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Abstract—Although Query-by-Example techniques based on
Euclidean distance in a multidimensional feature space have
proved to be effective for image databases, this approach cannot
be effectively applied to video since the number of dimensions
would be massive due to the richness and complexity of video
data. The above issue has been addressed in two recent solutions,
namely Deterministic Quantization (DQ) and Dynamic Temporal
Quantization (DTQ). DQ divides the video into equal segments
and extracts a visual feature vector for each segment. The
bag-of-word feature is then encoded by hashing to facilitate
approximate nearest neighbor search using Hamming distance.
One weakness of this approach is the deterministic segmentation
of video data. DTQ improves on this by using dynamic video
segmentation to obtain varied-length video segments. As a result,
feature vectors extracted from these video segments can better
capture the semantic content of the video. To support very
large video databases, it is desirable to minimize the number of
segments in order to keep the size of the feature representation
as small as possible. We achieve this by using only one video
segment (i.e., no video data segmentation is even necessary) with
even better retrieval performance. Our scheme models video
using differential long short-term memory (DLSTM) recurrent
neural networks and obtains a highly compact fixed-size feature
representation with the output of hidden states of the DLSTM.
Each of these features are further compressed by hashing them
into binary bits via quantization. Experimental results based on
two public data sets, UCF101 and MSRActionPairs, indicate that
the proposed video modeling technique outperforms DTQ by a
significant margin.

I. INTRODUCTION

As video capturing devices become more and more ubiqui-
tous, huge amounts of videos are uploaded to social networks
each day and are searched and consumed by billions of people
around the world. In the face of the big data era, there is
an urgent demand for indexing and retrieving these ever-
increasing video stores in an accurate and efficient way.

Although video retrieval using natural language description
or keywords is highly desirable, the majority of videos lack
tag information. Due to the semantic gap between low level
visual features and high level semantic information, effective
automatic video tagging techniques are still immature from
being applied. Most existing video retrieval techniques are
built upon physical feature-based modeling, in which a video
is represented and indexed by visual features that can be ex-
tracted automatically. In this environment, Query by Example

Fig. 1. An illustration of video modeling strategies. The top row shows
deterministic quantization. The middle row shows dynamical quantization.
The bottom row shows the proposed modeling method.

(QBE) is a common strategy for retrieving similar videos from
a database.

One approach to QBE is to model each video clip using a
feature vector. The video clips in the database can be viewed
as points in the multidimensional feature space. To retrieve
similar video clips, the feature vector is extracted from the
query video and the video clips whose feature points are
closest to the query point in the multidimensional Euclidean
feature space are returned. Although this approach has been
quite effective for image retrieval, its application to video
retrieval has many disadvantages. The feature vector would be
very large with many components due to the richness and com-
plexity of video data. The vastness of the high-dimensional
Euclidean space causes these techniques to perform poorly, a
phenomenon known as the curse of high dimensionality.

To overcome the weaknesses of the aforementioned QBE
approach based on Euclidean distances, QBE based on Ham-
ming distance has been proposed [21], in which a video clip
is divided into video segments of equal length, e.g., 1 second.
For each segment, a key frame is determined and its SIFT
visual feature is extracted as shown in the top illustration in
Fig. 1. These features form the bag-of-word representation and
can be encoded by hash functions learned through temporal
consistency. This approach facilitates similarity computation
based on approximate nearest neighbor (ANN) search using
Hamming distance [9], which is much more efficient than the
solutions based on Euclidean distance.

A weakness of the technique presented in [21] is the
deterministic nature of the uniform video data segmentation
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technique that does not take into consideration the semantic
information in the video. This is addressed in [22] by using
varied-length video segments as shown in the middle illustra-
tion in Fig. 1. These video segments are more consistent with
the semantic content of the video clip, resulting in feature
vectors that better capture the video information.

In order to allow the technique to scale up to support even
very large video retrieval applications, it is highly desirable to
substantially reduce the number of feature vectors used in [21]
and [22], say to only 1 video segment. As shown in the bottom
illustration in Fig. 1, video data segmentation is not needed.
Ideally, this could be achieved with even better retrieval
accuracy. We accomplish this task by modeling the video clip
using differential long short-term memory (DLSTM) recurrent
neural networks and obtaining a highly compact fixed-size
feature representation using the output of the hidden states.
Each of these features can then be hashed into binary bits
for further compression. Our performance study based on two
public data sets indicates that DLSTM video modeling is able
to capture the most salient spatio-temporal patterns in the
video. The experimental results show the superiority of this
technique over the latest video modeling method presented in
[22].

