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Abstract—Spectral clustering is able to extract clusters with 

various characteristics without a parametric model, however it is 

infeasible for large datasets due to its high computational cost and 
memory requirement. Approximate spectral clustering (ASC) 
addresses this challenge by a representative-based partitioning 

approach which first finds a set of data representatives either by 
sampling or quantization, then applies spectral clustering on 
them. To achieve an optimal partitioning with ASC, several 

sampling or quantization methods together with advanced simi- 
larity criteria have been recently proposed. While quantization is 
more accurate than sampling in expense of heavy computation, 

and geodesic based hybrid similarity criteria are often more 
informative than others, there is no unique solution optimum for 
all datasets. Alternatively, we propose to use ensemble learning to 

produce a consensus partitioning constructed from different set of 
representatives and similarity criteria. The proposed ensemble 
(SASCE) not only produces a relatively more accurate 

partitioning but also eliminates the need to determine the best pair 
(the optimum set of representatives and the optimum similarity). 
Thanks to the efficient similarity definition on the representative 

level, the SASCE can be powerful for clustering small and medium 
datasets, outperforming traditional clustering approaches and 
their ensembles. 

Index Terms—approximate spectral clustering, cluster ensem- 
ble, maximum voting, geodesic distances, hybrid similarity 

 

I. INTRODUCTION 

Clustering have been of great interest for data analysis due 

to its unsupervised nature depending mainly on intrinsic data 

properties which can be utilized by some (dis)similarity 

criteria. Among many methods, spectral clustering stands out 

thanks to its manifold learning approach which exploits 

pairwise similarities by eigendecomposition of a similarity 

based graph [1], [2], [3], [4], [5]. Despite its success on 

extracting clusters with various characteristics without para- 

metric models, its high computational cost and memory re- 

quirement make its direct use infeasible for partitioning large 

datasets. Therefore, approximate spectral clustering (ASC) 

applies spectral clustering on a subset of data representatives 

selected by sampling or quantization [6], [7], [8], [9], [10], [11], 

[12], [13]. Several studies analyze the effects of different 

sampling and quantization methods in ASC: random sampling 

[6], [14], selective sampling [8], [11], k-means, random pro- 

jection trees [11], neural networks (self-organizing maps and 

neural gas) [12], [13], k-means++ [13]. Wang et al. [8] find 

selective sampling better performing than random sampling, 

whereas quantization often outperforms sampling in expense 

 

of computational complexity [12], [15]. Besides a represen- 

tative set selection, ASC brings new similarity definitions on 

the representative level (such as local data distribution, data 

topology, geodesic distance and their fusion) [12], [13]. The 

geodesic based hybrid similarity criteria together with neural 

gas quantization are outperforming in general, yet, one needs to 

determine how to select the representative set and similarity 

criterion for an optimum partitioning in the given dataset [13]. 

Alternatively, one can fuse all these partitionings obtained by 

different sets of representatives and similarity criteria into one 

consensus result by ensemble learning. 

Ensemble learning merges partitionings of different input 

subsets or features, obtained by distinct methods or the same 

method with several parameter settings, to eliminate the need 

to determine the optimal selection for the greatest possible 

classification (or clustering) accuracy. It can be performed by 

various approaches including majority voting, evidence 

accumulation, hyper graph operations, metaclustering, or mix- 

ture models [16], [17], [18], [19], [20], [21], [22]. Among 

them, majority voting is commonly preferred due to being the 

most naive and easy-to-implement approach by counting the 

labels of the same input sample under various settings. The 

spectral clustering ensemble in [20], which uses random 

sampling together with maximum voting and metaclustering 

algorithm, combines partitionings obtained with different ker- 

nel parameter values in similarity definition, for segmentation 

of relatively small remote sensing images. Despite the 

ensemble approach, different parameter windows, specific to 

the datasets, are used to achieve high performance. In addition, 

when random sampling is used for spectral clustering of large 

datasets, out-of-sample labeling may become problematic [11], 

[23]. In contrast, graph based ensemble approaches are often 

superior to majority voting in expense of heavy computational 

cost, making them infeasible for large datasets. Despite the fact 

that the graph based ensemble learning can be run for 

representative based partitioning of large datasets (such as for 

approximate spectral clustering) it limits the ensemble on the 

representative level leading to the use of only one representa- 

tive set obtained by one sampling/quantization method [24]. 

