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Abstract—The distance set is known to be a versatile local
descriptor of shape. As this is simply a set of ordinary distances
between sample points on a shape, it is easy to construct and
use. More importantly, it remains invariant under many settings
and deformations, unlike other typical descriptors. However, in
shape matching with distance sets, there is a tradeoff between
performance and computational feasibility. In this paper, we
present a new descriptor by improving the choice and order
of elements in the distance set. We show that our descriptor is
more efficient for shape matching from the viewpoint of computer
algorithms. Additionally, we demonstrate that, although our
descriptor runs more quickly in practice, it is equivalent to the
original distance set in terms of shape retrieval.

Index Terms—distance set, local descriptor of shape, shape
matching, Hilbert distance

I. Introduction

A shape is usually drawn with line drawings, figures, or
object contours. For a reference point on a shape, a local
descriptor is a means of expressing part of the shape around
that point. Local descriptors are used to define a matching cost
function that quantifies the dissimilarity between shapes. Thus,
shape matching is strongly reliant on the local descriptor, and
so a number of studies have examined various descriptors [1],
[2], [3], [4], [5], [6], [7], [8], [9]. From a practical point of
view, the distance set [2] is the most versatile local descriptor.
The distance set around a reference point is simple to construct
and easy to implement, because it is simply a set of ordinary
distances between a given point and several nearby points.
Consequently, it is invariant under isometric operations such
as translation, rotation, and reflection. In addition, the distance
set remains unaffected by whether a shape is represented with
an ordered set of points or an unordered set. Furthermore, from
the viewpoint of computer algorithms, the distance set is worth
revisiting for practitioners. This is because it is essentially
based on the sorting of distances, which is a well-studied
problem in computer algorithms. However, the computational
feasibility of shape matching can be an issue when using the
distance set. In shape matching, the basic operation is the
search. Generally, the larger the number of distances in the
set, the better the resulting performance. However, the number
of searches grows factorially with respect to the number of
distances. This problem becomes serious as the number of
distances increases. Thus, there is a tradeoff between perfor-
mance and computational feasibility. Based on the above, the

purpose of this paper is to address the problem by reducing
the factorial growth. We thus present a new descriptor that is
also a set of ordinary distances. The difference between the
original distance set and our descriptor is simply in the choice
and order of the distances. We show that our descriptor is
more computationally efficient for shape matching, and, using
a dataset of line drawings, demonstrate that it is equivalent to
the distance set in terms of shape retrieval.

This paper is organized as follows. We examine the distance
set in Section II. Based on this examination, we present a new
local descriptor in Section III. Using a dataset of line drawings,
we then present several experimental results in Section IV.
Finally, we summarize the main points of this paper in Section
V.

II. Preliminaries

A finite set of points is usually constructed by selecting
some points on the shape of interest, known as sample points.
The set of sample points is called the sample set. Shape match-
ing, which is fundamental in shape recognition, is formulated
in terms of determining the correspondence between sample
sets.

A. Shape Matching and Dissimilarity

We describe a unified formulation of shape matching. Let
S1 and S2 be shapes, and Ŝ1 and Ŝ2 be their respective sample
sets. Shape matching generally aims to find the correspondence
between these sample sets. We represent the correspondence
as a many-to-one map M : Ŝ1 → Ŝ2, and denote the set of
correspondences by

M =
{
M |M : Ŝ1 → Ŝ2

}
. (1)

Given a matching cost function (MCF) C : Ŝ1 × Ŝ2 → R, the
optimal correspondence in terms of C is described by

M∗ = argmin
M∈M

1∣∣∣ Ŝ1

∣∣∣
∑
p∈Ŝ1

C (p,M(p)) . (2)

Instinctively, the MCF is designed to express how different
the distribution of sample points around p in Ŝ1 is from that
around M(p) in Ŝ2. Using the optimal correspondence, the
dissimilarity between S1 and S2 is measured by

d (S1,S2) =
1∣∣∣ Ŝ1

∣∣∣
∑
p∈Ŝ1

C (p,M∗(p)) + σ
(∣∣∣ Ŝ1

∣∣∣ , ∣∣∣ Ŝ2

∣∣∣) , (3)
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Fig. 1. Elements in Ŝ and p = (0, 0).

where σ is a function that tends to return a large real
number as the difference between

∣∣∣ Ŝ1

∣∣∣ and
∣∣∣ Ŝ2

∣∣∣ increases.
The dissimilarity between the shapes is the essence of shape
recognition.