Without loss of generality, we assume the proposed video
modeling technique with hashing is applied to the entire
video clip. This technique is also applicable to larger videos
consisting of many video story units. For these applications,
a video story unit is the unit for video retrieval. The proposed
technique can be applied to each story unit to facilitate QBE.

The remainder of this paper is organized as follows. We
briefly review the related work in Section II. The proposed
DLSTM-based video retrieval technique is introduced in Sec-
tion III. We discuss the experimental results on the two public
video data sets, UCF101 [14] and MSRActionPairs [11], in
Section IV. Finally, we conclude this paper in Section V and
talk about future work in Section VI.

II. RELATED WORKS

Hashing algorithms are widely adopted in the approximate
nearest neighbor search problem [7]. There are plenty of works
aimed at achieving a higher retrieval accuracy with a shorter
code length. Existing hashing algorithms can be roughly clas-
sified into random-based methods and learning-based methods.
Many of the random-based methods, such as LSH [7], encode
the data by space-partitioning; other methods, such as Winner-
Take-All Hashing (WTA) [20], explore the rank space and
encode the ordinal relation between the features. The learning-
based methods are normally data-dependent. Principle linear
projections like PCA Hashing (PCAH) [18] and its rotation
variant, Iterative Quantization (ITQ) [4], were proposed to
minimize the quantization loss with respect to the original
features. Supervised hashing methods, such as KSH [9], utilize
the pairwise label-similarity and are capable of learning more
discriminative hash codes. Recently, pointwise-based methods,
such as Supervised Discrete Hashing (SDH) [13], have been

proposed to decouple the optimization procedure from the
hashing function and have achieved superior results.

All of the aforementioned methods are for static data such
as images; hashing on sequential data like videos is relatively
under-researched. A few existing video hashing methods, such
as submod ular video hashing [2] and video hashing via
structure learning [21], still perform the hashing on key frames
rather than on the entire video. One of the great challenges for
video hashing is to achieve a fixed-size feature representation
that can capture the complex spatio-temporal dynamics of the
target video. To this goal, different video modeling methods
have been proposed. Dynamic Temporal Warping (DTW) [10]
and temporal pyramid [19], [11] were proposed to model the
temporal structure of videos. However, these methods suffer
from temporal misalignment when computing the distance
between two videos of different length. A dynamic temporal
quantization algorithm was introduced in [22] to model the
temporal structure of videos dynamically while preserving the
temporal order. Other modeling approaches, such as Bag-of-
Words (BoW) [16], have also been proposed to represent the
videos by the histogram of visual words.

Long Short-Term Memory (LSTM) [6] was proposed to
learn the dynamics of a long sequence. DLSTM [17], an
upgraded version of LSTM, takes into consideration the im-
pact of spatio-temporal dynamics and is better at learning
salient patterns. Recently, there have been emerging studies
on LSTM/DLSTM applications, such as speech recognition
[5], multimodal translation [15] and action recognition [1].
However, LSTM/DLSTM has not been studied for video
retrieval tasks.

III. DLSTM-BASED VIDEO MODELING

In this section, we present the detailed algorithm for the
DLSTM-based video modeling and discuss the rationale be-
hind it. To make the paper self-contained, we first briefly in-
troduce the Differential Long Short-Term Memory (DLSTM)
Recurrent Neural Networks. Then, we introduce the objective
function aiming to minimize the training loss defined on the
pairwise label-similarity. We further demonstrate and analyze
the optimization results. Finally, we introduce the fixed-size
representation of the video from the DLSTM modeling for
video retrieval.

A. Differential Long Short-Term Memory

Consider an input sequence {xt ∈ RM |t = 1, 2, ..., T}. A
recurrent neural network (RNN) computes the hidden state
sequences {ht ∈ RN |t = 1, 2, ..., T} by

ht = tanh(Whhht−1 + Whxxt + bh), (1)

where the hyperbolic tangent tanh(·) is an activation function
in the range [-1, 1], Wh∗ are weighting matrices, and bh is
the bias vector.

For classification tasks, the hidden states will be mapped to
a sequence {yt ∈ RK |t = 1, 2, ..., T} by

yt = tanh(Wyhht + by), (2)
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Fig. 2. Architecture of the DLSTM model at time t.

where each yt represents a 1-of-K encoding of the confidence
scores on K categories.

Due to exponential decay, traditional RNNs are limited in
learning long-term sequences. Hochreiter et al. [6] designed
Long Short-Term Memory (LSTM) to exploit the long-range
dependency. According to recent study, the Derivative of States
(DoS) in differential long short-term memory (DLSTM) [17]
can explicitly model spatio-temporal structure and better learn
salient patterns within. Fig. 2 shows the structure of DLSTM.