In this paper, we propose a sampling based approximate 

spectral clustering ensemble (SASCE). The SASCE first ob- 

tains data representatives using selective sampling to optimize 
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the balance between high computational cost of  quantization 

and low performance of random sampling. Since the sampling 

has low computational cost, one can obtain many sets of 

representatives to have alternative partitionings of the dataset. 

The SASCE then cluster each representative set by spectral 

clustering using advanced geodesic similarity definitions which 

utilize different information types [13], instead of the 

traditional similarity defined by distance based Gauss kernel 

with different parameter values. The cluster labels of the 

representatives are assigned to their corresponding data 

samples. This produces various partitionings of the dataset 

obtained by different representative sets and similarity defini- 

tions. The SASCE merges them into a consensus partitioning 

by majority voting. By combining different representative sets 

with advanced similarity definitions harnessing data manifold, 

the SASCE achieves accuracies superior to other spectral 

clustering ensembles for large datasets. In addition, thanks to 

manifold based similarities, the SASCE also provides high 

accuracies for the medium or small datasets where spectral 

clustering is feasible. 

The paper is outlined as follows. Section II presents the 

proposed SASCE together with a brief explanation of the ap- 

proximate spectral clustering, selective sampling, and similar- 

ity criteria. Section III first shows the clustering performance 

of the SASCE based on accuracy and adjusted Rand index on 

large datasets for which spectral clustering is infeasible due to 

its computational cost and memory requirement. Then Section 

III provides SASCE performance for five datasets (from UCI 

Machine Learning Repository [25]) and a thorough discussion 

by comparing it to other ensembles based on traditional 

clustering methods. Section IV concludes the paper. 

II. SASCE: SAMPLING BASED ASC ENSEMBLE  

Being an ensemble of partitionings obtained by ASC, the 

SASCE has three steps, two of which constitute the ASC 

(Section II-A): i) determining data representatives by selective 

sampling (Section II-A1), ii) the spectral clustering of the 

representatives using advanced similarity definitions (Section 

II-A2), and assigning the extracted cluster labels to the 

corresponding data samples, iii) ensemble of data partitionings 

by majority voting. 

At each step of the SASCE, alternative decisions could have 

been made. However, selective sampling provides a balanced 

performance between heavy computation cost of quantization 

methods (such as k-means, neural gas) and relatively low per- 

formance of random sampling. Therefore it makes it efficient 

to obtain different sets of data representatives which can then 

be clustered to extract different labelling of their correspond- 

ing data samples. The advanced geodesic based similarities 

includes data manifold information which can address the 

challenges in out-of-sampling labelling to a great extent. The 

naive ensemble of majority voting provides a simple yet cost 

effective merging of data partitionings based on different sets 

of representatives, whereas advanced ensemble methods using  

graph theoretic approaches are feasible for merging 

partitionings on the representative level [24]. Depending on the 

majority voting ensemble on the data level, the SASCE 

algorithm can be summarized as follows: 

1) Obtain nr sets of data representatives by selective sam- 

pling (Section II-A1). 

2) Get ns partitionings of each set of data representatives 

with spectral clustering using ns similarity definitions 

in Section II-A2. 

3) Find nr × ns cluster labels of data samples using the 
labels of their corresponding representatives 

4) Ensemble nr × ns data partitionings by majority voting 

to obtain a consensus labelling. 

A. ASC: Approximate Spectral Clustering 

By applying spectral clustering on data representatives 

obtained by a sampling or quantization method, ASC not only 

utilizes spectral clustering advantages such as successful 

extraction of clusters with distinct characteristics without 

parametric models, but also enables manifold based similar- 

ity definitions (such as data topology, local density) on the 

representative level. 

