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Abstract—Augmented Reality (AR) is an active and exciting
topic aiming to create intuitive computer interface by blending
reality and virtual reality. One challenge of AR is to align virtual
data with the environment. Typically, one uses a marker-based
approach such as a thick-bordered black and white 2D marker
which allows one to recover the relative pose (location and
orientation) of a camera in real time. However, bar-code markers
do not contain any intuitive visual meaning, and they thus look
uninteresting and uninformative. We propose a new type of
marker, referred to as a StereoTag, which embeds a meaningful
stereogram image hiding 3D coded/decoded information. From
experiments conducted, our StereoTag is found to be relatively
robust under various conditions and thus could be widely used
in future AR applications.

I. INTRODUCTION AND BACKGROUNDS

A. Augmented Reality and Its Common Marker Types

For decades, researchers have been trying to create intuitive
virtual environments by blending reality and virtual reality to
let general users interact with the digital domain as easily
as with the real world. The result is “augmented reality”
(AR) whereby virtual objects seamlessly superimpose upon
a real environment in three dimensions and in real time,
thereby allowing users to interact with the digital contents
as easily as with the actual objects. AR is widely used in
medical visualisation, manufacturing, maintenance and repair,
path planning, entertainment, and military applications [1], [2].
One of the earliest AR interfaces was created by Sutherland
over 50 years ago [3].

Creating an effective AR experience requires the use of
various tools such as graphics rendering tools (for creating the
virtual content), tracking and registration tools (for aligning
the real and virtual views), and various display or interaction
techniques. However, one central problem of AR applications
is determining computer-generated object and its position and
orientation to align them accurately with physical objects. Put
simply, how does the system know what and where to place
the graphic overlay?

At the current stage, graphical content is often placed on
pre-defined markers as they provide a convenient way for
detecting the encoded contents and calculating the camera
poses. An image marker system such as BazAR [4], [5] that
uses natural (colour) picture as markers. It works based on
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(a) Augmented Reality application running on a smart-phone

(b) Template Marker (c) Bar-code Marker (d) Circular Marker

Fig. 1. Examples of Augmented Reality application and Markers.

computer vision and feature detection techniques. As manual
image registration are required, it is suitable for augmented
reality applications with a smaller dataset such as children’s
Magic books [6].

For robust and unambiguous applications [7], black and
white markers with thick borders are more frequently used [8],
[9], [10]. There are a few common types of such markers:
“template markers” (Fig 1(b)), “bar-code markers” (Fig 1(c)),
and “circular markers” (Fig 1(d)) [7]. These markers are made
up of a white/light coloured padding, surrounded by a thick
black/dark coloured border and a high contrast pattern of either
a template figure, a square or a circular 2D bar code. The
pattern is what makes these markers unique. The black border
of markers are recognised, tracked and is used to calculate the
position in 3D space. There also exists other fiducial marker
designs combining payload with the structure of the tag such
as [11], [12]. However, all of them still only hold black and
white “random” patterns.

There are many AR frameworks developed to utilise one of
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the three markers above based patterns, such as the ARToolkit
from www.artoolkit.org. In an AR application, an image of
the real environment is captured using a camera, then search
through each image is performed to identify any square shapes
(probably markers). Secondly, in case a square is identified,
then the application uses some algorithms to calculate the
distance and orientation of the camera about the marker square
detected. The third step is marker recognition, the symbol
inside of the marker is scanned to read bar-code, or matched
with templates in memory, to determine which virtual model
to be displayed.As the pose of the camera is estimated, the
computer graphics model is rendered using the same pose. It
is placed as a top layer in the real environment and fixed to
the square marker. Lastly, the final output is displayed to the
user, who observes graphics overlaid on the real environment.

