevance feedback (RF)3;
also known as interactive image search. Our RF method is
based on a query & answer model that helps users expressing
their intentions and finding their targeted changes effectively
in few iterations; as shown in this paper, this model enhances
the quality of change detection criteria, by adapting them to
input images and users, without systematic/tedious parsing of
large satellite images.

Define I0 = {u1, . . . ,un}, I1 = {v1, . . . ,vn} as two
satellite images (referred to as reference and test images
respectively) captured at two different instants. We consider
a particular order of patches in I0, I1 such that the first
` � n patches in I0, I1 are labeled and correctly aligned
by an oracle (user). Let Y = {y1, . . . ,yn} be the labels
associated to patches in I1; again, only the first ` labels are
known. Our goal is to design a change detection algorithm
based on relevance feedback that predicts the unknown labels
{yi}ni=`+1 with yi = +1 if the patch vi ∈ I1 corresponds
to a “change” w.r.t its underlying reference patch in I0; and
yi = −1 otherwise. Let Dt ⊂ I1 be a display (subset of
patches with |Dt| = 16� |I1| in practice) shown to the oracle
at iteration t and let Yt be the unknown labels of Dt. Starting
from a random display D0 including representative samples
in I1, we build our RF model by asking the oracle about the
relevance of changes in Dt and by running the following steps
for t = 0, . . . , T − 1 (In practice, T = 10)
i) Label display Dt with a known-only-by-the-oracle function
(denoted C(.)) and assign C(Dt) to Yt. As our change detection
ground-truth is objective, we assume deterministic oracle

3RF has been previously studied mainly for multimedia image retrieval [15]
and foreground/background separation [16].

functions only.
ii) Select the next display Dt+1 ⊂ I1 − ∪tk=0Dk to label
by the oracle using two strategies, closely related to active
learning [17], [18]: exploration and exploitation. The former
selects data in order to discover new modes of our change
detection criteria (denoted {ft}t) while the latter locally
refines these criteria. Our display selection strategy, seeks
a balance between exploration and exploitation. At t = 0,
we apply exploration, then at each iteration t ≥ 1, we
select the subsequent display Dt+1 depending on how good
was the previous display Dt. In practice, we either keep the
previous action (exploration or exploitation) or we switch from
exploration to exploitation or vice-versa, depending on a score
St =

∑
v∈Dt

1{sign[ft−1(v)] 6=C(v)}. This score measures how
informative is the display Dt obtained using the previous
action4.
iii) Train a classifier ft(.) on the ` data labeled, so far,
∪tk=0(Dk,Yk) to predict unknown labels {yi}ni=`+1. In prac-
tice, we use LIBSVM [19] with the triangular kernel [20],
in order to build ft(.); this choice was motivated by the good
performance of RF when using the triangular kernel compared
to many other kernels (see [20], [21]). Note that SVMs are
trained on top of novel (misalignment resilient) CCA features,
and this is the main contribution of this work (see Section III).

III. CANONICAL CORRELATION ANALYSIS

Standard CCA (see for instance [13]) finds two projection
matrices that map aligned data in I0 × I1 into a latent space
while maximizing their correlation. Let Pu, Pv denote these
projection matrices which respectively correspond to reference
and test images. CCA finds these matrices by maximizing
P′vCvuPu, subject to P′uCuuPu = 1, P′vCvvPv = 1; here ′

stands for matrix transpose, Cvu (resp. Cuu, Cvv) correspond
to the interclass (resp. intraclass) covariance matrices of data in
I0, I1, and equality constraints control the effect of scaling on
the solution. One can show that problem above is equivalent
to solving the eigenproblem CuvC

−1
vvCvuPu = γ2CuuPu

with Pv = 1
γ C−1vvCvuPu. In practice, learning these two

transformations requires (aligned) “no-changes” in I1 × I0,
i.e., {(ui,vi)}`i=1 with yi = −1. A variant (in [12]; see
also experiments) has shown better results when combining
both “no-changes” and “changes” in a discriminative setting,
in order to find these transformation matrices. However, using
only labeled patch pairs, is not enough and better results are
obtained when i) using also unlabeled patch pairs and when
ii) considering resilience to alignment errors in these pairs as
described subsequently.