Spectral clustering depends on eigendecomposition of a 

graph Laplacian matrix L constructed with respect to some 

optimization criteria [26], [2], [27]. The SASCE employs 

the method in [2] since there is no clear advantage among 

spectral clustering methods as long as a normalized graph 

Laplacian is used [28], [29]. By constructing a weighted 

undirected graph G = (V, S), where the nodes V are the 

representatives and the edges S are their pairwise 

similarities, the normalized Laplacian, Lnorm, is defined as 

Lnorm = D−1/2SD−1/2                      (1) 

Here D is diagonal degree matrix D of the similarity ma-

trix S with 𝑑𝑖 = ∑ 𝑠(𝑖, 𝑗)𝑗  showing the total similarity of 

each node. Then, the k eigenvectors {𝑒1, 𝑒2,…,𝑒𝑘}of 

Lnorm, associated with its k highest eigenvalues {λ1, λ2, 

…, λ𝑘} are found to construct E = [𝑒1, 𝑒2,…,𝑒𝑘] and its 

normalized variant U (by normalizing the rows of E to have 

norm 1). Finally, the rows of U are clustered by k-means 

(or any simple clustering) based on the fact that this 

eigendecomposition ideally maps submanifolds (clusters) 

of the dataset in a well separated manner. 

Two important ASC decisions are sampling/quantization 

method and similarity definition for S. While the pair of a 

neural gas based quantization and geodesic hybrid similarity 

definition is shown superior for several datasets [13], quanti- 

zation requires high computational cost and alternative simi- 

larity definitions may outperform for some other datasets. To 

address these challenges, the SASCE uses selective sampling 

and harness available similarity definitions, which are briefly 

explained below. 

1) Selective sampling for ASC: By addressing several chal- 

lenges in sampling such as tendency to over-sample and 

insufficient sample size, selective sampling provides an ASC 
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performance superior to other sampling methods and similar 

to k-means quantization [9]. It has three steps. Firstly, h distin-

guished objects 𝑝1, 𝑝2, …, 𝑝ℎ  are selected from a dissimilarity 

matrix (DNN ) of the dataset (N is size of dataset). The first 

index 𝑝1 is randomly selected from the index set {1, 2, · , N } 

and a search array A is generated: 

A = (𝑎1, 𝑎2,…, 𝑎𝑁 ) = (𝑑1,1, 𝑑1,2,…, 𝑑1,𝑁  )  (2) 

The remaining h−1 distinguished objects are iteratively 
selected to maximize ai, i.e., pi = arg maxj aj, and then search 

array A is updated using 

A = (min((𝑎1, 𝑑𝑝𝑖−1,𝑁), … , min((𝑎𝑁, 𝑑𝑝𝑖−1,𝑁))   (3) 

to get all distinguished h objects with a max – min farthest 
point strategy. Secondly, each data sample 𝑣𝑖  is assigned to 
the nearest distinguished object q using 

q = arg min(𝑑𝑝,𝑗 , i )                        (4) 
  j 

to obtain the receptive fields (𝑅𝑞  ) of the h objects. 

Thirdly, n = ∑ 𝑛𝑞𝑞  samples are randomly selected from 𝑅𝑞𝑠, 

where 𝑅𝑞 is proportional to the number of samples in 𝑅𝑞. 

   2) Similarity criteria for ASC: In ASC, the similarity criterion 

for S is traditionally determined by a Gaussian kernel based on 

the (Euclidean) distances, 𝑑𝐸𝑢𝑐  (𝑣𝑖 , 𝑣𝑗): 

SEuc(i,j) = exp (-
𝑑𝐸𝑢𝑐

2 (𝑣𝑖,𝑣𝑗 )

2𝜎𝑖𝜎𝑗 
)   (5) 

Here 𝜎𝑖𝜎𝑗 are decaying parameters which can be set as a global 

optimum using empirical studies [2] or as local distances to the 

kth nearest neighbor of vi, vj [30]. (Note that, for ASC, instead 

of using data samples, the pairwise similarities between the 

representatives are calculated.). 

