
Dynamic Adaptive Graph Construction: Application
to Graph-based Multi-observation Classification

F. Dornaika1,2, R. Dahbi3, A. Bosaghzadeh1, and Y. Ruichek3
1 University of the Basque Country (UPV/EHU)

2 IKERBASQUE, Basque Foundation for Science, San Sebastian, Spain
3 IRTES-SeT, University of Technology Belfort-Montbeliard, Belfort, France

Abstract—Most of graph construction techniques assume a
transductive setting in which the whole data collection is available
at construction time. Addressing graph construction for inductive
setting, in which data are coming sequentially, has received
much less attention. Constructing the graph from scratch can
be very time consuming. In this paper, we propose an efficient
dynamic graph construction method that adds new samples
(labeled or unlabeled) to a previously constructed graph. We use
a Two Phase Weighted Regularized Least Square (TPWRLS)
coding scheme to represent new sample(s) with respect to an
existing data set. The representative coefficients are then used to
update the graph affinity matrix. The proposed method not only
appends the new samples to the graph but also updates the whole
graph structure by discovering which nodes are affected by the
introduction of new samples and by updating their edge weights.
The proposed construction framework is applied to the problem
of graph-based label propagation using multiple observations
in a semi-supervised scenario. Experiments on three public
image databases show that, without any significant loss in the
accuracy of the final classification, the proposed dynamic graph
construction is more efficient than the batch graph construction.

Keywords: Data self-representativeness, graph construction, graph-
based semi-supervised learning, multiple observations

I. INTRODUCTION

Graph is a very powerful tool and a central object for any
graph-based learning task with a wide range of applications
in computer vision, signal processing and pattern recognition
[1]. A graph consists of nodes which correspond to data
and weighted edges which show how strong two nodes are
connected [2], [3], [4], [5]. Recently proposed methods try to
merge edge setting and edge weighting into a single process
and estimate the edges and their weights simultaneously [6],
[7]. With the rapid growth in the use of digital still and
video cameras, we are facing a huge amount of data. In
many practical cases new samples come continually and we
need to analyze the relation between the already available and
recently received samples. Among different graph construction
methods, KNN graph is the most efficient graph construction
technique (despite its less accurate results). For speeding up
graph construction process, [8] builds a small graph that shows
the relation between the whole database with respect to some
sample (anchor) points. In this method, anchor points are
firstly selected using the Kmeans clustering algorithm and the
relation between the database and these anchor points are then
calculated. Although these algorithms have low computational

complexities, their main objective is fast graph construction
and they assume that the whole data is available which makes
them not adequate for updating tasks and incremental learning.
If we want to use the above methods for updating tasks,
whenever new samples come, we have to reconstruct the
whole graph from scratch. This is computationally expensive,
especially for online learning and classification. However, to
the best of our knowledge, apart from [9], incremental graph
construction has not received a lot of attention. In [9], the
authors propose two strategies, Forward and Backward. In the
Forward strategy, the objective is to start from a set of points
and empty set of edges. Then randomly select two nodes and
use a local insertion method to add all available samples to the
graph to build a complete one. In the local insertion method, an
optimal space which potentially can contain the closest points
to the query point is defined and the samples in that space are
added to the graph. In the Backward strategy, they start from
an over-connected graph and try to remove the edges which
does not satisfy the considered neighborhood property.

In this paper, we propose an incremental graph construction
method which rapidly and accurately estimates the edge and
edge weight for the new samples and then updates the whole
graph structure. Rather than recalculating the relation between
all samples (building the graph in a batch mode), which is
computationally very expensive, we only look on the new
samples and update the edges and weights of their close
neighbor nodes. It should be mentioned that our work is
different from the one proposed in [9] in several aspects.
The objective in [9] is for edge setting, however, the goal
in our method is affinity matrix construction which includes
an edge weighting phase. Also the edge setting in [9] is
based on a symmetric distance function whereas here we use
a non-symmetric similarity function. Moreover, we conduct
several experiments on different post-graph learning tasks
using variety of image databases to evaluate the proposed
method in different scenarios.

The reminder of this paper is organized as follows: Section
II describes the TPWRLS coding technique that is recently
introduced and used for graph construction. In section III, we
explain the motivation for dynamic graph construction and
our proposed dynamic graph construction technique. Section
IV presents an application of the proposed framework to the
online recognition of multiple observations.