A. Misalignment Resilient CCA

As discussed earlier, for each iteration of relevance feed-
back, we assume that only a very small fraction of patches are
precisely aligned and labeled by the oracle; for the remaining

4a good action should produce a display to correct as many change detection
results as possible thereby better refining the subsequent decision criterion.
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patches neither precise alignments5 nor labels are known.
Considering D as an alignment matrix, we assign for each
patch pair (entry of D) an alignment score as follows

• If vj ∈ I1 is labeled by the oracle then the latter selects a
unique patch ui ∈ I0 which is precisely aligned with vj ;
as assumed in Section II, we consider a particular order of
patches in I0, I1 such that any aligned patch pair (ui,vj)
satisfies i = j (with i, j ∈ {1, . . . , `}). Hence, Dii = ±1
depending on whether the oracle assigns (ui,vi) to the
“no-change” or “change” class (i.e., Dii = −yi) and
Dki = Dik = 0, ∀k ∈ {1, . . . , `}\i.

• If vj ∈ I1 is unlabeled, then for any patch ui ∈ I0, the
entry Dij is set using a particular similarity function; here
i, j ∈ {` + 1, . . . , n}. This similarity takes a high value
(close to +1) if ui, vj are visually similar and spatially
close; otherwise Dij is set to a small value (close to −1).
The way the matrix D is set makes it possible to model
the uncertainty about the alignments of unlabeled patch
pairs. Extra details about the setting of D are given in
experiments.

Now we introduce our main contribution; a novel misalign-
ment resilient approach for CCA. Considering a small subset
{(ui,vi)}i ⊂ I0 × I1 with known labels {yi}i, we propose
to find the transformation matrices Pu, Pv as

max
Pu,Pv

tr(U′PuP
′
vVD) + β

∑
c

tr
(
U′PuP

′
vVWc

vV
′PvP

′
uUWc′

u

)
s.t. P′

uCuuPu = 1 and P′
vCvvPv = 1

(1)
Here β ≥ 0, tr is the matrix trace operator, U, V are two
matrices whose columns correspond to all patches in I0,
I1 respectively. The first term of this objective function
(equivalent to

∑
i,j〈P′uui,P′vvj〉Dij) aims to maximize the

correlation between aligned patch pairs with negative labels
(i.e., “no-changes”), while at the same time, it minimizes the
correlation between aligned patch pairs with positive labels
(i.e., relevant “changes”). Equivalently, this term also seeks to
maximize the correlations between highly similar unlabeled
pairs (i.e., with high Dij), and minimize the correlations
between dissimilar unlabeled pairs (which are likely to
correspond to changes). If one considers only labeled data,
then this term is strictly equivalent to discriminant CCA
(in [12]) and one may show that it can be rewritten as
P′vC

−
vuPu − λP′vC

+
vuPu (λ ∈ R+); with C−vu (resp.C+

vu)
being the covariance matrix of negative (resp. positive) data
in {(ui,vi)}i. With this discriminative setting, the learned
transformations Pu, Pv generate latent data representations
φu(ui) = Puψf (ui), φv(vi) = Pvψf (vi)

6, which are robust
against irrelevant changes (i.e., ‖φu(ui) − φv(vi)‖2  0 for
yi = −1) while also being sensitive to relevance changes (i.e.,
‖φu(ui) − φv(vi)‖2 is large for yi = +1). This results into
a better discrimination between “changes” and “no-changes”

5We assume that reference and test images are roughly (not precisely)
registered.

6with ψf (ui) being a feature vector associated to ui, see experiments.

(see also experiments).

Context-based regularization. Without regularization, it
is clear that the left-hand side term in the above objective
function may produce maps with no spatial coherence.
Hence, we define a context-based regularization criterion
that considers for each patch ui (or vi), an anisotropic
(typed) neighborhood system {Nc(i)}8c=1 which corresponds
to the eight spatial neighbors of ui in a regular grid; for
instance when c = 1, N1(i) corresponds to the top-left
neighbors of ui. Using Nc(.), we consider Wc

u as an
intrinsic adjacency matrix whose given entry is defined as
Wc

u,i,k = 1{k∈Nc(i)} × f(ui,uk) (with f(ui,uk) being a
function inversely proportional to the distance between visual
features of patches in the ith and kth locations). Similarly,
we define the adjacency matrices {Wc