   Alternatively, different information types such as topology, 

density were utilized for effective definition of pairwise simi-

larities on the level of representatives [12], [13]. For example, 

[12] defines similarity as based on a weighted Delaunay tri- 

angulation (CONN) exploiting detailed local density together 

with data topology. CONN(i,j) is defined as the number of data 

samples inside the subregions Vij ∪  Vji  of the Voronoi polygons 

Vi and Vj , where Vi is the set of data samples v for which wi is 

the closest representative: 

CONN (i, j) = |Vij ∪ Vji |  with      (6) 

Vij  = {v ∈  Vi  : ||v − wj || ≤ ||v – wk  || Ɐk ≠ i }.            (7) 

Being a parameterless similarity depending on data charac- 

teristics, CONN produces more accurate partitionings than those 

obtained by distance based approaches [31], [12]. By integrating 

the distance information into CONN, a hybrid similarity 

criterion Shyb can be obtained: 

shyb (i, j) = sEuc(i, j) × exp(
𝐶𝑂𝑁𝑁(𝑖,𝑗)

𝑚𝑎𝑥𝑖,𝑗𝐶𝑂𝑁𝑁(𝑖,𝑗)
)         (8) 

This enhances sEuc between [1, e] depending on local density 

distribution. If CONN (i, j) = 0 then two representatives wi, wj  

do not have any data sample for which they are the best-

matching pairs (i.e. wi, wj are not neighbors with respect to the 

data manifold), producing shyb (i, j) = sEuc(i, j). 

Geodesic distance based similarity definitions were also 

considered in ASC [13]. Geodesic approaches require a 

neighborhood graph to determine the representatives 

neighbor in the data manifold. A naive way to obtain this 

graph is the use of (mutual) k nearest neighbors (k − nn) of 

the representatives wi, wj . Their geodesic distance is the 

length of the shortest path between wi and wj  : 

𝑑𝑔𝑒𝑜𝑘𝑛𝑛(𝑤𝑖,𝑤𝑗) =  ∑ 𝑑𝐸𝑢𝑐(𝑙, 𝑚)

𝑙𝑚∈𝑆𝑃𝑘𝑛𝑛(𝑤𝑖,𝑤𝑗)

    (9) 

 

with SPknn(wi, wj) is the set of edges in the shortest path be- 

tween wi  and wj calculated with the Euclidean distance dEuc 

and k-nn graph. This definition requires a parameter k which 

needs to be optimally set for each representative. Instead of k-
nn, CONN can be used as a manifold based neighborhood graph 

exploiting local characteristics for optimal number of neighbors 

for each representative [32]. The geodesic distance dgeoadj with 

CONN and Euclidean distances dEuc  is defined: 

𝑑𝑔𝑒𝑜𝑎𝑑𝑗(𝑤𝑖,𝑤𝑗) =  ∑ 𝑑𝐸𝑢𝑐(𝑙, 𝑚)

𝑙𝑚∈𝑆𝑃𝑎𝑑𝑗(𝑤𝑖,𝑤𝑗)

        (10) 

Here SPadj (wi, wj) is the set of edges in the shortest path based 

on dEuc and CONN. Alternative to the Euclidean distances dEuc, 

local density based dissimilarity dCONN can be utilized for 

geodesic distance calculation: 

𝑑𝑔𝑒𝑜𝑐𝑜𝑛𝑛(𝑤𝑖,𝑤𝑗) =  ∑ 𝑑𝐶𝑂𝑁𝑁(𝑙, 𝑚)

𝑙𝑚∈𝑆𝑃𝑐𝑜𝑛𝑛(𝑤𝑖,𝑤𝑗)

      (11) 

𝑑𝐶𝑂𝑁𝑁(𝑤𝑖, 𝑤𝑗)  =             ∞                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑒

−
𝐶𝑂𝑁𝑁(𝑖,𝑗)

𝑚𝑎𝑥𝑦,𝑧𝐶𝑂𝑁𝑁(𝑦,𝑧)      𝑖𝑓 𝐶𝑂𝑁𝑁(𝑖,𝑗)>0  

 

SPconn(wi, wj) is  now  the  set  of  edges  in  the  shortest  path 

between  wi  and  wj  with  respect  to  dCONN   and  CONN.  

In addition, a hybrid approach dgeohyb (wi, wj) can harness 

both distance and density  as: 

𝑑𝑔𝑒𝑜ℎ𝑦𝑏(𝑤𝑖,𝑤𝑗) =  ∑ 𝑑𝐸𝑢𝑐(𝑙, 𝑚)𝑑𝐶𝑂𝑁𝑁(𝑙, 𝑚)

𝑙𝑚∈𝑆𝑃ℎ𝑦𝑏(𝑤𝑖,𝑤𝑗)

           (12) 

The geodesic distance based similarities are then obtained by 

replacing dEuc in (5) with the corresponding distance criterion. 