2016 23rd International Conference on Pattern Recognition (ICPR)
Cancún Center, Cancún, México, December 4-8, 2016

978-1-5090-4846-5/16/$31.00 ©2016 IEEE 2617

II. REVIEW OF THE TPWRLS GRAPH CONSTRUCTION

In this section, we briefly present our proposed graph
construction method coined TPWRLS [10]. Assume we have
a dataset represented by a data matrix X = [x1x2...xN]
(X ∈ RD×N). The aim of any graph construction method is
to estimate the graph affinity matrix associated with the data.
Let W ∈ RN×N denote this matrix. In TPWRLS, each row in
the affinity matrix W is estimated using a two phase coding
scheme. A row W(i, :) contains the weights of all edges that
links the sample xi to the rest of all samples. By definition we
have Wii = 0. Let the vector b ∈ RN−1 denote the row vector
W(i, :) from which Wii is removed. This unknown vector is
estimated in two consecutive phases that use a coding that is
based on the following criterion. The unknown vector b can
be calculated by minimizing the following criterion (WRLS):

b = argmin
b

1

2

 ‖xi − Xib‖22 + σ

N−1∑
j=1

p2j b
2
j

 (1)

where Xi is the data matrix from which the sample xi is
removed, pj is a positive weight associated with example xj
(or equivalently bj). In Eq. (1), the criterion has two terms:
the reconstruction error and the weighted regularized term. σ
is a small positive scalar that balances the two terms effect.
The weight pj can be set to the distance between sample xi
and xj . The solution to Eq. (1) has a closed form solution that
is given by:

b =
(

XT
i Xi + σ P

)−1
XT

i xi (2)

P is a diagonal matrix with elements Pjj = pj .
The process for the TPWRLS graph building is shown in

Algorithm 1. This algorithm estimates the ith row of the
affinity matrix by coding the sample xi w.r.t. to the set Xi. This
estimation (the inner loop) also gives the TPWRLS coding of
a sample w.r.t to a given dataset. The obtained graph is a
directed graph, i.e., the weight matrix W is asymmetric.

III. PROPOSED INCREMENTAL GRAPH CONSTRUCTION.

A. Problem statement

Consider the database X = {x1, x2, ..., xN} which is a
D×N matrix containing N samples with dimension D. The
affinity graph is represented by G = (V ;E;W) where V is
the set of nodes (|V | = N), E is the set of edges and W is the
N × N edge weight matrix which is also called the affinity
matrix. The weight of the edge (i, j) is given by Wij which
quantifies the similarity between the incident nodes i and j. We
have new sample matrix represented by X′ = {x′1,x′2, ...,x′r}
where r is the number of new samples. Note that the r new
samples can be labeled, unlabeled or partially labeled. The
goal is to construct an affinity graph G̃ that is associated to
the union of the initial database and the new samples (i.e.,
X̃ = X ∪X′). The arrival of new samples may happen many
times.

Data: A dataset X
Result: A weight matrix W of its graph
for i = 1 to N do

* Select the sample xi and form Xi = X - {xi}
* From the N − 1×N − 1 diagonal matrix P
* Estimate the vector b using Eq. (2)
* Calculate a threshold for xi as
TH(xi) = 1

N−1
∑N−1

j=1 |bj |
* Select the examples Xs (whose |bj | > TH(xi))
* Set the new weight matrix P′ using p′j =

1
|bj |

* Estimate the vector b′ as
b′ =

(
XT

s Xs + σ Ps

)−1
XT

s xi

* Set the sparse vector b from b′
for j = 1 to N do

if i < j then
Set Wij = |bj |

else
Set Wij = |bj−1|

end if
end for

end for
Algorithm 1: TPWRLS graph construction

Fig. 1. Basic idea of our proposed method. (a) 8 available samples which are
connected (colored in violet) and one new sample (colored in red). (b) The
new received sample is inserted in the already available graph. (c) The edge
connections of samples which are very close to the new one are reevaluated
and the edges and edge weights are changed accordingly (colored in green).