v}c for patches {vi}i.
Using this definition of {Wc

u}c, {Wc
v}c, the right-hand side

term of the objective function (1) is strictly equivalent to
β
∑
c

∑
i,j〈P′uui,P′vvj〉

∑
k,`〈P′uuk,P′vv`〉Wc

u,i,kW
c
v,j,`;

the latter corresponds to a neighborhood (or context)
criterion which considers that a high value of the correlation
〈P′uui,P′vvj〉, in the learned latent space, should imply high
correlation values in the neighborhoods {Nc(i) × Nc(j)}c.
Hence, this term enhances the robustness of the correlation
between patch pairs in the learned latent space. Put
differently, if a given patch pair (ui,vj) is surrounded by
highly correlated pairs, then the correlation between (ui,vj)
should be maximized and vice-versa.
Finally, equality constraints in (1) act as normalization factors
that control the effect of scaling on the solution and also
avoid null projection matrices.

B. Optimization

Considering Lagrange multipliers for the equality con-
straints in Eq. (1), one may show that optimality conditions
(related to the gradient of Eq. (1) w.r.t Pu, Pv and the
Lagrange multipliers) lead to the following generalized eigen-
problem

KuvC
−1
vvKvuPu = γ2CuuPu

with Pv = 1
γ C−1vvKvuPu,

(2)

here Kvu = K′uv and

Kvu = VDU′ + β
∑
cVWc

vV
′PvP

′
uUWc′

uU
′

+ β
∑
cVWc′

v V
′PvP

′
uUWc

uU
′.

(3)

In practice, we solve the above eigenproblems iteratively. For
each iteration τ , we fix P

(τ)
u , P(τ)

v (in Kvu, Kuv) and we find
the subsequent projection matrices P(τ+1)

u , P(τ+1)
v by solving

Eq. (2); initially, P(0)
u , P(0)

v are set using projection matrices
of standard CCA. This process continues till a fixed point is
reached. In practice, convergence to a fixed point is observed
in less than five iterations (see Fig. 1).
As shown above, this new CCA formulation produces latent
descriptors by combining both labeled and unlabeled data in a
semi-supervised setting. In spite of this (and in contrast to
related semi-supervised methods, mainly transductive ones)
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Fig. 1. This figure shows an example of the convergence of our iterative
algorithm w.r.t τ . The same behavior occurred in all our experiments.

it is tractable and also inductive; it can be applied to new
unseen data efficiently and without retraining the whole CCA
transformations (in contrast to transductive methods). Indeed,
the complexity of solving the above generalized eigenproblems
depends mainly on the dimension d of data which is relatively
small (i.e., d� n; see the setting of d in experiments).

IV. EXPERIMENTS

A. Database and Evaluation Protocol

We evaluate the performance of our interactive (CCA based)
change detection method on a database of 4, 400 patch pairs,
taken from two registered (reference and test) GeoEye-1 satel-
lite images of 2, 400× 1, 652 pixels; the registration (between
reference and test images) is given with some residual errors
due to occlusions and other alignment errors. These two
images correspond to the same area of Jefferson (Alabama)
taken respectively in 2010 and in 2011 with many relevant
changes due to tornados that happen in april 2011 (building
destruction, etc.) and no-changes (including irrelevant ones
such as clouds, etc.). Both reference and test images are
processed in order to extract the database of 4, 400 non
overlapping patches, each one includes 30×30 pixels in RGB.
The underlying ground truth contains 4, 275 negative patch
pairs (“no-changes” including irrelevant ones) and only 125
positive patch pairs (relevant changes), so less than 3% of
these patches correspond to relevant changes.

Each patch (in reference and test images) is encoded with
d = 200 coefficients corresponding to its projection on the 200
principal axes of principal component analysis (PCA). These
principal axes of PCA were estimated using all patches of the
reference image and capture more than 95% of the statistical
variance of the data. Afterwards, the ith patch in the test
image is described (w.r.t the reference image) either without
CCA as i) ψf (vi)−ψf (ui) with ψf (vi) being the projection
of vi using PCA or as ii) φv(ψf (vi)) − φu(ψf (ui)) when
the CCA latent representations φu(.), φv(.) are considered.
Performances are reported using equal error rate (EER) of
learned classifiers {ft}Tt=1 on unlabeled data of I1. EER is
the balanced generalization error that equally weights errors
in “change” and “no-change” classes. Smaller EER implies
better performance.

