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Abstract—Based on minimum reconstruction error criterion
and the intrinsic sparse property of natural data, sparse represen-
tation (SR) has shown promising performance on various image
recognition tasks. However, in the field of person re-identification
(re-id), the state-of-the-art is still dominated by other methods
such as metric learning or CNN. It is because samples in one
view may not be representative enough to represent samples
from another view. As such, the reconstruction error could be
excessive, and different pedestrians are indistinguishable with
the coefficient produced by sparse representation. In this paper,
we proposed an asymmetric sparse representation to address
this problem. Samples of different camera views (gallery and
probe samples) are mapped to a common latent space and
the sparse coefficient is generated in this space. In this way,
the representation power is enhanced and the sparse coefficient
becomes more reliable. The similarities of different samples are
determined by the enhanced sparse coefficient, which allows
more discriminative matching across different camera views.
Extensive experiments on CAVIAR4REID, iLIDS-VID and PRID
2011 datasets have demonstrated the merits of our approach.

I. INTRODUCTION

Nowadays, most of public infrastructures such as airports,
railway stations, hospitals have been equipped with camera
networks for surveillance. However, these camera networks
face the problem of non-overlapping field between different
views, which prevents tracking pedestrians or analyzing their
activities across cameras simply based on time and space cues.
Therefore, it is critical to re-identify a pedestrian based on
his/her appearance. Such a problem is known as the person re-
identification (re-id). Because of the large variations of illumi-
nation, pose or viewpoint, the appearance of pedestrian images
usually changes dramatically across different camera views
(see Fig. 1). In order to eliminate the gap between different
camera views, various approaches have been proposed, among
which the most well investigated are pedestrian descriptors
[10], [12] and metric learning [3], [4], [9], [15], [19]. However,
due to the extremely complex environmental conditions, it
is almost impossible to design a reliable descriptor that is
both robust and discriminative. Metric learning alleviates this
problem by utilizing supervision information to push relevant
image pairs together while pulling irrelevant pairs apart.

Benefiting from the ability to capture sparse property of the
natural images, sparse representation (SR) has been proven
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Fig. 1. Illustration of pedestrian images pairs with large appearance variation.

effective in the field of image recognition such as face recog-
nition [17]. However, although some works tried to deal with
the re-id problem with SR, they have not achieved the state-of-
the-art so far. This may be because features of different camera
views are very different, which limits the power to represent a
probe sample from one camera view with the gallery samples
from a different view. Note that most SR methods are based
on the minimum reconstruction error criterion. Such poor
representation power restricts the reliability of the computed
reconstruction error.

The main difficulty to leverage SR for the re-id problem
is to reduce the gap between different views so that samples
from one view could obtain better representation power for
samples from other views. Recently, Chen et al. [3] proposed
an asymmetric metric learning to mitigate the distribution
mismatch problem in person re-id. Inspired by the idea that
using different but related mappings for different camera views
to reduce the discrepancy between different camera views,
we propose to incorporate view-specific mappings in the SR
framework. Specifically, we firstly combine features of the
same pedestrian into a unitary feature vector by average
pooling (for the computational issue), then jointly learn the
view-specific mappings and the sparse coefficient for each
pedestrian. The similarity between two pedestrians can be
calculated by computing their reconstruction coefficient, which
is equivalent to their matching probability after imposing
explicit constraints. The key assumption is that although
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samples from one view cannot well represent those in the
other view in the original feature space, by projecting them
into a common space, samples of different views become
closer and thus the representation power is improved. Note that
our method is inherently different from CVDCA which only
learns view-specific mappings and directly use the mapped
features for re-id. Our method additionally learns the sparse
representations from the data, so that the structure of the
gallery and probe samples can be utilized. Such structure is
proven to be useful in the re-id task [8], [11], [13], and the
performance is further improved after utilizing them to bring
additional cues. Our method is also different from DVDL[8]
which discriminatively trained a viewpoint invariant dictionary
in the learned subspace from LFDA[15]. We jointly learn the
cross-view transformation and the sparse coefficient, so the
proposed transformation is optimal for our model. We have
demonstrated that the proposed transformation obtained better
performance than transformation learned from LFDA. We val-
idate our algorithm proposed in this paper using three publicly
available multi-shot re-id datasets: CAVIAR4REID[5], iLIDS-
VID[16] and PRID 2011[7]. The experiment results show that
our algorithm performs excellently in the multi-shot situation.