They are successful for a wide variety of datasets with 

different characteristics, where the geodesic hybrid similarity 

sgeohyb is often superior [13]. However, there is no unique 

similarity achieving the best partitioning for any given 

dataset. One solution is the empirical selection of the optimal 

similarity criterion for each application, with respect to some 

lustering validity indices (or classification accuracy using a 

test datasetwith ground truth labels). Alternatively, we use 

ensemble of the partitionings obtained by different criteria to 

utilize different information types without any criterion 

selection. 

III. EXPERIMENTAL RESULTS 

   We evaluate the performance of the proposed SASCE using 

five large datasets from different remote-sensing 
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applications[33], [34], [35]. Table I provides the properties of 

these datasets. One of these datasets, the Boston remote sensing 

dataset [33], has 41 features derived from a remotely sensed 

area with 216000 samples (a 360 × 600 pixel image) to capture 

eight classes. Three dataset (KARD: Kardjali, PLOV: Plovdiv, 

VARN: Varna) are multitemporal RapidEye images acquired 

for land cover analysis to determine lands in good agriculture 

condition in the frame of the Common Agricul-tural Policy of 

the European Union [34]. These regions have distinct land 

cover characteristics: KARD is a mountainous region with 

significant forest coverage and small agricultural parcels 

whereas PLOV and VARN are mainly covered with agricultural 

parcels. Their data have 20D features (5-band images acquired 

in four months from April to July 2009) with 4 million pixels 

for KARD and approximately 8 million pixels for PLOV  and 

VARN. The fifth dataset, Bengisu, is a WorldView-2 image 

(2918 × 4775-pixel) used for land cover identification to extract 

hazelnut fields [35]. This 8D dataset has four classes (hazelnuts, 

woodlands, agricultural lands, and others). For SASCE of these 

five large datasets, we obtain 20 different sets of 1600 data 

representatives, and cluster them using seven criteria in Section 

II-A2. This produces 140 partitionings for each dataset, which 

are then merged by majority voting to obtain the final  

clustering. 

   We also cluster five datasets (Iris, Breast Cancer Wisconsin- 

BCWS, Yeast, Statlog and Pen Digit) from UCI Machine 

Learning Repository [25]. The UCI datasets (Iris, Breast Can- 

cer Wisconsin-BCWS-, Yeast, Statlog, and Pen Digits) have a 

variety of characteristics such as the number of data points, the 

number of clusters, and the number of features (Table I). For 

these datasets, we set the number of data representatives as 

10% of the number of data samples to have sufficient number 

of representatives for knowledge extraction. We have 20 sets 

of representatives which are clustered by the seven similarity 

criteria, resulting in 140 partitionings for ensemble. For 

performance evaluation we use two measures: clustering 

accuracy and adjusted Rand index (ARI) [36]. The clustering 

accuracy is calculated as the percentage of the correctly 

clustered data points based on the ground truth labels. ARI is 

a measure of agreement between labels obtained by the 

clustering process and the other labels defined by external 

criteria for the same data. Depending on the relation between 

data points of the same cluster together with the correct 

separation of data points into different clusters, ARI 

sensitively indicates the relation between each datum and its 

target label to provide a good measure for multi-class 

problems [36]. Table II shows the accuracies obtained by the 

proposed SASCE and the mean accuracies for ASC with the 

corre- sponding similarity criterion, for five large datasets. 

Note that different criterion achieves the best accuracy (sgeohyb 

for Boston, sCONN for KARD and Bengisu, sgeoadj for PLOV, 

and sgeoconn for VARN) while sgeohyb  and sgeoadj achieve an 

average accuracy of upto 90%. To achieve the best perfor- 

mance by the proposed SASCE would be of great importance 

since it eliminates the need for selecting the optimum 

criterion. In addition, the SASCE improves the best individual 

clustering performance: (Boston: from 92,53% to 93,15%; 

KARD: from 95,14% to 95,72%; PLOV: from 91,52% to 

92,62%; VARN:from 91,76% to 95,35%; and Bengisu: from 

79,77% to 82,02%). A similar performance improvement can 

also be shown based on the ARI values at Table III. Despite 

the possibility of having a different similarity criterion as the 

optimum one with respect to ARI assessment, the ARI values 

favor the consensus partitioning of the SASCE as the best 

one. 