In all the subsequent experiments, only labeled patch pairs are
correctly aligned by the oracle without errors while unlabeled
pairs are subject to alignment errors.

B. Change detection performances: CCA baselines

Depending on the setting of the alignment matrix D and
parameter β in Eq. (1), we define the following baselines for
comparison. All these baselines use only the labeled patch
pairs in order to set D (i.e., unlabeled patch pairs have their
entries in D set to 0).
i) No-CCA (N-CCA): RF-based change detection is achieved
on top of PCA features (see again Section IV-A), so the CCA
transformations (φu and φv) correspond to identity functions.
ii) Standard CCA (S-CCA): this CCA version is obtained by
using only negative labeled data (i.e., “no-changes”). Conse-
quently, D is a diagonal matrix with Dii = +1 iff the aligned
patch pair (ui,vi) is labeled as “no-change” and Dii = 0
otherwise. In this setting, no context-based regularization is
used (i.e., β = 0).
iii) Discriminant (D-CCA): this variant is obtained by using
both positive and negative labeled data (i.e., “changes” and
“no-changes”) to define D; the latter is a diagonal matrix
with Dii = ±1 depending on whether the aligned patch pair
(ui,vi) is labeled as “no-change” or “change” by the oracle.
Again, no context-based regularization is used (i.e., β = 0).
iv) Context-Aware Discriminant CCA (CAD-CCA): the
setting of this CCA version is similar to D-CCA with the only
difference being β 6= 0. Again, only labeled data are used to
define D (i.e., the left-hand side term in Eq. 1) while both
labeled and unlabeled data are used to define the right-hand
side term (i.e., context-based regularization).

Fig. (2, bottom; top four curves) shows the RF performance
without CCA and with (standard, discriminant and context-
aware discriminant) CCA w.r.t the iteration number t. Note
that all the results of this paper were obtained by averaging
EERs of 10 RF runs, each one corresponds to a random setting
of display D0 (see again Section II). These EERs decrease
as t increases and reach their smallest values at the end of
the iterative process, i.e., when decision criteria {ft(.)}t are
well trained/adapted to the reference and test images, and this
happens after 10 iterations only. Fig. (2, top) shows the EERs
of our RF algorithm (after 10 iterations) built upon context-
aware discriminant CCA; these EERs globally decrease as β
increases/reaches intermediate values and EERs increase again
for larger values of β. From all these observations, it is clear
that RF (when combined with context-aware CCA) has a clear
gain compared to the other settings.

C. Impact of MR-CCA

In order to study the impact of MR-CCA on the
performances of change detection – both with residual and
relatively stronger misalignments – we consider the following
settings for comparison

i) CAD-CCA (baseline 1): among the baselines discussed
in Section IV-B, we keep only context-aware discriminant
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Fig. 2. (Top) This figure shows the evolution of EER w.r.t β; these values
correspond to EER performances at the end of the RF process (i.e., when t =
9). Note that β → 0 is equivalent to discriminant CCA. (Bottom) Evolution
of change detection results w.r.t the iteration number (t), for different versions
of CCA (for CAD-CCA, CAD-CCA-v2 and MR-CCA, β is set to 0.15). All
these results are obtained by averaging EERs of 10 RF runs. For CAD-CCA-
v2, σf = 10 while for MR-CCA σf = 10 and σs = 1.0. In these results,
reference and test images are subject to residual alignment errors.

CCA (CAD-CCA) as it provides the best change detection
performances; therefore, we use exactly the same setting for
the matrix D and (the best value of) parameter β that controls
context regularization (as shown in the caption of Fig. 2).

ii) CAD-CCA-v2 (baseline 2): the goal of this CAD-CCA
variant is to study the impact of combining both labeled and
unlabeled data (when defining D) without being resilient to
residual alignment errors in the unlabeled data. As reference
and test images are globally aligned (with some residual
errors), each unlabeled patch vi ∈ I1 is assumed to match
ui ∈ I0 in the same 2D location, though this assumption
does not hold all the time in practice. Hence, diagonal entries
{Dii}i of labeled data (i.e., i ∈ {1, . . . , `}) are set to ±1
following the same protocol as CAD-CCA while entries
{Dii}i of unlabeled data (ui,vi) (i.e., i ∈ {` + 1, . . . , n})
are defined as {Dii = 2 exp(−‖ψf (vi)−ψf (ui)‖22