We believe that the step of identifying/recognising markers
can be improved due to the following problems:

o Template marker may contain some meaningful picture
of the object it is presenting; such as a flying eager
in Fig 1(b). Feature matching techniques are used for
identifying template markers (by comparing them with
marker templates stored in a database). Therefore, it
must be trained thoroughly for proper template matching.
Template recognition is sometimes unreliable due to
the undesired similarity between template markers. [13].
Thus, the number of different templates should be small
for good results.

o Bar-code and circular markers are coded in “0” or “1” by
dividing the marker region into multiple black and white
spaces (bar-codes). Decoding techniques are used to
decrypt the encoded data. It is relatively easy to detect and
recognise bar-code using computer vision technologies.
However, these markers contain meaningless information
to the users. It is very hard for general people to know
which marker represents which virtual object just by
simply looking at the black and white pattern themselves

(Fig 1(c)).
B. Stereogram and its Unique Properties

Stereogram or autostereogram, also known as Magic Eye
picture [14], is a two-dimensional (2D) flat image. When
viewed it in a particular way (cross-viewing or parallel-
viewing); a hidden floating object will appear in three-
dimensional (3D). A stereogram picture is generated by re-
peating patterns many times to present a range of 3D depth
forms within certain constraints [15]. The distance between
repeating patterns defines the depth of a virtual point perceived
by the viewers.

The principle behind 3D illusion perception from a flat
stereogram is shown in Fig. 2(b). To perceive the 3D scene
from an image of this type, each eye must “see two different
points, or focus on a point behind the picture surface. Because
the image contains repeating patterns, the brain is forced to
think that the two points are the same. It then tricks the brain to
perceive this point at a different depth (usually behind) rather
than the actual picture surface.

Texture

Depth-map Stereogram image

(a) A autostereogram encodes both depth and texture information
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(b) Principles behind perceiving a stereogram

Fig. 2. Principle of Stereogram Images and How to view it.

It is not difficult to generate such stereograms, given a
3D profile Z(x,y) sampled on a grid of M x N, a strip
of chosen image pattern P(i,j) of sampled size M x N;
the detailed process can be found in [16]. There are also
many free tools offered to generate stereogram from sup-
plied depth and image pattern on the Internet, for instance,
http://www.easystereogrambuilder.com. If image patterns are
chosen carefully, we may get interestingly looking results. On
the other hand, retrieving 3D information from stereogram
images is an Ill-posed Inverse Optical Problem due to the
random nature of matching similarity and the structural ambi-
guity of repetitive patterns. Some early solutions to reconstruct
3D depth from random-dot autostereogram were proposed
almost three decades ago, e.g. [17], [18], [19]. In theory, 3D
reconstruction can be achieved using stereo vision techniques,
e.g. cropping a left and a right image from the picture, then
applying an available global stereo matching process [20] to
build a disparity/depth map.

C. Our Proposed Stereogram Marker

In this paper, we propose a new technique that optically
encodes binary data in a stereogram image. The stereogram
can be printed on a black-border square and used as a marker
in Augmented Reality applications. The proposed marker is
named “StereoTag”, its design is shown in Fig. 3(b). Each
StereoTag is a square with a dimension D measured in pixels
or millimetres; border thickness is 10% of D. The quadrilateral
property of the squares can be used to detect their four straight
lines and four corners. These are crucial for calculating the
poses of the markers and cameras in an AR application. The
internal image is a stereogram (size W x W) made of three
regions. The central area is a fixed image (region A that fills
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up 50% of the stereogram) and two repeated patterns on both
sides of region A (region B and region C' with 25% each).

D = Dimension

Internal Stereogram (a square)

(a) Traditional 2D Barcode maker

(b) Our proposed marker

Fig. 3. Our proposed autostereogram marker (right) v.s. a traditional 2D
Barcode maker (left).

Compare to traditional markers such as the 2D barcode
marker shown in Fig. 3(a). Our proposed StereoTag presents
two significant advantages:

« Virtually Informative Picture: The stereogram embed-
ded inside each marker is made from meaningful image
patterns, rather than “random black and white squares.

« Flexibility of Image Pattern: The decoded information
is independent of image patterns, we can use a broad
range of images to construct stereograms that encode the
same numeric information.

D. Structure of the Paper

The following sections will cover the detail of our proposed
techniques and organised as follows. Sec. II outlines the
design and implementation to achieve a reliable StereoTag.
Sec. III demonstrates initial results made from some conducted
experiments. Sec. IV then concludes the paper.

II. DESIGN AND IMPLEMENTATION

The design and implementation described in this section aim
to answer the following questions:

« How do we build a detectable StereoTag (Make).
+ How do we know what binary information the StereoTag
is encoded (Solve).