TABLE I 
THE DATASETS  USED IN  THE STUDY. N : NUMBER OF  DATA POINTS; 

c: NUMBER OF CLASSES; f : NUMBER OF FEATURES 

Dataset N c f 

Iris 150 3 4 

BCWS 699 2 9 

Yeast 1484 10 8 

Statlog 6435 6 4 

Pen 

Digit 
10992 10 16 

Boston 216000 8 41 

KARD 4000000 4 20 

PLOV 8000000 4 20 

VARN 8000000 4 20 

Bengisu 1393345 4 8 

Table IV shows the accuracies for the datasets from UCI 

Machine Learning Repository. Since ARI values indicate a 

similar evaluation for large datasets, we omit them in this 

assessment. The SASCE provides the best accuracies for these 

commonly available datasets as well (Iris: from 86,7% to 

88,03%; BCWS: from 96,04% to 96,85%; Yeast: from 

39, 55% to 54, 45%, Statlog: from 70, 29% to 77, 05% and 

Pen Digit: from 73, 05% to 80, 95%). 

To indicate the advantage of SASCE in harnessing different 

information types, we compare the SASCE to two other 

ensembles based on majority voting. First, we obtain spectral 

clustering ensemble (SE) which uses the traditional Euclidean 

based similarity with different decaying parameter σ values 

(20 σ values: 10 uniformly distributed values between 0and 1 

and 10 values between 1 and 10). This ensemble exploits 

advantages of spectral clustering with one similarity 

definition. Second, we obtain a hierarchical clustering en- 

semble (HACE) which merges partitionings obtained with six 

different linkage methods (single, complete, average, 

centroid, median and Ward’s measure). Despite considering 

different criteria for within-cluster and between-clusters 

(dis)similarity, hierarchical clustering also depends on 

Euclidean distance based similarities between data points. 

Table V compares the ensemble accuracies of the SASCE, SE 

and HACE for five UCI datasets. The SASCE provides the 

best performance for four of them, by exploiting manifold 

characteristics through various types of information. 
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TABLE II 

ACCURACIES OF SASCE FOR LARGE DATASETS. THE MEAN ACCURACY (AND STANDARD DEVIATION) FOR EACH SIMILARITY CRITERION IS ALSO GIVEN. 
THE BEST PERFORMANCE FOR EACH DATASET IS INDICATED IN BOLD WHEREAS THE BEST SIMILARITY CRITERION IS IN italics. 

 

Dataset sEuc sCONN shyb sgeoknn sgeoadj sgeoconn sgeohyb SASCE 

Boston 92,10 (1,3) 68,76 (2,4) 69,25 (2,4) 86,83 (3,0) 92,52 (1,7) 85,21 (1,6) 92,53 (2,0) 93,15 

KARD 90,13 (2,4) 95,14 (1,7) 94,33 (1,5) 76,27 (5,8) 92,99 (1,6) 88,54 (2,4) 93,42 (1,8) 95,72 

PLOV 90,36 (2,1) 88,52 (1,2) 89,74 (1,9) 65,99 (1,9) 91,52 (1,4) 88,20 (2,0) 91,02 (1,7) 92,62 

VARN 91,24 (1,0) 91,45 (1,7) 91,70 (0,8) 83,06 (6,5) 91,73 (0,9) 91,76 (1,1) 91,46 (1,0) 95,35 

Bengisu 77,89 (1,07) 79,77 (0,6) 78,63 (1,1) 55,37 (2,0) 79,65 (1,1) 76,23 (1,4) 79,65 (1,0) 82,02 

Average 88,34 84,73 84,73 73,50 89,68 85,99 89,62 91,77 

TABLE III 
ARI VALUES OF SASCE FOR LARGE DATASETS.THE MEAN ARI VALUE (AND ITS STANDARD DEVIATION) FOR EACH SIMILARITY CRITERION IS ALSO GIVEN. 

THE BEST PERFORMANCE FOR EACH DATASET IS INDICATED IN BOLD WHEREAS THE BEST SIMILARITY CRITERION IS IN italics. 
 