B. Distance Set

A sample point on the shape to which we are referring
is called a reference point. In fact, the distance set (DS) [2]
represents the distribution of sample points around a reference
point as the set of distances between that point and some
others. If the number of elements in the set is fixed to n,
the set is called the n-DS. For any shape S, the n-DS around
p ∈ Ŝ is described by

sn(p)
def
= {l1(p), . . . , ln(p)} , (4)

where li(p) denotes the Euclidean distance between p and the
i-th nearest point in Ŝ, that is,

l1(p) ≤ · · · ≤ ln(p). (5)

For example, if Ŝ = {(0, 0), (1, 0), (0, 2), (3, 4)} and p = (0, 0)
in the x-y plane, as shown in Figure 1, then the 1-DS, 2-
DS, and 3-DS around p are s1(p) = {1}, s2(p) = {1, 2}, and
s3 = {1, 2, 5}, respectively. For all p ∈ Ŝ1 and q ∈ Ŝ2, the
MCF of the n-DS is defined by

CDS(p, q)
def
= min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
n

n∑
i=1

∣∣∣li(p) − lφ(i)(q)
∣∣∣

max
{
li(p), lφ(i)(q)

}
∣∣∣∣∣ φ ∈ Φn

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (6)

where li(p) ∈ sn(p) and lφ(i)(q) ∈ sn(q) for all i, and Φn is the
set of injections from {1, . . . , n} to {1, . . . , n}.
C. Importance of Injection in the MCF

We have explained the matching cost between the DSs.
Whether the matching cost is provided by an injection is
important. For example, assume s2(p) = {1, 2}, s2(q) = {2, 3},
and s2(r) = {2, 30}, as illustrated in Figure 2. Each dot in the
figure denotes a sample point. In the figure, it appears that p
is more similar to q than r. This is supported by the injection.
In fact,

CDS(p, q) < CDS(p, r), (7)

because their minimal costs are

CDS(p, q) =
1
2

( |1 − 3|
max{1, 3} +

|2 − 2|
max{2, 2}

)
=

1
3
, (8)

and

CDS(p, r) =
1
2

( |1 − 30|
max{1, 30} +

|2 − 2|
max{2, 2}

)
=

29
60
, (9)

respectively. However, if the matching cost is provided by an
ordinary many-to-one map, rather than an injection, then the
inequality does not hold, because, in this case, CDS(p, q) = 1/3
and

CDS(p, r) =
1
2

( |1 − 2|
max{1, 2} +

|2 − 2|
max{2, 2}

)
=

1
4
. (10)

Thus, whether the matching cost is provided by an injection
plays a vital role in the MCF of the DS.

D. Merits and Demerits of the DS

Before moving to the main results, it is worthwhile clarify-
ing the merits and demerits of the DS.

There are three notable merits. First, the DS around a
reference point is simple to construct and easy to implement,
because it is solely a set of ordinary distances between the
given point and several nearby points. Thus, we need only
sort the distances (a nearest point search), which is a well-
studied problem in computer science, when forming the DS
around that point. Second, as the DS consists only of Euclidean
distances, it is clearly invariant under isometric operations
such as translation, rotation, and reflection. Third, the DS
remains unaffected by whether a shape is represented with
an ordered set of points or an unordered set. Compared with
other typical descriptors [1], [3], [4], [5], [6], [7], [8], [9],
the DS remains invariant for many settings and deformations.
When we consider the practical applications of the DS, these
merits will be advantageous.

The disadvantage of the DS is the computational cost of
the MCF. Generally, the performance of the n-DS increases
with n, as will be demonstrated later. Accordingly, we wish to
set n to be a large number. The minimization in (6) searches
for the best injection from all the n! injections in Φn. Hence,
the number of searches grows factorially with n. Consequently,
the MCF tends to be computationally infeasible as n increases,
and thus there is a tradeoff between performance and computa-
tional feasibility. The computational cost of the minimization
operation is a serious problem, and the focus of this paper is
to reduce it.

III. Main Results

We start by considering the computational complexity of
matching with the n-DS. Incidentally, little attention was given
to the computational complexity in the original paper [2]. In
the following, we use O-notation; refer to [10] for details.

A. Complexity of the DS

Let the number of elements in the sample set of a shape
be m. The simplest algorithm for constructing the n-DSs for
all sample points can be described as follows: 1) Form the
m × m distance matrix whose components are the Euclidean
distances between two sample points, and 2) find the n sample
points nearest to each sample point. Forming the distance
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Fig. 2. Distance sets around p, q, and r.

matrix takes O
(
m2

)
time. Finding the n sample points nearest

to each sample point takes O(m log m), because finding these
essentially corresponds to sorting the distances. Thus, the total
time required to construct the n-DSs for all sample points is
O(m2 log m).

Next, the simplest algorithm for matching two shapes with
the MCF should be to search for the best injection. The
computation time of the MCF in (6) is O(n!n), because the
summation takes O(n) time and there are n! injections in Φn.
The total time required to match two shapes having m sample
points with the MCF is O(m2n!n).