The formal question was briefly answered in Sec. I-C. More
detail will be further discussed in Sec. II-A; and solution to
the latter question will be outlined in Sec. II-B.

A. Encode Binary Information in Stereogram

Fig. 4 demonstrates basic steps of creating our proposed
marker (StereoTag). As described, our StereoTag has a thick
black border so that it is easily and reliably detectable under
various circumstances. The inside stereogram can encode some
optical machine-readable representation of data such as “one
dimensional” (1D) or “two-dimensional” (2D) bar-codes.

There are numerous 1D bar-code (that is made up of lines
and spaces of various widths) and 2D barcode (or matrix
code) standards. Codell, Code 32, Code 49, Code 93, Code

Barcode Rotate Scale

Texture Merged Image

Final Stereogram AR Tag

Fig. 4. Process of making a detectable stereogram-based AR marker.

128, EAN-8, EAN-13 [21] are some of the most popular 1D
barcodes. Well-known 2D bar-codes are VSCode, Aztec Code,
Data Matrix, Maxi Code, PDF417, Visual Code, ShotCode,
and QR Code [22]. Thanks to their popularities, there exists
many libraries to create and read these bar-codes. In theory,
we could utilise any of them to embed inside our stereogram
image. At this stage, we choose one of the most simple of 1D
bar-code — the ‘“Pharmacode”.

1) Pharmacode: Also known as Pharmaceutical Binary
Code [23], it is frequently used in the pharmaceutical industry
as a packing control system. Pharmacode can represent only a
single integer which is encoded in binary (using narrow bars
and thick bars only). The minimum Pharmacode is 2 bars and
the maximum is 16 bars, so the smallest number that could be
encoded is 3 with two narrow bars, and the biggest is 131070
(~ 2'7) with 16 thick bars. Each number corresponds to the
IDs of computer graphics models in the database.

2) Pharmacode as a disparity map (depth): A disparity
map holding depth of each pixel is needed to create stere-
ogram. Assume that we have a Pharmacode storing a number
between 3 and 131070. The Pharmacode block is 90 degree
clockwise rotated, scaled, and converted to a corresponding
disparity map Dx* (a W x W matrix where each element is a
number ranging between 0 and djs4x). The map Dx is used
to code to the distance in how many pixels are between a
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pair of corresponding points in a stereogram. As Pharmacode
normally contains black bars on white background, there are
only two intensity levels: 0 and d; 4x. We can encode black
coloured pixels in Pharmacode block as a O-level disparity
point, and white coloured pixels is coded as N-level disparity
point. A final disparity map is a grey-scaled image with
intensity ranged between [0,dp;ax]. darax represent the
maximum shift of a point from its origin in stereogram image;
for convenience, we choose dyjax = 6%.

3) A stereogram that optically hides a Pharmacode: The
central stereogram image will have its dimension of W x W.
In stereograms, two pixels with the same colour act as virtual
conjugate pixel projections in 3D and relate to one pixel in the
disparity map; these two pixels are the correspondent points.

First, we choose an image Ipqitern to be placed on the
marker, the image will need to be resized to W x H. It
is then copied to the central region of the stereogram. This
central picture is kept untouched (region A - Fig. 3(b)) and
will be used to repeat itself on the left and the right regions
(regions B and C). In other words, pixels with identical/same
colours to the left and right of a selected pattern are added
with different horizontal shifts according to the disparity map
D=x. The following implementations describe the process in
more detail:

1) From left to right:

for (y = 0; y < image.height; y++) {

for (x = startX; x < image.width/4; x++) {
depth = getValue(matrixCode , y, Xx);
xToDraw = x + W_pattern — depth;
xToGet = x;
if (xToDraw>=startX+W _pattern){
newPixel=getValue (stereogram ,y,xToGet);
setValue (stereogram ,y,xToDraw, newPixel );

}
}
}

2) From right to left:

for (y = 0; y < image.height; y++) {
for (x = startX/4; x >= 0; x—) {
depth = getValue (matrixCode, y, x);
xToDraw = x + depth;
xToGet = x + W_pattern;
newPixel = getValue(stereogram ,y,xToGet);
setValue (stereogram ,y,xToDraw, newPixel );
}
}

3) At this point, an autostereogram with a hidden Phar-
macode is made. The image is then decorated with a
thick black border to generate our final AR StereoTag.
Three examples of the StereoTag markers are shown in
Fig. 7(b), 7(c), and 7(d). All of them are hiding the same
Pharmacode shown in Fig. 7(a).