B. Basic idea

Our proposed incremental graph construction method is
based on the assumption that adding a new sample to the
database will only affect its nearby samples, i.e., the edges
of the graph of only a few close samples should be updated.
Hence, after receiving new samples, it is not necessary to
rebuild the graph from scratch. Fig. 1 illustrates the basic idea
of our proposed method. In Fig. 1(a), we have 8 available
samples connected to each other and colored in violet and a
new sample in red. The segment between a pair of nodes shows
the edge and its thickness represents the edge weight, the
higher the thicker. At this stage, the graph relating the violet
nodes is available. Fig. 1(b) shows the connection between the
new received sample and the available ones. The two nodes
with question marks on top, are the nodes which are very
close/similar to the new sample. Hence, their current relation
with the samples (edges) have to be reevaluated for possible
updates. In Fig. 1(c), we update the edge and edge weights

2618

of samples which are close to the new one. The modified
edges and weights are colored in green. As we can see, one
edge is removed and some of the weights have been changed
(weakened or strengthened). This is due to the fact that the
insertion of a new sample will affect the edges and edge
weights of its nearby samples. At this point, the graph is built
dynamically without invoking a full construction from scratch.

We propose a dynamic graph construction method which
adds the recently arrived samples to a previously available
graph (with their weighted edges) and then update the whole
graph structure locally due to the introduction of the new
sample. This scheme will have lower computational complex-
ity compared to the batch graph construction. Due to lower
computational complexity of the proposed method, it is faster
than batch graph construction.

C. Proposed dynamic graph construction method

In the previous section, we presented the basic idea. In this
section, we present our proposed dynamic graph construction
method in more details. As explained in the previous section,
one solution is to construct a new graph using all data together.
However, this solution is computationally expensive when a lot
of test samples should be inserted into the graph and/or the
graph construction has to be repeated several times as it is the
case for online learning and classification. Consider the initial
data matrix X with its corresponding affinity matrix W and the
new sample matrix as X′. We want to construct a new affinity
graph W̃ ((N+r)× (N+r) matrix) which shows the relation
between the whole data. We build a data matrix containing the
union of database and new samples (i.e., X̃ = {X∪X′}). The
new unknown affinity matrix has the following form:

W̃ =

[
W̃dd W̃dn

W̃nd W̃nn

]
(3)

where W̃dd shows the similarity between the database samples
with each other, W̃dn represents the similarity between the
database samples and new samples, W̃nd shows the similarity
between the new samples and database samples and W̃nn is
the sub-matrix that demonstrates the similarity between new
samples. We estimate the new affinity matrix W̃ row by row.
In the first step (inserting the new samples), for each new
sample x′, we use TPWRLS algorithm to code it with respect
to the whole dataset (i.e., X̃) and obtain its reconstruction
coefficients, b′, which is a vector of dimension 1×(N+r). We
put these coefficients, which show the similarity between the
new sample and the whole data matrix, directly in the bottom
of final graph (i.e., [W̃ndW̃nn]).

In the second step (updating the local structure of the
graph), we update the edges and edge weights of the samples
which seem to be very related to the new samples. We use
reconstruction coefficients (the ones in W̃nd) as similarity
criterion to find these close samples.

Two scenarios can be adopted to select close samples,
adaptive and fixed selection. In adaptive selection, a threshold
is used in order to select close samples. The threshold can be

the result of applying any statistical function on the coefficients
as:

TH(y) = STAT(|b′1|, . . . , |b′N |), (4)

where STAT(|b′1|, . . . , |b′N |) is a statistical function that can
select the most relevant or similar samples to the recently
added sample x′. b′ is the TPWRLS code associated with
the new sample. One possible choice for the threshold can be
the average of the obtained coefficients:

TH(x′) =
1

N

N∑
j=1

|b′j |. (5)

In the fixed selection scenario, a percentage of the samples
having the largest coefficients will be chosen to have their
edges updated. In fixed selection, a predefined number of
samples are selected as the most similar ones. By any of the
above mentioned selection schemes, we construct a new data
subset represented by S = {x1, x2, ..., xQ}. This subset of
samples is the union of all close samples found for each new
sample.

This matrix contains Q closed selected samples that their
edge and edge weights may have been affected. As a con-
sequence their graph coefficients should be updated. In the
updating phase, we code each sample of S with respect to the
whole database (i.e., X̃) using TPWRLS coding algorithm. The
obtained coefficients of each sample will be inserted into the
corresponding row of the new affinity graph (i.e., [W̃ddW̃dn]).
For the rest of the samples which has not been selected,
we directly copy their coefficients from similarity matrix W
into the sub-matrix W̃dd of the new affinity graph. We set
corresponding columns of the sub-matrix W̃dn to zero. This
is justified by the fact that these samples are far from new
sample(s) and they do not interact with them. Hence, there is
no edge between them and the corresponding weights in the
affinity matrix are zero.