Table I summarizes the time complexity of the n-DS. We
have seen that making all the n-DSs takes O(m2 log m) time
and matching two shapes takes O(m2n!n) time. Clearly, the
O(m2n!n) time is the more serious issue.

B. A New Descriptor

We describe a new criterion to reduce the O(m2n!n) time.
We deal with the convex hull of the sample set of a shape.
Consider two sample points a and b in the sample set. We
assume that the region enclosed by the convex hull is bounded.
Then, the line through the two sample points intersects the
convex hull at two points. Let u and v denote the intersection
points, illustrated in Figure 3. The shaded portion in the figure
denotes the region enclosed by the convex hull. For any real
number δ > 0, we define the distance between a and b as

d (a, b ; δ)
def
=

∣∣∣∣∣∣log
(ua + δ)(vb + δ)

(ub + δ)(va + δ)

∣∣∣∣∣∣ , (11)

where ua, for example, denotes the Euclidean distance be-
tween u and a. We call this distance the δ-Hilbert distance,
because the limiting distance limδ→0 d (a, b ; δ) can be seen
in the work of David Hilbert [11], [12]. Our distance can be
regarded as an extension of his distance metric. If we allow δ
to be zero in (11), the fraction with δ = 0 denotes the cross
ratio [13], [14] of u, a, b, and v.

We now explain the geometrical meaning of the δ-Hilbert
distance. Consider two circles centered on u and v with a
radius of δ. Let u′, v′ denote the outer intersection points where
the two circles cut the line through the sample points a and b
(see Figure 3). Using these points, (11) can be simplified to

d (a, b ; δ) =

∣∣∣∣∣∣log
u′a · v′b
u′b · v′a

∣∣∣∣∣∣ . (12)

a

b

δ

δ
u v

u′

v′

Fig. 3. Convex hull of a sample set.

The fraction is again the cross ratio of the four points. As a
result, setting δ > 0 enlarges the convex hull by a margin of
δ. Henceforth, we call δ the margin width.

We now define our descriptor with the δ-Hilbert distance.
Just as for the DS in (4), our descriptor is a set of Euclidean
distances between a reference point and other sample points.
The difference between the DS and our descriptor lies in the
choice and order of the distances. Whereas the DS sorts the
distances in ascending order, our descriptor sorts the distances
in ascending order of their corresponding δ-Hilbert distances.
That is, for any shape S and reference point p ∈ Ŝ, our
descriptor, called the n δ-Hilbert distance set (n-HDS), is
described by

s′n(p ; δ)
def
=

{
l′1(p), . . . , l′n(p)

}
, (13)

where n is the number of elements in the set, and l′i(p) denotes
the Euclidean distance between p and the i-th nearest point in
Ŝ in terms of the δ-Hilbert distance. Consequently, the nearest
sample points vary with δ, and are not always the same as
those in the DS. The first point to note is that the elements
in the set are Euclidean distances, but not δ-Hilbert ones, and
the second point is that the inequality,

l′1(p) ≤ · · · ≤ l′n(p), (14)

does not always hold. For all p ∈ Ŝ1 and q ∈ Ŝ2, the MCF
for the n-HDS is defined by

CHDS(p, q)
def
=

1
n

n∑
i=1

|li(p) − li(q)|
max {li(p), li(q)} , (15)

where li(p) ∈ sn(p) and li(q) ∈ sn(q) hold for all i. This
corresponds to a limited version of the MCF for the DS,
because letting φ in (6) be the identity mapping immediately
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TABLE I
Time complexity.

Procedure Detail Steps n-DS n-HDS

making n-DS/HDS

detecting convex hull – O(m log m)
making δ-Hilbert distance matrix – O

(
m3

)
making Euclidean distance matrix O

(
m2

)
O

(
m2

)
finding n nearest points O(m2 log m) O(m2 log m)

matching with n-DS/HDS matching two shapes with the MCF O(m2n!n) O(m2n)

gives CHDS(p, q). In (15), it is important that there is no
minimization operation, unlike the MCF for the DS. Instead
of the minimization, the HDS computes the matching cost by
choosing an appropriate margin width for δ.

It is important to note the role of the sorting operation
based on the δ-Hilbert distance. For the sample set of a
shape, an internal sample point inside the convex hull tends
to be one of the n nearest points to the other sample points.
At the same time, a sample point on the convex hull tends
not to be one of the n nearest points to the other sample
points, particularly those sample points on another side of the
convex hull. Intuitively, whereas the DS sorts the distances
according to the relative locations of their points, the HDS
sorts according to the absolute locations of the points in the
convex hull.