To summarize, our contributions include:

1) We addressed the cross-view reconstruction problem in
person re-identification.

2) We proposed an asymmetric sparse representation to
address the reconstruction problem.

3) Our method significantly outperforms the state-of-the-
art on CAVIAR4REID[5], iLIDS-VID[16] and PRID
2011[7] datasets.

II. REVIEW OF RELATED METHOD

In this section, we will review the following two methods
which is related to our method.

A. Sparse Reconstruction

The main idea about Sparse Reconstruction[17] is that,
given sufficient samples yi,1, yi,2...yi,n from class i, a testing
sample y of the same class should approximately lie in the
linear span of the training samples:

y ≈ si,1yi,1 + si,2yi,2 + . . .+ si,nyi,n = Y si (1)

Where si = [si,1, si,1, ..., si,n] represents the vector of recon-
struction coefficients.

In the situation of person re-identification, a probe sample
p can be approximately represented as:

p ≈ s1G1 + s2G2 + . . .+ snGn = Gs (2)

Where Gi = [gi,1, gi,2, . . . , gi,ni
] is the sample set of the ith

person, G = [G1, G2, . . . , Gn] is the gallery sample set.After
the solution vector s̃ is obtained, the reconstruction error is
defined as:

ei,j =
‖p− gi,j s̃i,j‖2

‖p‖2
(3)

Where gi,j , s̃i,j , ei,j denote the jth sample of the ith person,
its corresponding reconstruction coefficient and reconstruction
error, respectively.

Finally, the gallery images are ranked by their reconstruction
error. However, there are large intra-class variations between
pedestrian images across different cameras. Large reconstruc-
tion error exists between the probe images and the correspond-
ing gallery images. Therefore, the performance of the above
sparse reconstruction method tends to be unsatisfactory.

B. Cross-view Feature Mapping
The Cross-view Feature Mapping for person re-

identification [3] is proposed to solve the feature discrepancy
problem across non-overlapping camera views. For different
cameras, the cross-view transformations is learned by the
following objective function:

min
U1,U2,··· ,UN

N−1∑
p=1

N∑
q=p+1

np∑
i=1

nq∑
j=1

W p,q
ij ‖U

pTxpi − U
qTxqj‖

2
2

+

N∑
p=1

np∑
i=1

np∑
j=1

W p,q
ij ‖U

pxpTi − U
pxpTj ‖

2
2

+λ

N−1∑
p=1

N∑
q=p+1

‖Up − Uq‖2F

s.t. UkTMkUk = I; k = 1, 2, · · · , N

(4)

Where W p,q
ij is the weight on each pair of samples between

view p and view q, Up is the projection of view p. The key
idea of this method is to use different mappings for different
views so that the discrepancy of different views is reduced.

III. PROPOSED METHOD

A. Problem Specification
Let G = [G1, G2, ..., Gng ] denote the feature matrix ex-

tracted from the gallery images, where ng denotes the number
of pedestrian, Gi = [gi,1, gi,2, ..., gi,ni

] is the feature set of
the ith pedestrian, and ni is the number of images belong-
ing to the ith pedestrian. The definition of feature matrix
P = [P1, P2, ..., Pnp ], extracted from the probe images, is
similar to G.