B. Marker-based Detection and Decryption

1) Detection: An AR system can estimate the pose of
the camera using the four corners (coplanar but non-collinear
points) of detected marker due to known constraints (a square
border) [24]. First, we need to find closed contours on the

(a) Original PharmaCode

(c) StereoTag 2

(d) StereoTag 3

Fig. 5. Three examples of our StereoTag markers created from the same
Pharmacode and various images found on the Internet.

input image. The inside image is checked for a correct marker
model. With a calibrated camera, the system can render virtual
objects in the right place. Some image processing steps are
used to detect thick-border markers, which are outlined below:

o Step 1: Convert the input image from RGB to greyscale.

o Step 2: Perform an adaptive binary thresholding method.

o Step 3: Detect contours using line detection, line fitting
and line sorting methods.

o Step 4: Search for all possible markers and extract
internal images.

Once marker’s border is detected, we can estimate both the
correct scale and pose of the camera: its location (x,y, z) and
its rotation angles (v, 3, ). These image-processing tasks are
well known and are therefore not discussed here; further detail
can be found in [25].

2) Decryption of StereoTag: The internal stereogram image
of the detected StereoTag is used to identify which binary
information was encoded, to render correct graphic on the
screen at marker location. This step is equivalent to a stereo
reconstruction process applied on two stereo images C; and
C5 with (1 is the left half of the stereogram and C5 is the right
half of the stereogram. The disparity levels ranged between 0,
dyax are known from the width of the internal stereogram:
dyax = %

3) Stereo Reconstruction: Stereo Reconstruction or Stereo
Matching is the process to extract depth information from a
stereo pair of images. Given a known disparity range, it can
output a disparity map, which characterises the observed 3D
surface.
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Assume we have two stereo images C7 and Cs, and a
disparity map D*. Map D* specifies the computational stereo
vision reconstruction of continuous optical surface from the
pair C; and Cs. Let R be a finite lattice supporting the
disparity maps D* = [d,, : (z,y)] € R. The 3D location
of every binocularly visible surface point is determined from
coordinates, (z1,y) and (x2,y), of the corresponding pixels
in the images via their horizontal distance: d, , = x122. The
reconstructed maps are either projected to one of the images
(left/right), or to Cyclopean coordinates: z = 1 (21 + z2).

Many stereo matching algorithms estimate disparity maps
D* by minimizing the globally energy E(D|Cy,C5) passing
through the two images Cy and C. The energy is a weighed
sum of the mismatch and non-smoothness terms as shown
below:

E(D|Cl, 02) = Emm(D|Cl, CQ) + ﬁEnS(D)

Block Matching Stereo (BMS) is a local stereo matching
algorithm is created by K. Konolige Bierling [26]. It com-
putes stereo matches that minimise the Squared Absolute
Differences (SAD) over local neighbourhoods. Semi-Global
Block Matching (SGBM) is a semi-global implementation of
BMS [27], SGBM combines a SAD-based local cost-function
and a smoothness-term in a global energy function. Both of
BMS and SGBM are available in the OpenCV package'.

Due to the availability and reliability, we have employed
SGBM for the decryption purpose. The product of SGBM
is a normalised grey-scaled disparity image. After an anti-
clockwise rotation of 90 degrees, we will retrieve the hidden
Phamacode. Fig. 6(b), 6(c), 6(d) display three decoded results
of the three tags that are previously shown in Fig. 5. Incorrect
pixels (near the borders) are presented in the decoded bar-
codes. However, the overall shapes of thick and narrow bars
are well reserved. In fact, approximately 95% of the three
decoded tags are the same as the original Pharmacode (with

pixel-by-pixel comparison).

(a) Original PharmaCode (b) Decoded Tag 1 (95.6% correct)

(c) Decoded Tag 2 (95.0% correct) (d) Decoded Tag 3 (94.6% correct)

Fig. 6. Three examples of rebuilt Tags from the samples shown in Fig. 5.

