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Abstract—In this paper, we propose two new approaches using
the Convolution Neural Network (CNN) and the Recurrent
Neural Network (RNN) for tracking 3D hand poses. The first
approach is a detection based algorithm while the second is a
data driven method. Our first contribution is a new tracking-
by-detection strategy extending the CNN based single frame
detection method to a multiple frame tracking approach by
taking into account prediction history using RNN. Our second
contribution is the use of RNN to simulate the fitting of a
3D model to the input data. It helps to relax the need of a
carefully designed fitting function and optimization algorithm.
With such strategies, we show that our tracking frameworks can
automatically correct the fail detection made in previous frames
due to occlusions. Our proposed method is evaluated on two
public hand datasets, i.e. NYU and ICVL, and compared against
other recent hand tracking methods. Experimental results show
that our approaches achieve the state-of-the-art accuracy and
efficiency in the challenging problem of 3D hand pose estimation.

I. INTRODUCTION

The problem of human hand pose estimation has been
studied for decades. In particular, markless hand tracking has
gained a lot of attention due to its numerous applications in
human-computer interaction with virtual augmented reality,
3D gaming, gestural inputs, etc. Major progresses have been
made recently in hand pose estimation thank to the depth
sensors and deep learning models [1]. However, the problem
is still far from solved. The challenges remain but shift
toward dealing with occlusions, low-resolutions, clutters, etc.
In addition, real-time requirement makes the problem even
harder. This is because natural hand movement exhibits many
degrees of freedom (> 259), fast motions with rapid changes
in direction, self-similar parts and self-occlusion. All these
factors make estimating the pose of articulated objects from
depth video data hard, unless the desired method is robust
against such self-similarity and self-occlusion.

A. Motivation

There are two common approaches in the problem of hand
pose estimation, i.e. the model-base generative tracking and
the discriminative hand pose detection. Both approaches have
their drawbacks, e.g. tracking framework cannot recover from
initial error while detectors may fail in case of occlusions.
Thus, the motivation of our work is to develop new strate-
gies to combine the benefits of both generative tracking and
discriminative detection into a unified framework that yields
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high efficiency and robust performance. In addition, this paper
presents two ways to build a hybrid framework that can track
human hand with a single depth-image sequence.

B. Contributions

In this paper, we propose a hand pose tracking frame-
work based on CNN and RNN. The first contribution in our
first strategy is a new tracking-by-detection strategy which
combines the Convolutional Neural Networks (CNN) and the
Recurrent Neural Networks (RNN) inspired from the work
on visual object tracking [2]. In this approach, we take into
account prediction history to extend single frame detection into
a multiple frame tracking method. The RNN outputs hand pose
prediction computed based on the visual features generated by
the CNN and the memory state of RNN, as shown in Fig.
1(a). In other words, the RNN plays a role of memorizing
hand pose prediction from previous frames. The results of
CNN-based hand pose estimation are now affected by previous
frames rather than the current input frame solely. Finally, the
prediction can optionally emphasize attention areas in the input
before feeding it into convolutional network in the next frame.

The second contribution is a new generative model-based
tracking where each time step in RNN can be seen as efficient
approximate model fitting step in traditional model-based
tracking. The similarity function is learned from training data
and integrated into the learning of RNN. CNN is for extracting
features from the current depth-frames and producing a good
initial hand pose if necessary, as shown in Fig. 1(b). Our
methods are able to recover from error, fast, reliable and robust
against occlusions.

The rest of the paper is organized as follows. First, we
review two important categories of hand pose estimation meth-
ods in Section II, i.e. model-based tracking and discriminative-
based detection. In Section III, we present a novel hand pose
tracking framework followed by a description of the settings
for training the model in Section III-B3. Results and analysis
are given in Section IV. Finally, the conclusion in this paper
is presented in Section V.

II. PREVIOUS WORK

There has been a variety of approaches proposed over the
last decade for hand pose estimation. These techniques rely
on markers or wearable gloves, RGB input from single or
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multiple cameras, and more recently depth camera or RGB-
D input. Good overviews of earlier and recent work are
given in [3] and [1]. In this section, we will review only
more recent work relevant to our approach based on a single
depth-frame captured by depth camera. Hand-pose estimation
methods can be divided into two main categories: appearance-
based (discriminative) methods and model-based (generative)
methods.