We firstly apply average pooling to the gallery feature
matrix G as [8]. Then the mean gallery feature matrix G =
[G1, G2, · · · , Gng

] is obtained, where Gi is the mean feature
of images with label i in the gallery. The mean probe feature
matrix P is calculated too.

B. Problem Formulation
Our idea comes from the intuition that relative images will

have smaller reconstruction error while bigger reconstruction
error exists among images with different labels in the trans-
formed space.

We firstly consider the relation among a probe sample P i,
its relative sample Gi and irrelative sample Gj in the original
space:

P i −Gi = εintra
P i −Gj = εinter

(5)
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Where εintra and εinter are the difference vectors between P i

and Gi, P i and Gj , respectively.
The reconstruction error between image pairs is defined as:

eintra =
‖P i −Gisi‖2
‖P i‖2

≤ |1− si|+
‖εintra‖2
‖P i‖2

einter =
‖P i −Gjsj‖2
‖P i‖2

≤ |1− sj |+
‖εinter‖2
‖P i‖2

(6)

Where si is the intra-class reconstruction coefficient and sj is
the inter-class reconstruction coefficient.

Since the variations between pedestrian images across dif-
ferent cameras are large, even images from the same pedestrian
have large gaps, the assumption εintra < εinter is not always
be satisfied. Therefore, the upper limit of einter maybe larger
than eintra.

Inspired by [3], we apply the cross-view transforation
TA and TB to the probe samples and the gallery samples
respectively, aiming to reduce the upper limit of eintra and
increase the upper limit of einter. The reconstruction error in
the transformed space is defined as Eq.(7).

eintra =
‖TAP i − TBGisi‖2

‖TAP i‖2
≤ |1− si|+

‖ε′intra‖2
‖TAP i‖2

einter =
‖TAP i − TBGjsj‖2

‖TAP i‖2
≤ |1− sj |+

‖ε′inter‖2
‖TAP i‖2

(7)
Where ε′intra and ε′inter are the difference vectors between P i

and Gi, P i and Gj in the transformed space, respectively.
Normally, it is considered that the samples with same label

become closer in the transformed space and samples from
different class will be far away. Therefore, it is easier to
achieve the goal eintra < einter.

We can also observe from Eq.(7) that when sk change from
0 to 1, the term |1 − sk| decreases from 1 to 0. Therefore,
in order to minimize the upper limit of eintra and maximize
the upper limit of einter, the cross-view transforation should
be equipped with the property that let si be close to 1 and
sj become 0, simultaneously.As a result, P i is hoped to be
represent as Eq.(8).

TAP i ≈ TBG1 · 0 + TBG2 · 0 + ...+ TBGi · 1
+ ...+ TBGng

· 0 = TBGŝ
(8)

Where ŝ = [0, 0, ..., 1, 0, ..., 0]T .
Furthermore, for any probe image P i, we convert its re-

construction coefficient vector to the matching probability by
imposing explicit constraints:

ng∑
j=1

si,j = 1

si,j ≥ 0,∀j = 1, 2, ..., ng

(9)

Where si,j is the reconstruction coefficient between probe
image P i and the gallery image Gj . After imposing explicit
constraints in Eq.(9), si,j approximately represents the match-
ing probability between P i and Gj .

Following the inference above, we define the overall mini-
mization problem as:

min
TA,TB ,S

np∑
i=1

(‖TAP i − TBGsi‖22 + λ1‖si − ŝi‖22)

+λ2‖TA − TB‖2F

s.t.

ng∑
j=1

si,j = 1,∀i = 1, 2, · · · , np

si,j ≥ 0,∀i, j

(10)

Where S = [s1, s2, · · · , snp
], ŝi is the reconstruction coef-

ficient vector obtained by Eq.(8) with P i. The first item of
Eq.(10) ensures that the gallery images represent the probe
P i and the second item tends to cause si close to ŝi. The
sparse property is reflected in the term λ1‖si − ŝi‖22 because
only one coefficient in ŝi is nonzero. We also add the term
λ2‖TA − TB‖2F as [3] to control the difference between
the cross-view transformations, since there could be relation
between the contents captured by any two camera views
though discrepancy exists across disjoint camera views. Those
relate contents contain the existence of the same person and
probably similar environments.