Replacing internal state with the DoS in the gate units, the
DLSTM has the following updated equations:

(i) Input gate it regulates how much input information enters
the memory cell to affect its internal state st at time t, which
is defined as

it = σ(Wid
dst−1

dt
+ Wihht−1 + Wixxt + bi), (3)

where the sigmoid σ(·) is an activation function in the range
[0,1].

(ii) Forget gate ft gates the contribution of the the previous
state st−1 to the current state. It has the following recurrent
form

ft = σ(Wfd
dst−1

dt
+ Wfhht−1 + Wfxxt + bf ). (4)

The internal state st of each memory cell can then be
updated using the input and forget gate units, as shown below

st = ft � st−1 + it � s̃t, (5)

where � stands for element-wise product. Pre-state s̃t is
defined as

s̃t = tanh(Wshht−1 + Wsxxt + bs).

(iii) Output gate ot controls the information output from a
memory cell, which can be expressed as

ot = σ(Wod
dst
dt

+ Wohht−1 + Woxxt + bo). (6)

The hidden state of a memory cell, which contains the spatio-
temporal information of previous frames, is output as

ht = ot � tanh(Whsst + bh). (7)

By iteratively applying Eq. 5 and Eq. 7, DLSTM updates the
internal state st and the output hidden state ht over time.

As the DLSTM model is defined in the discrete-time do-
main, the derivative dst

dt is then discretized as the difference
of states by

dt ,
dst
dt

.
= st − st−1. (8)

B. Objective and Pairwise-based Training

Previously, LSTM and DLSTM were mostly employed for
recognition and classification tasks including speech recogni-
tion [5] and action recognition [1], etc. In these applications,
the model parameters of the neural networks are learned
through the pointwise fashion on the labeled data. In the
context of video retrieval in the framework of approximate
nearest neighbor search, we wish for the DLSTM to learn the
most salient spatio-temporal patterns between similar video
classes and to generate a highly compact representation of the
original video which preserves the pairwise label-similarity.

To achieve this goal, we formulate an objective by lever-
aging the pairwise label-similarity. Specifically, consider two
videos Vi and Vj with lengths Ti and Tj , respectively. The
loss function can be defined as

`(i, j) = −log 1

1 + exp(βlij‖hi
Ti
− hj

Tj
‖2)

, (9)

where lij ∈ {−1,+1} denotes the label-similarity between
Vi and Vj , with +1 indicating Vi and Vj are of the same
label and −1 indicating otherwise. β is a normalizing factor.
hi
Ti

and hj
Tj

denote the hidden state of Vi and Vj at the
last time-step. Due to DLSTM’s ability to capture long-term
memory, the neural network accumulates increasingly richer
information as it goes through the video. When the DLSTM
reaches the last time-step, the hidden layer provides a semantic
representation of the whole video. Thus, we train the DLSTM
model based on the hidden state at the last time-step. We use
the `2 norm to measure the similarity of the two hidden states.
By minimizing Eq. 9, DLSTM is optimized to learn the most
salient spatio-temporal patterns throughout the entire video
that can characterize similar videos and distinguish videos of
different labels. The above optimization can be performed by
Back Propagation Through Time (BPTT) [3], which unfolds an
LSTM model over several time steps and then runs the back
propagation algorithm to train the model. To prevent back-
propagated errors from decaying or exploding exponentially,
we use truncated BPTT according to Hochreiter et al. [6] to
learn the model parameters. Specifically, in our model, errors
are not allowed to re-enter the memory cell once they leave it
through the DoS nodes.

Fig. 3 shows the total training loss through the iteration
process in the UCF101 data set [14]. We demonstrate the
results of three different numbers of hidden states. As can be
seen, the training loss decreases steadily through epochs and
gradually converges when reaching 100 epochs. With a larger
number of hidden states, the training process converges faster
and achieves a lower converging training cost. The reason
behind this is that with more hidden states, DLSTM has a more
complex model and is more capable of fitting the training data.
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Fig. 3. training loss vs epochs on UCF101.

However, if the number of hidden states is too large, overfitting
might occur.

C. Spatio-Temporal Feature Representation by DLSTM

Due to DLSTM’s ability to capture long-term memory,
the hidden states of the trained DLSTM at the last time-
step have accumulated rich information throughout the entire
video and thus provide a semantic representation of the whole
video. Therefore, we use the hidden state at the last time-step
to represent the entire video. We call this fixed-size feature
representation the DLSTM feature, which provides a highly
compact representation of the original video. In general, the
number of hidden states will be moderate in order to avoid
overfitting. Therefore, DLSTM-based modeling can provide
a highly compact representation of the original video, which
is suitable for large-scale video processing tasks. Different
hashing algorithms can be directly applied to the DLSTM
feature for video retrieval.