The first group of approaches is based on discriminative
models that aim at directly predicting the joint locations
from RGB-D or depth images. These models are often used
in detection-based framework. Some popular architectures in
this group include decision forests [4], [5], [6], [7]1, [8], [9],
part-based models [10], and deep models. We will focus on
deep models and readers can refer to [1] for an overview
of other detection-based approaches. Follow the current trend
in Computer Vision, deep neural nets have been explored
for hand pose estimation. Tompson et al. [11] proposed a
three-stage pipeline including hand detection with a decision
forest, joint location estimation with a deep network, and joint
refinement with inverse kinematics (IK). They also introduced
a large-scale dataset for training and evaluation called NYU
hand dataset, so this paper/method is referred as DeepNYU
[11]. Oberweger et al. [12] employed a similar deep network
but proposed to learn a prior subspace to replace the IK stage.
Farabet et al. [13] developed a pixel-labeling approach which
predicts joint labels for each pixel and followed by a clustering
stage to predict joint locations. This approach is inspired from
a similar method in human pose recognition problem [14] but
a deep network was used instead of a decision forest.

The second group consists of generative, model-based meth-
ods. This type of method usually has four main building
blocks: a hand model, a similarity function measuring the
difference between the observed image and the model, an
optimization algorithm (e.g. Particle Swarm) to maximize the
similarity function with respect to the model parameters, and
an initial pose for the optimization starting point. This model-
driven system usually found in tracking-based domain [15],
[16], [17], [18], [19].

Oikonomidis et al. [15] proposed a model-based method us-
ing particle swarm optimization (PSO). This method achieves
15 fps with GPU acceleration and uses skin color segmentation
which is sensitive to lighting. Oikonomidis et al. [20] later
presented a more advanced sampling strategy that improves
tracking efficiency without compromising quality. However,
gradient-based optimization approaches converge faster and
more accurately than PSO when close to the solution, and
are therefore well suited for realtime applications. Melax et
al. [16] proposed a tracking method based on depth by using
efficient parallel physics simulations. Although this method is
fast, finger articulations are often incorrectly tracked. Ober-
weger et al. [17] proposed a model-based method, called
DeepPrior, that can learn to generate realistic depth images of
hands and to predict updates that improve the current estimate
of the hand pose given the input depth image and a generated
image for this estimate. The method uses a feedback loop
which is constructed by Deep Networks learned from training
data rather than a carefully designed similarity function and an
optimization algorithm. Paliouras et al. [19] aim at automating
the definition of the objective function in the optimization
problem of model-based methods. All these works require
careful initialization in order to guarantee convergence and
therefore rely on tracking based on the last frames’ pose or
separate initialization methods. Such tracking-based methods
have difficulty handling drastic changes between two frames,
which are common as the hand tends to move fast.

There have been some works trying to combine both dis-
criminative and generative models into a unified framework
[21] [22] [23]. Qian et al. [21] proposed a hybrid method
that uses a simple hand model consisting of a number of
spheres in combination with discriminative fingertip detection.
This method achieves 25 fps but requires the fingertips to be
visible, otherwise tracking would be hard since it could easily
be occluded or misdetected.

III. OUR PROPOSED HAND POSE TRACKING FRAMEWORK

In this section, we first present a tracking-by-detection
approach to hand-pose tracking problem using deep learning
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techniques [24], particularly CNN and RNN. Then we describe
a model-based tracking to simulate the process of model fitting
by cascade RNN regression.

The first proposed model is a RNN that takes depth video
frames as inputs and returns the estimated hand pose (See Fig.
1(a)). This model can be equivalently written in the tracking
probability form as follows,

T

'7XT) = HP(Zt|Z<t7X§t) (D

t=1

P(thz, ~~~aZT\X17X27 .

where z; and x; are the estimated hand poses and the input
depth-frame at time ¢, respectively. Z.; is a history of all
previous locations before time ¢, and X<, is a history of all
input frames up to time t.

The second proposed framework consists of two main
components: pose cascade regression and tracking-detection
gating mechanism (see Fig. 1(b)). The pose regression module
is a recurrent neural network that takes estimated hand pose as
input and returns the improved hand pose estimation at each
step/stage. The tracking-detection gating mechanism allows
the model to choose between previously estimated pose and
the pose prediction from CNN.