Note that our model is different from [3], which combines
the models of metric learning and nearest neighbor but in-
dependently optimize these model and lead to a suboptimal
solution. Our model jointly learns the sparse model and the
cross-view transformation TA and TB , thus the solution of our
methods is optimal.

C. Solving the optimization problem

We employ the alternating directions framework to solve
the problem of Eq.(10). Specifically, we alternatively optimize
over TA, TB and S one at a time, while fixing the other two.
The optimization problem can be solved by conducting the
following steps iteratively until convergency.
1.Fix TA, TB and optimize over S, the optimization problem
becomes

min
S

np∑
i=1

(‖TAP i − TBGsi‖22 + λ1‖si − ŝi‖22)

s.t.

ng∑
j=1

si,j = 1,∀i = 1, 2, · · · , np

si,j ≥ 0,∀i, j

(11)

While TA, TB are fixed, sp and sq(p 6= q) are independent.
Hence we optimize a column sp of S at a time, sp will be
updated by solving Eq.(12).

min
sp
‖TAP i − TBGsp‖22 + λ1‖sp − ŝp‖22

s.t.

ng∑
j=1

sp,j = 1

sp,j ≥ 0,∀j = 1, 2, · · · , ng

(12)
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We use CVX[6] to solve this problem which conforms to
disciplined convex programming.
2.Fix TB , S, we define Γ as

Γ =

np∑
i=1

(‖TAP i − TBGsi‖22 + λ1‖si − ŝi‖22) (13)

let ∂Γ
∂TA

= 0, we get

TA = TB(GSP
T

+ λ2I)(PP
T

+ λ2I)−1 (14)

3.Fix TA, S, let ∂Γ
∂TB

= 0, we obtain

TB = TA(PSTG
T

+ λ2I)(GSSTG
T

+ λ2I)−1 (15)

Algorithm 1 shows the procedure for solving Eq.(10).

Algorithm 1 The Optimization of Eq.(10)

Input: mean matrix P and G, parameter λ1, λ2

Output: the cross-view transformation TA and TB
Initialize: TA = I, TB = I, S
while not converge do
Step 1: Update each column of S1 by solving Eq.(12)
Step 2: Update TA by Eq.(14)
Step 3: Update TB by Eq.(15)
end while

D. Re-Identification

Given a mean probe sample P
t

i form testing mean probe
set P

t
and the testing mean gallery set G

t
. We obtain the

matching probability vector by solving Eq.(16) and rank the
gallery sample according the matching probability vector.

min
s
‖TAP

t

i − TBG
t
si‖22

s.t.

nt
g∑

j=1

si,j = 1

si,j ≥ 0,∀j = 1, 2, · · · , ntg

(16)

Where ntg is number of ID in the testing gallery set. Fig. 2
shows the process of calculating the matching probabilities
between P

t

i and each sample in G
t

and ranking the samples
according to the matching probabilities.

IV. EXPERIMENT

In this section, we report the performance of the proposed
method on CAVIAR4REID dataset, iLIDS-VID dataset and
PRID 2011 dataset. All the experiments are repeated 10 times
to get an average result. The methods and their results for
comparing are in strict accordance with their related papers.

A. Features and Parameter Settings

Features: We extract the LOMO[10] descriptor for each
image. This descriptor is robust to the illumination variations
and the viewpoint changes. Considering the efficiency of our
algorithm, we apply PCA to reduce the dimension of features.

Parameter Settings: In the following experiments, we set
λ1 = 1, λ2 = 0.3.

Fig. 2. The process of calculating the matching probability. The color of
image border donates the label of image, a bar in the figure donates the
matching probability between the probe image and the gallery image which
has the same color with the bar.