This Pharmacode can be scanned and recognised effectively
by many available tools to achieve a unique number (ID of a

Thttp://opencv.org/

graphic model). This ID will be used to search for a unique
3D figure in a database, which can be rendered on the screens
of computers or mobile devices.

III. EXPERIMENTAL RESULTS

Is our proposed StereoTag sensitive to different lighting
conditions, noises, and scaling? We test these criteria using the
one of the StereoTags — “Superman” tag shown in Fig. 7(b).
We carry out three experiments to observe the changes in
quality of decoded Pharmacodes after (1) alternating the
brightness and contrast of a marker, (2) scaling original
image, (3) adding a noise and raindrops.

We use IrfanView tool? to alternate the sizes, apply effects,
and add noises to the samples before checking the decoded
results. Some examples are shown in Fig. 7.

(a) Tag with +100 levels Brightness  (b) Tag with +100 levels Contrast

(c) Tag with +100 levels Noises

(d) Tag with +100 raindrops Effect

Fig. 7. Four examples of StereoTag markers after various effects added by
IrfanView.

A. Lighting conditions:

Different brightness and contrast levels are applied on
top of the “Superman” tag (Top rows of Fig. 7). Results
achieved from the affected images are compared with the
original Pharmacode, the percentage of same colour pixels are
collected as accuracy. Quantitative results are shown in Tab. 1.
Overall, the rebuilt Phamacodes are still relatively accurate:
between 92% and 96%.

B. Different scaling:

We also rescale the “Superman” tag to different sizes: 640 x
640, 320 x 320, 320 x 200, 200 x 160, 100 x 100 pixels. For

Zhttp://www.irfanview.com/
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TABLE I
QUALITY AFFECTED BY CHANGES IN BRIGHTNESS AND CONTRAST
[ Brightness | Accuracy ]| Contrast [ Accuracy || Size | Accuracy |
0 95.6% 0 95.6% 640x640 95.6%
+100 94.3% +50 95.7% 320x320 95.3%
-100 95.5% -50 95.1% 200x200 94.5%
+200 92.2% +100 94.4% 160x160 94.2%
-200 93.2% -100 93.5% 100x100 89.4%
TABLE II
QUALITY CHANGED BY NOISES, BLURS, AND RAINDROPS
[ Noise | Accuracy [[ Blur | Accuracy [ Rain drops | Accuracy |
0 95.6% 0 95.6% 0 95.6%
+25 94.8% +25 95.7% +25 92.3%
+50 92.0% +50 95.7% +50 89.7%
+75 87.0% +75 95.8% +75 87.3%
+100 82.1% +100 95.8% +100 85.5%

each tag sample, we collect the accuracy again; results are
shown in Tab. I. The accuracy falls slightly below 90% only
when image size is as small as 100 x 100 pixels.

C. Noises, blurs, and other effects:

We apply some other IrfanView’s built-in effects: noises,
blurs, and raindrops on the “Superman” tag (Bottom rows
of Fig. 7). The accuracy of rebuilt Phamacodes at each test
is collected in Tab. II. From the results, image blurs do not
decrease the quality; while raindrops do create some effects:
only 85% of pixels are correctly recovered at 100 raindrop
levels. Random noises in the image are the strongest factors.
Thus, only 82% of the overall shape retained after 100 levels
of noise. However, if the levels of noises, blurs, and raindrops
are kept under 50, accuracies are likely to be above 90%.

IV. CONCLUSIONS

Augmented Reality (AR) is an exciting topic which helps
to blend reality with virtual reality. One challenge of AR is
to place correctly virtual data within the real environment.
Using bar-code marker is one of the successful solutions.
However, bar-code normally contains either black and white
vertical bars or square dots; thus, it looks uninteresting and
uninformative. In this paper, we propose a new marker type
(called StereoTag), which is not only presenting a realistic-
looking image but also encoding a broad range of numeric
data in its stereogram patterns.

From some experiments conducted, our proposed Stereo-
Tag is robust under various lighting conditions, insensitive
to noises and relatively accurate. Thanks to these superiors,
StereoTag could be a promising approach to be used in future
AR applications.
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