Dataset sEuc sCONN shyb sgeoknn sgeoadj sgeoconn sgeohyb SASCE 

Boston 0,90 (0,01) 0,70 (0,02) 0,70 (0,01) 0,84 (0,02) 0,91 (0,00) 0,83 (0,00) 0,91 (0,00) 0,95 

KARD 0,90 (0,01) 0,94 (0,00) 0,91 (0,01) 0,83 (0,01) 0,90 (0,02) 0,88 (0,00) 0,92 (0,01) 0,96 

PLOV 0,88 (0,02) 0,85 (0,01) 0,89 (0,00) 0,66 (0,01) 0,88 (0,00) 0,86 (0,00) 0,90 (0,00) 0,93 

VARN 0,90 (0,00) 0,91 (0,01) 0,91 (0,03) 0,80 (0,05) 0,91 (0,01) 0,91 (0,01) 0,91 (0,02) 0,96 

Bengisu 0,81 (0,01) 0,80 (0,01) 0,79 (0,00) 0,64 (0,00) 0,80 (0,00) 0,78 (0,02) 0,80 (0,01) 0,85 

Average 0,88 0,84 0,84 0,75 0,88 0,85 0,89 0,93 

 
TABLE IV 

ACCURACIES OF SASCE FOR DATASETS FROM UCI MACHINE LEARNING REPOSITORY. THE MEAN ACCURACY (AND STANDARD DEVIATION) FOR EACH 

SIMILARITY CRITERION IS  ALSO GIVEN. THE  BEST PERFORMANCE FOR  EACH  DATASET  IS  INDICATED  IN  BOLD WHEREAS THE  BEST SIMILARITY 

CRITERION IS IN italics. 
 

Dataset sEuc sCONN shyb sgeoknn sgeoadj sgeoconn sgeohyb SASCE 

Iris 63,47 (9,2) 68,96 (14,7) 69,01 (14,3) 56,39 (7,4) 80,94 (12,4) 86,7 (7,8) 80,87 (12,4) 88,03 

BCWS 96,04 (0,6) 88,8 (11,6) 92,64 (2,0) 90,00 (6,5) 65,38 (0,4) 65,38 (0,4) 65,38 (0,4) 96,85 

Yeast 36,60 (0,9) 39,55 (2,8) 35,65 (3,8) 34,52 (2,1) 37,89 (3,0) 31,88 (1,7) 37,84 (2,8) 54,45 

Statlog 70,29 (2,1) 61,05 (17,5) 67,38 (2,6) 39,24 (9,5) 64,23 (14,3) 56,26 (9,9) 62,22 (14,5) 77,05 

Pen Digit 69,90 (1,4) 59,91 (15,7) 73,05 (13,7) 58,70 (6,2) 56,49 (8,9) 58,20 (9,5) 56,48 (8,6) 80,95 

TABLE V 

ACCURACIES OF DIFFERENT ENSEMBLES FOR DATASETS FROM UCI 
MACHINE LEARNING REPOSITORY. SASCE: THE PROPOSED SAMPLING BASED 

APPROXIMATE SPECTRAL CLUSTERING ENSEMBLE; SE: SPECTRAL CLUSTERING 

ENSEMBLE (DIFFERENT σ VALUES); HACE:  HIERARCHICAL 

CLUSTERING ENSEMBLE (DIFFERENT LINKAGES INCLUDING AVERAGE, 
CENTROID, COMPLETE, SINGLE, MEDIAN) 

 

 

 

 

 
IV. CONCLUSION 

Approximate spectral clustering not only makes spectral 

clustering feasible for large datasets but also enables alter- 

native similarity definitions based on density distribution and 

data topology on the representative level. Instead of  empirical 

selection of the optimal  similarity  criterion,  we  proposed  the 

SASCE which is an ASC ensemble utilizing available 

information types based on majority voting. The SASCE not 

only eliminates the need for empirical selection of the best 

similarity criterion, but also outperforms the best individual 

clustering accuracy. In addition, the SASCE employs selective 

sampling for extraction of data representatives, instead of 

quantization methods that are computationally heavy. The 

SASCE hence provides accurate partitionings in a relatively fast 

manner. 
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