A. Tracking-by-detection approach

1) Modeling: We consider at each time step ¢ of RNN,
the input depth-frame x; is first gone through a convolutional
network to extract visual features. This gives us a feature
vector ¢(x;) of the input depth-frame x; as follows,

¢(x¢) = CNNg, (m(x;)) 2

where CNN is a convolutional network with its parameters
0. and m(-) denotes the preprocessing step including hand
localization and segmentation and returning the local window
containing only the current tracked human hand. The prepro-
cessing steps are discussed in details in Section III-A2.

This feature vector is then fed into a RNN and the RNN
updates its internal state h; based on the previous hidden state
h;_1, previous estimated hand pose z;_; and the current frame
feature vector ¢(x;) as follows,

ht = RNNGT (htfh itfh (b(xt)) (3)

where RNNy_ can be any recurrent activation functions such
as gated reccurent units (GRUs) [25], long short-term memory
units(LTSMs) [26], or a simple logistic function with their
parameters 6,..

Using the updated hidden state h;, the RNN computes the
predictive distribution over the hand pose’s history as follows,

P(Z¢|Z<t, 9(X<¢)) = outg, (hy) “4)

where 6, is a set of parameters defining the output neural
network. The whole process (Egs. (2) - (4)) is iteratively
applied as a stream of new frames comes. Fig. 1(a) graphically
illustrate this process.

2) Pre-processing: To extract CNN visual features, we first
detect the hand location in the input depth-frame. Then, a
fixed-size metric cube is segmented from the depth image
around the hand. The cube is resized to a 128 x 128 and the
depth values within the cube are normalized to [—1,1]. The
depth values are clipped to the cube sides front and rear. This
preprocessing step was also done in [6] to provide invariance
to different hand-to-camera distances.

3) Training: The CNN that we constructed to extract visual
features consists of three convolutional layers, three max-
pooling layers and three fully-connected layers. This is a
generic network similar to the one in [27].

Let C' denote a convolutional layer, P a pooling layer
and F'C denote a fully connected layer. Both C' and FC
layers consist of Rectified Linear Unit (ReL.U) [28] activation
functions. For C' layers, the size is defined as (w X h x d),
where the first two define the dimension of filters and the last
one is the number of filters. For P layers, the size is defined as
(wx h). The convolutional network can be described concisely
as C(5xHx8) = P(Ax4) - C(5x5x8) = P(2x2)—
C(B3x3x%x8) - P(1x1)— FC(1024) — FC(1024) —
FC(30).

For the RNN, we consider a simple network with one hidden
layer with 30 units, the output layer having the dimension of
J x 3, where J is the number of joints, and the input layer
has the dimension of the last layer of CNN, i.e. 30, plus the
dimension of the output layer.

We optimize the network parameters by using error back-
propagation and apply the stochastic gradient descent (SGD)
algorithm. The batch size is 128. The learning rate decays
over the epochs at the rate of 0.95 and starts with 0.01. The
networks are trained for 1000 epochs.

At each SGD update, we generate a minibatch of examples
by the following steps:

o Choose a group of consecutive frames

o Extract their CNN features and ground truth pose

o Provide groundtruth pose and corresponding CNN fea-

tures as the input sequences for RNN

« Receive groundtruth pose shifted (i.e. starting from frame

t + 1) as the output sequences for RNN

After these steps, each training example is a pair of data,
containing a sequence of CNN features, and a sequence of
ground-truth joint locations. We use this minibatch of N
generated examples to compute the gradient of the minibatch
log-likelihood.

B. Model-based tracking approach

1) Modeling: For each input depth-frame ¢, we also first
compute its CNN’s feature vector ¢(x;). However, the role
of RNN is now to evolute from the initial state of the hand
pose to the correct one given the feature vector ¢(x;) of the
current depth-frame. Note that the input depth-frame also has
gone through the pre-processing step as described in Section
1I1-A2.

This feature vector is also fed into a RNN and the RNN
updates its internal state hgk) based on the previous hidden
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state hgkil) and previous estimated hand pose igkfl) as

follows,
h{* = RNNy, (n{F71 7+ (5)

where the first input in the sequence of RNN (with K stages)

igl) = iglﬁ is the estimated pose of the previous frame ¢ — 1.

The initial hidden state of RNN h{" = ¢(x,).

Using the updated hidden state hgk), the RNN computes the
predictive distribution over the hand pose’s history as follows:

p(aF 12 ¢ (x{=))) = outy, (h{P) ©6)

where 6, is a set of parameters defining the output neural
network. This whole cascade fitting process is iteratively
applied to improve the estimated pose at each time step for
the current depth-frame. Fig. 1(b) graphically illustrates this
process.