B. Experiment on CAVIAR4REID

CAVIAR4REID contains 72 pedestrians of which 50 are
viewed in disjoint camera views while the other 22 are not.
Each image in the CAVIAR4REID dataset has variable scales
from 17×39 to 72×144. The experiment is carried out with 10
images for each person. Since there are 22 pedestrians whose
images were only captured in a single view in the dataset,
we did not select them for experiments and used the rest 50
pedestrians for evaluation. We compare our method with the
related methods KCVDCA[3] and ISR[11], the performance of
further method such as FW[14] and ICT[1] is also carried out
for comparing. The results of the comparison with the State-
of-the-Art are shown in Table. I and Fig. 3(a). Note that in
[11] the gallery contains images from both views, which may
not be realistic in many cases such as cross-camera tracking.
We re-evaluate its performance under our setting that gallery
and probe images are strictly from different views. We can
see that under this setting, ISR does not perform very well.
This is consistent with our analysis that images of one view
are not representative to those of the other view. Our method
significantly outperforms ISR since the sparse coefficient is
computed in the enhanced space where the representation
power is improved. Our method also outperforms KCVDCA
which ranks the gallery samples by using the nearest neighbor
module and ignores the structure of the gallery and probe
samples.

C. Experiment on iLIDS-VID

The iLIDS-VID dataset consists of 600 image sequences
from two camera views. Each image sequence has variable
length ranging from 23 to 192 frames. This dataset is very
challenging because of clothing similarities among people,
lighting and viewpoint variations across camera views, clut-
tered background and occlusions. Following the evaluation
protocol of [16], we randomly choose 150 pedestrian image
sequences for training and use the other sequences to form the
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(a) CAVIAR4REID (b) iLIDS-VID (c) PRID 2011

Fig. 3. The cumulative match characteristic curves for CAVIAR4REID, iLIDS-VID and PRID 2011 datasets.

TABLE I
TOP RANKED MATCHING RATE(%) ON CAVIAR4REID COMPARED TO

THE STATE-OF-THE-ART.

dataset CAVIAR4REID
rank 1 5 10 20
Ours 59.6 86.4 98.0 100.0

KCVDCA[3] 45.6 86.0 95.6 99.6
FW[14] 41.9 86.5 96.7 100.0
ISR[11] 18.4 50.0 71.2 95.6
ICT[1] 26.8 70.4 90.0 99.6

TABLE II
TOP RANKED MATCHING RATE(%) ON ILIDS-VID COMPARED TO THE

STATE-OF-THE-ART.

dataset iLIDS-VID
rank 1 5 10 20
Ours 65.7 86.5 92.3 96.3

DVDL[8] 25.9 48.2 57.3 68.9
Color&LBP+RankSVM[2] 23.2 44.2 54.1 68.8

DVR[16] 23.3 42.4 55.3 68.6
STFV3D[12]+KISSME[9] 43.8 69.3 80.0 90.0

Salience[18] 10.2 24.8 35.4 52.9

testing set. We compare our algorithm with temporal sequence
matching techniques including DVR[16], STFV3D[12] and
the dictionary learning method DVDL[8]. Following [16], the
results of salience[18] and the method which averages the
Color and LBP features of each frame in a sequence and
uses rankSVM[2] as the distance metric is calculated for
comparing. the previous methods, the comparison is shown in
table II. It can be seen that we improve the rank-1 recognition
rate from 43.8% to 65.7%, showing the significant superiority
in solving the person re-identification problem. We also plot
the CMC curve in Fig. 3(b) to show the overall evaluation in
this dataset.