Algorithm 2 summarizes the proposed dynamic graph con-
struction method.

IV. PERFORMANCE EVALUATION

A. Targeted task: Label propagation for multiple observations
recognition

In this section, we study the performance of the proposed
dynamic graph construction method when applied to graph-
based label propagation for label inference of multiple obser-
vations having the same unknown label. This constitutes a test
bed for the proposed dynamic graph construction method since
the propagation is invoked whenever unknown observations
should be classified using a fixed labeled data subset together
with their corresponding graph. Let C denote the total number
of classes. Let Xu (a D × r matrix) denote the r unknown
images/observations. Let Xl (a D×N matrix) be the N known
observations (i.e., the training samples). The concatenation of
these two data sets yields the data matrix X = (Xl,Xu).
Xl is the data matrix associated with labeled samples. Let
Y = (Yl,Yu) (a C×(N+r) matrix) denote the corresponding

2619

Data: Database matrix X, its affinity matrix W and new
sample matrix X′ having r samples

Result: New affinity matrix W̃ associated with
X̃ = X ∪X′

for i = 1, . . . , r do
New sample coding phase;

Code x′i respect to the X̃ ;
Copy the obtained coefficients to the corresponding
row of [W̃ndW̃nn] ;
Updating phase ;
According to the obtained coefficients, select the set
of samples S whose edges should be updated;
for j = 1, . . . , Q do

Code xsj respect to the X̃;
Copy the obtained coefficients to the
corresponding row of [W̃ddW̃dn] ;

end
for Each non-selected sample of X do

Copy the corresponding row from W to W̃dd;
Set the corresponding rows in W̃dn to zero;

end
end
Algorithm 2: Proposed dynamic graph construction.

label matrix. Each column vector yi of Y is a vector encoding
the probabilities of the datum xi belonging to different classes,
namely,

yi(c) = p(c|xi); c = 1, 2, . . . , C

where p(c|xi) is the posterior probability of the class c for the
datum xi. For a labeled datum xi, yi(c) = 1 if xi belongs to
the cth class; yi(c) = 0, otherwise. Label propagation tries to
estimate the label matrix Yu by using the whole data and the
known label matrix Yl. For instance, this can be carried out
by minimizing the following label smoothness criterion (See
[11]):

E(Y) =
∑
i,j

‖yi − yj‖2Wij = trace(Y L YT) (6)

where W is the affinity matrix of the graph associated with
whole data X = (Xl,Xu), Drow is a diagonal matrix whose
diagonal elements are the row sums of the corresponding
rows of W, and Dcol is a diagonal matrix whose diagonal
elements are the column sums of the corresponding columns
of W. Drow −W and Dcol −WT are the row and column
Graph Laplacian matrices, respectively. Note that the matrix
L = Drow +Dcol − (W+WT) is symmetric. Since the r im-
ages/observations have the same unknown label (r is the num-
ber of unlabeled samples in Xu), the unknown label matrix Yu

will possess C different configurations (Yu(1), . . . ,Yu(C))
where Yu(c) has only the cth row equal to ones and the the
rest of the rows are zeros. Thus, Y = (Yl,Yu) can be written
as Y = (Yl,Yu(c)) where Yl is constant matrix. To estimate

the unique label of the unknown observations Xu, we use the
following:

c? = argmin
c
E(Yc) (7)

where Y(c) = (Yl,Yu(c)). Therefore, the optimal label
is estimated by carrying out C evaluations of the criterion
E(Yc). The process of multi-observation recognition based
on the dynamic TPWRLS graph is shown in Algorithm 3. In
this algorithm the unlabeled samples are considered as new
samples that should be added to the existing graph associated
with the labeled samples Xl.

Data: A set of multiple images/observations Xu, a
training set Xl and their labels Yl

Result: The label of the unknown observations c*

Construct the dynamic TPWRLS graph, W, over the data
(Xl,Xu) using Algorithm 2
Infer the label c? using Eq. (7)

Algorithm 3: Multi-observation recognition via dynamic
graph based label propagation.