IV. PERFORMANCE EVALUATIONS

In this section, we extensively evaluate the performances of
the proposed video modeling technique for hash-based video
retrieval on two publicly available video data sets: UCF101
[14] and MSRActionPairs [11].

A. Experiment Setup and Performance Metrics

We perform the video retrieval experiments as follows.
After the DLSTM is trained, the video will be fed to the
DLSTM to produce the DLSTM feature, which will later be
used by various hashing algorithms to generate hash bits. A
query video is then used to retrieve similar videos in the
database. Specifically, KNN is employed to search for the
nearest neighbors by the Hamming distance on the hash codes.
The retrieved videos are ranked by their similarity to the query
video and the mean average precision (mAP) of the top 100
ranked results is used as the performance metric.

B. Experiments on the UCF101 data set

The UCF101 data set [14] is a large-scale video data set of
human activities collected from YouTube. With 13,320 videos
from 101 categories, UCF101 gives the largest diversity of
classes among video data sets. Due to its large size and rich

TABLE I
IMPACT OF THE NUMBER OF DLSTM HIDDEN STATES.

Num of hidden states 100 200 300 400 500
UCF101 38.52 43.13 45.40 46.63 42.33

MSRActionPairs 67.29 74.39 71.13 67.33 61.26

TABLE II
COMPARISON WITH DIFFERENT SPATIO-TEMPORAL MODELING METHODS.

Modeling Method DTW [10] BoW [16] DTQ [22] DLSTM
UCF101 31.02 21.53 36.59 46.63

MSRActionPairs – – 62.37 74.39

categories, UCF101 is a perfect candidate for evaluating the
performance and efficiency of the large-scale video retrieval.
In our experiments, we follow the “Three Train/Test Splits”
settings in [14] and report the average results. To handle the
huge number of video pairs in the training set, we randomly
select 1% of the same-label pairs and a proportional number of
the different-label pairs to train the DLSTM model. We apply
the pretrained ILSVERC12 [12] model and the Caffe network
[8] to each frame of the video and adopt the top layer output
of the CNN as the original feature of video frames.

The number of hidden states is an important factor in
the performance of DLSTM-based video modeling. With an
insufficient number of hidden states, the DLSTM cannot model
the video effectively due to the underfitting effect. On the
contrary, to avoid overfitting, the number of hidden states
cannot be too large. To assess the impact of the number
of hidden states, we perform the task of video retrieval by
the Euclidean distance of the DLSTM feature. Experimental
results are summarized in Table I. We use the aforementioned
mAP as the performance metric. For the UCF101 data set,
DLSTM achieves the highest mAP when the number of hidden
states is 400. Since the dimension of the original feature vector
of the video frames is 300, the optimal number of hidden states
is slightly higher than the dimension of the input data. Similar
results can be observed in the MSRActionPairs data set where
the input feature dimension is 162 and the highest mAP is
achieved with 200 hidden states.

Next, to assess DLSTM’s performance on video modeling,
we further compare the DLSTM-based modeling method with
three other video modeling methods, namely Dynamic Time
Warping (DTW), Bag-of-Words (BoW) and Dynamic Tempo-
ral Quantization (DTQ). These three methods are widely used
for video classification/retrieval tasks and can also achieve
a fixed-size representation of the video data. We implement
the DTW-based motion template method in [10], the BoW
method based on the HogHof feature detector [16] and the
DTQ approach in [22] for comparison. In the experiment,
we use the above three methods to generate a fixed-size
feature representation of the video and perform the same video
retrieval task according to the similarity by the Euclidean
distance. Comparison results are shown in Table II. The
DLSTM-based video modeling significantly outperforms all
three methods in terms of mAP. This can be explained by the
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Fig. 4. Comparisons with baselines on UCF101.

Fig. 5. Performance improvement of state-of-the-art hashing methods with
DLSTM on UCF101.

fact that DTW, as a greedy sequence alignment method, may
suffer from the misalignment of videos of varied lengths; while
BoW only explores the local spatio-temporal features and does
not leverage the global temporal information of the sequential
data. Although DTQ achieves higher accuracy than DTW and
BoW, it is still 10% lower than the proposed DLSTM-base
modeling method. The above results demonstrate the superior
performance of the DLSTM-based video modeling.