D. Experiment on PRID 2011

The PRID 2011 dataset consists of image sequences for 200
people in two non-overlapping camera views, each sequences
has variable length ranging from 5 to 675 image frames. The
images were captured in an uncrowded outdoor environment
with significant viewpoint and illumination variations, which
lead to the difficulty of person re-identification. Similarly, we

TABLE III
TOP RANKED MATCHING RATE(%) ON PRID 2011 COMPARED TO THE

STATE-OF-THE-ART.

dataset PRID 2011
rank 1 5 10 20
Ours 79.3 93.7 96.2 98.7

DVDL[8] 40.6 69.5 77.8 85.6
Color&LBP+RankSVM[2] 34.3 56.0 65.5 77.3

DVR[16] 28.9 55.3 65.5 82.8
STFV3D[12]+KISSME[9] 64.1 87.3 89.9 92.0

Salience[18] 25.8 43.6 52.6 62.0

follow the evaluation protocol of [7] and select the image
sequences whose length are not less than 26, so only 188
image sequences are used. 89 pedestrian image sequences
are randomly chosen for training while the others are used
for testing. We also compare our algorithm with the methods
evaluated on iLIDS-VID. Table III shows the matching score
of our method achieves the best rate at rank 1-20 and Fig. 3(c)
shows that our method achieves the best performance on this
dataset in general.

E. Analysis of our model

In this section, we further evaluate the proposed method in
the following two aspects.

1) Parameter analysis: λ1 and λ2 are the parameters in our
model. λ1 let the coefficient vector be close to the theoretic
vector in the training process. λ2 decides the similarity be-
tween TA and TB . We vary λ1 and λ2 to show the robustness
of our model. The rank-1 recognition rate with different λ1

and λ2 on CAVIAR4REID dataset are plotted in Fig.4.
Fig.4(a) shows that when λ1 reachs a threshold, the per-

formance of our method will become stable and excellent,
which shows the validity of the term λ1‖si− ŝi‖22 in Eq.(10).
Differently, the curve of Fig. 4(b) shows that there are three
states of our algorithm if λ2 is changed. If λ2 is too small,
the transformation is likely to be overfitting. When λ2 is on a
suitable scale, our algorithm has the best performance. Finally,
if λ2 is too large, significant punishment arises when TA
and TB are different, the transformation is difficult to update.
Therefore, our algorithm degenerates into the situation that no
transformation is used because we initialize TA and TB to the
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(a) Rank-1 with various λ1. (b) Rank-1 with various λ2.

Fig. 4. Rank-1 identification rate(%) on CAVIAR4REID.

(a) iLIDS-VID dataset. (b) PRID 2011 dataset.

Fig. 5. Performance comparison using different transformation.

unit matrix. Actually, the parameters are easy to set because
our method has the best performance even the parameters are
varied in a large range.

2) Evaluation of Cross-view Transformation: We evaluate
the validity of the proposed cross-view transformation in two
ways. Firstly, the result of using the proposed cross-view
transformation is compared with the situation that no transfor-
mation is used. The unitary mapping from LFDA[15] is also
evaluated. Fig. 5 shows that the proposed cross-view transfor-
mation outperforms the other two situations. Furthermore, the
reconstruction error is considered as an evaluation criterion.
Fig. 6 indicates that the proposed cross-view transformation is
able to reduce the reconstruction error between relative image
pairs by comparing with the result of our method with no
transformation.

V. CONCLUSION

In this paper, we propose an effective approach to solve
the person re-identification problem. We notice that tradi-

Fig. 6. Mean reconstruction error on CAVIAR4REID, iLIDS-VID and PRID
2011.

tional sparse representation may not work well because of
the view discrepancy problem. To solve this problem, we
propose to impose a cross-view transformation to transform
the features into an enhanced space where samples in one
view are representative to samples in the other. The sparse
representation is performed in this latent space, aiming to
reduce the reconstruction error and obtain a more reliable
sparse coefficient. Experiments on three datasets show the
superiority of our algorithm. We notice that the efficiency of
our algorithm is low if the training set is large, we will focus
on the problem of increasing the efficiency of our method in
the future work.
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