B. Datasets

Extended Yale1: We use the cropped version which con-
tains 1774 face images of 28 individuals. The images of
the cropped version contain illumination variations and facial
expression variations. The images size is 192×168 pixels with
256-bit grey scale. The images are rescaled to 32×32 pixels
in our experiments.

Honda Video (HVDB) database has been acquired for
the purpose of face tracking and recognition [12]. It depicts
persons sitting in front of a camera in a totally uncontrolled
environment and performing unconstrained in-plane and out-
of-plane head motion. The used dataset contains 2317 images
organized in 22 classes, with an average of 100 images per
class.

USPS Handwritten Digits2: This dataset contains 11000
grayscale images of handwritten digits. This dataset has ten
classes “0” through “9”. Each class has 1100 images. The
image size is 16 × 16.

C. Experimental setup

Each dataset is randomly split into two parts: a training
part Ttrain and a test part Ttest. From the latter, and for
a given number of multiple observations, r, we generate
a sequence of subsets called Tm where each subset has r
samples that belong to the same class. It is clear that we have
card(Tm) = round(card(Ttest)/r). For recognition using the
dynamic TPWRLS graph, the unknown label of each element
Tm(i), i = 1, ..., card(Tm), a subset of r observations, is
inferred separately using the following two steps. Firstly, the
dynamic TPWRLS graph is built from the union Ttrain∪Tm(i)

1http : //vision.ucsd.edu/ ∼ iskwak/ExtY aleDatabase/
ExtY aleB.html

2www.cs.nyu.edu/ ∼ roweis/data.html

2620

using Algorithm 2 for which the new data samples X′ are
given by the r samples in Tm(i). this process is depicted in
Figure ??. Secondly, the label of the subset Tm(i) is then
inferred using Algorithm 3. The recognition rate is finally
evaluated for the whole set Tm using the ground-truth labels.
This process is repeated over ten different random splits.
The reported recognition rates correspond to an average over
these ten splits. For each dataset, the feature vectors (image
descriptors) are first normalized using the zero-mean and unit-
variance normalization, then the dimensionality of the obtained
data is reduced using Principal Component Analysis for which
the number of principal components is set to min(D,N − 1)
where N is the number of training samples and D is the
sample dimension. In the sequel, unless it is stated otherwise,
the evaluation will use PCA dimensionality reduction and ten
random splits.

D. Experimental results

1) Classification accuracy: Tables I, II, and III show the
recognition rates obtained with Extended Yale, HVDB, and
USPS datasets for several descriptors and for several numbers
of multiple observations. For descriptors, we considered image
rawbrightness, Local Binary Patterns (LBP) [13], [14], and
Histograms of Oriented Gradients (HOG) [15]. All results are
obtained using the dynamic TPWRLS graphs. The Train-Test
percentage is 10%-90% for Extended Yale and USPS datasets.
Two percentages are used with HVDB dataset: 5%-95% and
10%-90%. From Table I, we can observe that the performance
of label propagation increases as the number of observations
increases. We can notice that by adding two more observa-
tions (r=3) the recognition performance has been significantly
improved with respect to the single observation case (r=1).
In general, the use of LBP images give the best performance
for all used numbers. This can be explained by the fact that
LBP images considerably overcome the illumination variation
affecting the Extended Yale dataset. Table II illustrates the
recognition rates obtained with Honda Video dataset for sev-
eral numbers of multiple observations (image rawbrightness).
The first row corresponds to the Train-Test percentage of 5%-
95%, and the second row to 10%-90%. We can observe that
by using three observations, the average performance have
increased by more than 20% with respect to the use of one
single observation (See first and second rows). This can be
explained by the fact that the observations correspond to faces
undergoing arbitrary 3D motions so ambiguity affecting one
single image can be overcome by exploiting several images
of the same face. Table III illustrates the recognition rates
obtained with the handwritten digit images (USPS dataset)
for several numbers of multiple observations. We depict the
performance obtained with normalized raw images as well as
with several configurations of the HOG descriptor. The number
in parenthesis depicts the number of sub-images to which the
HOG descriptor is applied. From the table, we can easily see
that the use of HOG gave better results than raw images. This
is very consistent with the fact that handwritten digits are
mainly described by their shape and gradients. We can also

observe that good results are obtained with multi-block HOG
with overlap. For small number of observations, the use of
hybrid descriptors has improved the performance with respect
to the use of raw images alone. However, it is still worse than
that obtained with HOG descriptor alone.