In the following part of the experiment, we evaluate the
performance of the DLSTM-based modeling in the context of
video hashing. The fixed-size DLSTM feature can be further
encoded into hash bits with any existing hashing methods.
For evaluation purposes, we adopt a very simple encoding
method by quantizing the DLSTM feature vector into 0s and
1s according to the mean value of each dimension. Specifically,
we first compute the mean value for each feature dimension.
If a feature value is smaller or larger than the mean of corre-
sponding dimension, it is encoded as 0 or 1, respectively. The
reason to employ such a straightforward encoding scheme is
to better assess DLSTM’s contribution in the hash-based video
retrieval. As discussed in the related work, most of the existing
hashing techniques are for images. To achieve a reasonable
comparison with state-of-the-art hashing algorithms, we create
baseline methods that combine dynamic temporal quantization
(DTQ) [22] and seven state-of-the-art hashing algorithms. Fig.
4 summarizes the results of the comparison. DLSTM with
the simple encoding scheme has significantly outperformed

Fig. 6. Comparisons with baselines on MSRActionPairs.

most state-of-the-art hashing methods across different hash
code lengths. The only method that performs close to DLSTM
is Supervised Discrete Hashing (SDH). However, DLSTM
achieves 41.57% mAP with only 400 bits while SDH needs
much longer bits to achieve similar performance. Considering
the large volume of the video data, DLSTM uses significantly
fewer bits per frame for encoding and is therefore extremely
efficient for large-scale video retrieval.

As mentioned in the previous section, DLSTM-based mod-
eling can work with any existing hashing algorithm. We further
apply state-of-the-art hashing algorithms on the DLSTM fea-
ture and compare the results with those of the aforementioned
baselines. Experimental results are demonstrated in Fig. 5.
It can be seen that all of the baselines have been further
improved by 5% − 15% with the help of the DLSTM video
modeling. The results demonstrate that the DLSTM-based
video modeling can work with existing hashing methods to
further enhance the video retrieval results.

C. Results on the MSRActionPairs data set

The MSRActionPairs data set [11] provides 3D videos
captured by Kinect sensor. It provides a good variety of mul-
timodal data streams, including RGB streams, depth streams
and human skeleton joint streams. The database consists of
12 types of human actions performed by 10 subjects. Each
subject repeats each action three times.

Although the MSRActionPairs data set has a relatively
smaller size, it is a good candidate to evaluate the performance
of the spatio-temporal modeling since the data set consists
of human actions of similar postures but reverse temporal
orders. Furthermore, the multimodal nature of the data set
enables us to evaluate the proposed technique in multimodal
data retrieval. We follow the same cross-subject test setting
as in [11] and adopt the Histogram of Velocity Components
(HVC) feature [22] to represent each frame of the 3D video.

Similar to the experiments on the UCF101 data set, we first
compare the DLSTM with the baseline hashing methods. The
results are shown in Fig. 6. Again, DLSTM, combined with the
simple encoding scheme, has significantly outperformed most
state-of-the-art hashing methods across different code lengths.
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Fig. 7. Performance improvement of state-of-the-art hashing methods with
DLSTM on MSRActionPairs.

Both KSH and SDH have close performances to DLSTM.
However, DLSTM achieves higher performance with a shorter
number of bits. Specifically, DLSTM achieves 72.72% mAP
with only 200 bits, which is extremely efficient considering
that the average number of frames in the MSRActionPairs
data set is 112. In other words, it takes DLSTM less than two
bits to encode a video frame on average. This shows DLSTM
modeling is very suitable for large-scale video retrieval.

We also apply the DLSTM feature to state-of-the-art hashing
methods and demonstrate the comparison results in Fig. 7.
Similar to the results on the UCF101 data set, by using the
DLSTM feature, most state-of-the-art hashing methods have
increased to 70% mAP with 300 bits. The results again show
that existing hashing methods significantly benefit from the
DLSTM-based spatio-temporal modeling.

V. CONCLUSIONS

In this paper, we propose to study differential long short-
term memory recurrent neural networks for modeling the
spatio-temporal dynamics of videos. This approach can gen-
erate highly compact fixed-length representations for videos
of varied lengths. The generated DLSTM feature can fur-
ther benefit existing image hashing methods. Our extensive
experimental results indicate that DLSTM modeling achieves
competitive results even with a very simple hash function.
When combined with state-of-the-art hashing techniques, DL-
STM modeling substantially outperforms Dynamic Temporal
Quantization.

VI. FUTURE WORK

In the current paper, we address the video modeling and
video hashing via two steps and each step works indepen-
dently. We would like to investigate the end-to-end DLSTM-
based video hashing algorithm in the future by combining
video modeling and video hashing.
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