2) Hand pose subspace modeling: Besides using joints co-
ordinates to represent hand pose, we also model hand pose via
PCA. A hand pose subspace is learned from training data. In
other words, we learn two functions PoseToVec and VecToPose
to perform foward and inverse transformation between feature
vector embedding space and joint coordinate space.

3) Training: The number of hidden units in each stage of
the RNN is the same as the first framework, however, the
dimensions of the inputs and outputs are both J x 3.

We also use SGD but the way that we generate training
samples are completely different. At each SGD update, we
generate a minibatch of examples by the following steps:

e For each video frame, extract its CNN features

o The input of the first stage of RNN is the hand pose
estimated from CNN

o The output at each stage of RNN is generated based on
the distance between the first stage’s input pose and the
ground truth pose of the current frame so that the final
stage will equal to the ground truth pose.

According to our experiments, we use this training strategy
throughout this paper since it achieves our training target
which is improving pose estimation stage-by-stage (See. Fig.
2 and Fig. 3).

Average Error / mm
5
8

30

Stage

e—e Our PR-CNN

Fig. 2. Average joint errors over 10 recurrent stages

IV. EXPERIMENTS

In this section, we evaluate the performance of our pro-
posed framework on two different datasets including real
and synthetic data. We also perform two different sets of
experiments which include normal and occlusion cases to show
the robustness of our proposed approaches.

A. Datasets

There exist few public datasets for hand pose estimation.
Most early works perform quantitative evaluation only on
synthetic data. Several recent hand tracking works release
large enough training and testing data which allow a fair
comparison. We evaluated our method on both real data and
synthetic (occluded) data including the NYU Hand [11] and
ICVL [6] datasets.

Real data: ICVL dataset [6] consists of 180K ground
truth annotated training images captured from 10 different
subjects of varying hand sizes. The dataset also contains two
testing sequences (denoted A and B) each containing 1000
frames capturing various poses with severe scale and viewpoint
changes. NYU dataset [11] contains 72K training and 8K
test frames which are well annotated (i.e. containing J = 36
annotated joints). We follow the evaluation protocol of [17],
[11] and use the same subset of J = 14 joints. The training
set contains hand poses of one person, while the test set has
hands from two persons. It also shows a high variability of
poses, however, this can make pose estimation challenging.
The dataset was captured using a structured light RGB-D
sensor but we used only the depth images for our experiments.

B. Evaluation metrics and Methods for comparisons

Metric there are three quantitative metrics. The first two
consists of the average and max per-joint (in millimeters)
error across all frames. The third one is success rate, i.e. the
percentage of correct frames whose average (or max) joint
distance error is lower than a threshold (~20mm). This strict
measure has been described and used in [6].

Methods We demonstrate the efficacy of our frameworks by
comparing them to the Deep-model based methods including
DeepNYU [11] and DeepPrior [17]

C. Experiments on Real Dataset

First, we perform on the normal testset of the two real
databases, i.e. ICVL and NYU. This experiment shows how
good the model can handle distinct poses in ICVL testset and
unconstrained poses using NYU testset. Second, we perform
another experiment where we add random occlusions in the

3323,

Fig. 3. Joint prediction over different stages (1, 2, 4, 8, 10)
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Fig. 7. Comparison of two methods (from top to bottom: Oberweger et al.
and our PR-CNN) on the NYU dataset with occlusions.

depth input frames (input frames are chosen randomly). The
results in terms of prediction errors for two experiments are
shown in Fig. 4 for ICVL testset and Fig. 5 for NYU testset.
Noting that the per-joint errors are also computed for each
finger and palm which are indexed as C: palm, T: thumb, I:
index, M: middle, R: ring, P: pinky, W: wrist. The qualitative
results for the first and the second experiments are shown
in Fig. 6 and Fig. 7, respectively. As we can see from the
second experiment, the perfomrance of DeepPrior is affected
significantly by occlusions while our PR-CNN method still
work well in this case. Our methods achieve competitive
results comparing to other state-of-the-art methods.

V. CONCLUSION

We proposed two different network architectures for track-
ing 3D hand poses. Both are using CNN and RNN. With
the second architectures, i.e. model-based approach, we show
that this framework can automatically correct the fail detection
made in previous frames due to occlusions. We have compared
the architectures on two datasets and shown that they are
competitive with previous state-of-the-art both in terms of
localization accuracy and robustness.
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