TABLE I
RECOGNITION RATES FOR EXTENDED YALE DATASET OBTAINED WITH

LABEL PROPAGATION OVER TPRWLS GRAPH. THE TRAIN-TEST
PERCENTAGE IS 10%-90%.

Descriptor r=1 r=3 r=5 r=7 r=9 r=11

Raw images 86.8 94.5 96.0 97.5 98.7 97.7
Constr. images 91.4 95.3 97.6 97.1 97.8 98.9
LBP 91.2 97.5 97.6 97.9 98.8 98.5
HOG 88.6 94.3 94.2 95.3 95.4 96.3
LBP + HOG 90.6 95.5 95.9 95.4 97.0 97.6

TABLE II
RECOGNITION RATES FOR HONDA VIDEO DATASET OBTAINED WITH

LABEL PROPAGATION OVER TPRWLS GRAPH. THEY CORRESPOND TO AN
AVERAGE OVER TEN RANDOM SPLITS.

Raw images r=1 r=3 r=5 r=7 r=9 r=11

Train-Test 5-95% 53.0 74.6 81.6 85.8 88.2 89.4
Train-Test 10-90% 66.5 87.9 93.2 95.4 96.8 97.6

TABLE III
RECOGNITION RATES FOR USPS DATASET OBTAINED WITH LABEL

PROPAGATION OVER TPRWLS GRAPH. THE TRAIN-TEST PERCENTAGE IS
10%-90%.

Descriptor r=1 r=3 r=5 r=7 r=9

Raw images 72.5 92.8 97.4 99.1 99.6
HOG (2x2) 83.3 96.7 98.3 99.2 99.6
HOG (3x3) 81.0 96.8 99.2 99.7 99.7
HOG (4x4) 82.4 97.2 99.4 99.7 99.9
HOG (overlap 3x3) 85.4 97.7 99.3 99.7 99.8
Raw+HOG (2x2) 74.9 93.9 98.1 99.5 99.8
Raw+HOG (3x3) 76.4 94.7 98.4 99.5 99.8
Raw+HOG (4x4) 77.0 94.8 98.2 99.3 99.7
Raw+HOG (overl. 3x3) 77.2 94.9 98.4 99.6 99.7

2) Computational time: Figure 2 compares the CPU time
needed for constructing the graph in batch mode (red curves)
and in a dynamic mode (blue curves) as a function of the
number of updates (how many times new data are inserted
into the graph). Here the batch mode refers to the the classic
TPWRLS construction method outlined in Algorithm 1. From
top to bottom, the results correspond to Extended Yale, HVDB,
and USPS datasets. In all plots, the Train-Test percentage is
10%-90%. The computation times are plotted for two different
sizes of the new samples. As can be seen, the dynamic
graph scheme is much more efficient than the batch graph
construction. All tests are conducted using MATLAB that runs

2621

on a PC equipped with an Intel Core i5 CPU at 2.3 Ghz and
4 GB of RAM.

Table IV illustrates the label propagation accuracy obtained
by the batch and dynamic graph on the three datasets. The
Train-Test percentage is 10%-90%. The results correspond to
one split used by both graphs. As can be seen, the dynamic
graph have provided almost the same accuracy as the batch
graph while it is much more efficient. In same cases, the
performance of the dynamic graph is better than that of the
batch graph. This can be explained by the fact that by adding
novel samples to the graph and by keeping the edges of many
nodes unchanged may make the resulting dynamic graph more
informative than the batch graph.

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

Number of updates

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

r = 1

Batch graph
Dynamic graph

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

Number of updates

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

r = 3

Batch graph
Dynamic graph

0 200 400 600 800 1000
0

500

1000

1500

Number of updates

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

r = 1

Batch graph
Dynamic graph

0 200 400 600 800 1000
0

200

400

600

800

1000

1200

1400

1600

Number of updates

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

r = 3

Batch graph
Dynamic graph

0 200 400 600 800 1000
0

50

100

150

200

250

Number of updates

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

r = 1

Batch graph
Dynamic graph

0 200 400 600 800 1000
0

50

100

150

200

250

Number of updates

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

r = 3

Batch graph
Dynamic graph

Fig. 2. CPU time needed for batch graph construction (red curve) and dynamic
graph (blue curve) as a function of the number of updates. The datasets are
Extended Yale, HVDB, and USPS.