C. Complexity of the HDS

We now consider the time complexity of the n-HDS. Let the
number of elements in the sample set of a shape be m. The
simplest algorithm for constructing the n-HDSs for all sample
points can be described as follows: 1) Detect the convex hull
of the sample set; 2) make the m×m δ-Hilbert and Euclidean
distance matrices; and 3) find the n nearest sample points in
terms of the δ-Hilbert distance to each sample point. The
time required to form the convex hull of the sample set is
O(m log m). Making the δ-Hilbert distance matrix takes O

(
m3

)
time, and the Euclidean distance matrix takes O

(
m2

)
time.

Because finding the n nearest sample points in terms of the
δ-Hilbert distance to each sample point takes O(m log m), the
time required to construct the n-HDS for all sample points is
O(m2 log m). Overall, making the n-HDSs for all sample points
runs in O

(
m3

)
time. This is slightly longer than required for

the DS.
Next, the algorithm for matching two shapes with the MCF

is solely the summation in the MCF. Thus, the computation
time of the MCF in (15) is O(n). When the two shapes
have m sample points, the total matching time with the MCF
is O(m2n). This is somewhat less than for the DS. Table I
summarizes the time complexity of the n-HDS. We can see
from this table that, although the n-HDS takes slightly longer
to make the set, it requires far less time to match shapes.

IV. Computational Experiments

We compared the DS and the HDS in terms of their shape
retrieval rates and actual runtimes.

A. Dataset

We used the dataset available from [15] employed in [9].
This dataset consists of 200 single-stroke line drawings. All
the line drawings fall into 10 shape classes, each of which
contains 20 drawings. Figure 4 illustrates some of the single-
stroke line drawings in the 10 classes.

The size of each line drawing was normalized by making
its bounding box a fixed area of 40000, in keeping with the
aspect ratio of the box. After this normalization, 15 sample
points were uniformly extracted from each line drawing to
form the sample set. As all the sample sets were the same
size, the second term of the dissimilarity in (3) was zero.

B. Evaluation

Each line drawing was selected as a query and matched
against all 200 line drawings. The number of correct matches
in the top 20 matches was counted by examining the line
drawings found in the first 20 most similar matches for
dissimilarities. As every class has 20 line drawings, the total
number of correct matches is at most 4000 when all the line
drawings have been selected as queries. Thus, we obtained
the overall retrieval rate for the top 20 matches by dividing
the number of correct matches by 4000. The effectiveness of
the local descriptors was then assessed in terms of the retrieval
rates. Such an evaluation is called a Bulls-eye test, and is often
used in shape retrieval (see [2], [7], [9], for example).

C. Results

Figure 5 shows the retrieval rates for the n-DS and n-HDS
with a margin of δ = 600. Table II shows the runtime (s) of
the overall experiment, which consists of both making the n-
DSs/HDSs and matching all 200 line drawings. We abandoned
the experimental results for the 9-DS and above, because these
took too long. The experiments were performed on a personal
computer with an Intel Core i7-975 processor and Windows
7. Both the DS and HDS were implemented in R [16].

We can see from Table II that the runtime of the HDS is
much less than that of the DS. This agrees with the asymptotic
analysis in Table I. Incidentally, the 589946 and 1346 seconds
in the case of n = 8 correspond approximately to a week and
22 minutes respectively. Of course, the runtime will depend
on the specific computer environment.

Figure 5 shows that the performance of both n-DS and n-
HDS improved as n increased. Somewhat surprisingly, we can
see that the n-HDS is equivalent to n-DS in terms of shape
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Fig. 4. Example single-stroke line drawings in the 10 classes: circle, cloud, club, diamond, drop, heart, spade, spiral, star, triangle.

retrieval. This implies that the matching cost based on the δ-
Hilbert distance works well.

V. Summary

We have presented a new descriptor, called the HDS, using
a matching cost based on the δ-Hilbert distance. Although the
HDS takes a slightly longer time to construct than the DS, it
is significantly faster at matching shapes. Using various line
drawings, we demonstrated that, although our descriptor runs

in a much shorter time, it is equivalent to the DS in terms of
shape retrieval.

It is clear that the choice of a good margin width plays a
vital role in shape matching. Thus, finding an efficient tuning
mechanism for this margin width is an important area of future
study.
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TABLE II
Runtime (s).

n 1 2 3 4 5 6 7

n-DS 1011 1366 2220 4489 11673 38538 140281
n-HDS 1178 1240 1258 1275 1311 1329 1374

n 8 9 10 11 12 13 14

n-DS 589946 – – – – – –
n-HDS 1346 1353 1373 1371 1376 1330 1350
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Fig. 5. Retrieval rate.

computational experiments.
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