σf
)− 1}i; again

ψf (.) stands for the PCA features and σf is a scale factor.

iii) MR-CCA: the goal of this MR-CCA variant is to study the
impact of combining both labeled and unlabeled data (when
defining D) while now being resilient to residual alignment

errors in the unlabeled data. We assume that each unlabeled
patch vi ∈ I1 matches one of the neighboring patches
{uj}j∈∪cNc(i) ⊂ I0; but this match is unknown. Hence,
diagonal entries {Dii}i of labeled data (i.e., i ∈ {1, . . . , `})
are again set to ±1 following the same protocol as CAD-
CCA while non-diagonal entries {Dij}ij of unlabeled data
{(ui,vj)}ij (with i, j ∈ {`+ 1, . . . , n}) are defined as
{
Dij = 2 exp(−

‖ψf (vj)− ψf (ui)‖22
σf

). exp(−
‖ψs(vj)− ψs(ui)‖22

σs

)−1
}

ij
,

(4)

here ψs(vj) stands for spatial (2D) coordinates of vj and
σs corresponds to a scale factor. With Eq. (4), we model the
uncertainty of matches in the unlabeled data.

Fig. (2, bottom) shows a comparison of MR-CCA against
all other baselines including S-CCA, D-CCA and CAD-CCA
(with its variant CAD-CCA-v2). According to these results,
the three CCA versions (CAD-CCA, CAD-CCA-v2 and MR-
CCA) outperform N-CCA, S-CCA and D-CCA versions with a
slight advantage of MR-CCA over CAD-CCA and CAD-CCA-
v2. This clearly shows that when reference and test images are
globally well aligned (with some residual errors), the gain in
performances is dominated by the positive impact of context
regularization; indeed, the impact of misalignment resilience –
in spite of being positive – is relatively marginal when patches
are globally well aligned.

In order to study the impact of MR-CCA w.r.t stronger
alignment errors (i.e. w.r.t a more challenging setting), we
apply a relatively strong motion field to all the pixels in the
reference image I0; precisely, each pixel is shifted along a
direction whose x-y coordinates are randomly set to values
between 5 and 15 pixels. These shifts are sufficient in order
to make the quality of alignments7 used for CCA very weak so
the different versions of CCA, mentioned earlier, become more
sensitive to alignment errors (EERs increase by more than 60%
in Fig. 3 compared to EERs without strong alignment errors
in Fig. 2, bottom). With this setting, MR-CCA is clearly more
resilient and shows a substantial relative gain compared to both
CAD-CCA and CAD-CCA-v2 (see again Fig. 3).

V. CONCLUSION

We introduced in this paper a novel change detection
algorithm based on relevance feedback and a new variant
of CCA referred to as misalignment resilient CCA (MR-
CCA). The latter learns transformation matrices that map
data from their original input spaces into a latent space
where aligned data become strongly or weakly correlated
depending on their labels. This is achieved by optimizing
an objective function mixing two terms: the first one relies
on a discriminative setting that maximizes (resp. minimizes)
correlations between “no changes” (resp. “changes”). The

7Initially, patch pairs in reference and test images I0, I1 were globally
well registered (with only small residual errors). When applying the motion
field to I0, these patch pairs become strongly misaligned; however, as the
oracle selects labeled data while also providing precisely their alignments,
only unlabeled data remain strongly misaligned.
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Fig. 3. This figure shows a comparison of our RF method using CAD-CCA,
CAD-CCA-v2 and MR-CCA for different settings of σf and σs; again β is
set to 0.15. As already discussed, and in contrast to Fig. 2, reference and test
patch pairs are subject to stronger alignment errors.

second term acts as a regularizer that makes correlations
spatially smooth and provides us with robust context-aware
latent representations. Our method considers both labeled and
unlabeled data when learning the CCA transformations while
being resilient to alignment errors in the unlabeled data. As
shown through extensive experiments, the relative gain of our
MR-CCA method is substantial especially when reference and
test satellite images are subject to alignment errors.

Even though applied to the particular problem of satellite
image change detection, our MR-CCA can be extended to
many other pattern recognition tasks where alignments are
error-prone – and when context can be exploited in order

to recover from these alignment errors. These tasks include
“image-to-text” mapping in video annotation, “text-to-text”
alignment in multilingual machine translation, as well as
“image-to-image” matching in multi-view object tracking.
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