V. CONCLUSION

We proposed a new dynamic graph construction method
for inductive semi-supervised learning. The proposed method,
after receiving new samples, updates the affinity graph dynam-
ically without the need to construct the graph from scratch.
Although we adopted TPWRLS coding, any other similarity
coding like Gaussian kernel, LLE coding or sparse `1 coding
can be used. The conducted experiments show that, although
the proposed method only updates few nodes of the graph,
the dynamic construction is computationally much cheaper
than the batch graph construction. Furthermore, the dynamic

TABLE IV
GRAPH-BASED LABEL PROPAGATION ACCURACY (%).

Dataset r=1 r=3 r=5 r=7 r=9

Ext. Yale
Batch graph 91.2 94.5 98.4 98.6 97.6
Dynamic graph 91.0 94.9 98.0 99.1 97.0
HVDB
Batch graph 66.3 88.7 94.3 95.4 98.2
Dynamic graph 66.4 88.3 93.8 94.7 97.7
USPS
Batch graph 72.6 92.6 97.3 99.6 98.2
Dynamic graph 72.5 92.8 97.4 99.1 99.6

graphs are as informative as the batch ones, in the sense that
the performance of label propagation is the almost the same
in both cases.

REFERENCES

[1] D. B. West, Introduction to Graph Theory, 2nd ed. Prentice Hall,
September 2001.

[2] L. Berton and A. De Andrade Lopes, “Graph construction based on
labeled instances for semi-supervised learning,” in Pattern Recognition
(ICPR), 2014 22nd International Conference on, Aug 2014, pp. 2477–
2482.

[3] B. Cheng, J. Yang, S. Yan, Y. Fu, and T. Huang, “Learning with l1-graph
for image analysis,” Trans. Img. Proc., vol. 19, no. 4, pp. 858–866, Apr.
2010.

[4] T. Jebara, J. Wang, and S. Chang, “Graph construction and b-matching
for semi-supervised learning,” in Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, ser. ICML ’09. New York,
NY, USA: ACM, 2009, pp. 441–448.

[5] S. Daitch, J. Kelner, and D. Spielman, “Fitting a graph to vector data,”
in Proceedings of the 26th Annual International Conference on Machine
Learning, ser. ICML ’09. ACM, 2009, pp. 201–208.

[6] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 31, no. 2, pp. 210–227, 2009.

[7] F. Dornaika and A. Bosaghzadeh, “Adaptive graph construction using
data self-representativeness for pattern classification,” Information Sci-
ences, vol. 325, pp. 118–139, 2015.

[8] W. Liu, J. He, and S. Chang, “Large graph construction for scalable
semi-supervised learning,” in Proceedings of the 27th International
Conference on Machine Learning (ICML-10), June 2010, pp. 679–686.

[9] H. Hacid and T. Yoshida, “Incremental neighborhood graphs construc-
tion for multidimensional databases indexing,” in Advances in Artificial
Intelligence, ser. Lecture Notes in Computer Science, Z. Kobti and
D. Wu, Eds., 2007, vol. 4509.

[10] F. Dornaika, A. Bosaghzadeh, H. Salmane, and Y. Ruichek, “Locality
constrained encoding graph construction and application to outdoor
object classification,” in Pattern Recognition (ICPR), 2014 22nd Inter-
national Conference on, Aug 2014, pp. 2483–2488.

[11] S. Yan and H. Wang, “Semi-supervised learning by sparse representa-
tion,” in SDM, 2009, pp. 792–801.

[12] K.-C. Lee, J. Ho, M.-H. Yang, and D. Kriegman, “Visual tracking and
recognition using probabilistic appearance manifolds,” Computer Vision
and Image Understanding, vol. 99, pp. 303–331, 2005.

[13] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description with local
binary patterns: application to face recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp. 2037–
2041, 2006.

[14] M. Bereta, P. Karczmarek, W. Pedrycz, and M. Reformat, “Local
descriptors in application to the aging problem in face recognition,”
Pattern Recognition, vol. 46, pp. 2634–2646, 2013.

[15] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection.” in IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2005.

2622

