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Abstract— Melanoma is the most aggressive form of skin 

cancer and is on rise. There exists a research trend for 

computerized analysis of suspicious skin lesions for malignancy 

using images captured by digital cameras. Analysis of these 

images is usually challenging due to existence of disturbing 

factors such as illumination variations and light reflections from 

skin surface. One important stage in diagnosis of melanoma is 

segmentation of lesion region from normal skin. In this paper, a 

method for accurate extraction of lesion region is proposed that is 

based on deep learning approaches. The input image, after being 

preprocessed to reduce noisy artifacts, is applied to a deep 

convolutional neural network (CNN). The CNN combines local 

and global contextual information and outputs a label for each 

pixel, producing a segmentation mask that shows the lesion 

region. This mask will be further refined by some post processing 

operations. The experimental results show that our proposed 

method can outperform the existing state-of-the-art algorithms in 

terms of segmentation accuracy.     

Keywords—Melanoma; medical image segmentation; skin 

cancer; convolutional neural network; deep learning.  

I.  INTRODUCTION 

Melanoma, caused by abnormal reproduction of 
melanocyte cells, is the deadliest form of skin cancer. 
Melanocytes cells are responsible for producing melanin 
pigments that give color to skin [1]. Incidence of melanoma 
has risen rapidly over the past 30 years. It kills an estimated of 
10000 people in the USA every year [2]. Melanoma, if detected 
in its early stages of growth, is highly curable [3]. There are 
various methods in dermatology for early diagnosis of 
melanoma, such as the criterion of ABCD (asymmetry, border 
irregularity, color patterns, and diameter) [4], and the seven-
point checklist [5]. 

There is an ongoing active research for computer assisted 
analysis and diagnosis of melanoma. A review of existing 
research efforts is given in [6] and [7]. Recently there has been 
a rising trend for detection of melanoma in skin images 
captured by conventional user grade digital cameras (namely 
non-dermoscopic or clinical images). Dermoscopic images 
produced by dermoscope, a special purpose dermatology 
instrument, usually have uniform illumination and also have 
more contrast. On the other hand, the non-dermoscopic clinical 
images have the advantage of broad availability. 

An important step in computerized analysis of melanoma is 
to locate the exact region of pigmented lesion in a skin image. 

This means that the image has to be segmented into two 
regions as lesion and normal skin. Performances of other steps 
that follow, such as feature extraction and classification, are 
directly depended on the accuracy of the segmentation step. 
Quality of segmentation can highly affect the assessment of 
metrics such as border irregularity and lesion asymmetry. 
There are many algorithms for automatic extraction of lesion 
region in skin images. These methods can be categorized in 
three groups [8] of thresholding, active contours, and region 
merging methods [9]. A review of existing methods is given in 
[8] and [10].  

Standard digital images of skin are more challenging to 
consider due to containing artifacts such as uneven illumination 
or reflection and presence of noise. These effects mislead the 
common segmentation methods. Hence some existing 
segmentation algorithms are specifically designed for non-
dermoscopic digital images [10-13]. Some methods consider 
color information in single channel [11], all channels [12] or 
efficient channel set found by principle component analysis 
[13]. Work of [10], one of the most recent researches in this 
area, has noticed the texture distinctiveness between lesion and 
normal skin. The applied segmentation methods usually have a 
preprocessing step, which deals with illumination effects and 
artifacts [14]. These methods also have some post processing 
steps for refinement of the segmentation mask. 

Recently, deep learning methods have shown promising 
results in various pattern recognition and medical imaging 
applications. A review of literature and applications is given in 
[15] and [16]. Convolutional neural networks (CNN) are 
among widely used deep learning methods, which are inspired 
by human visual cortex. CNNs have been successfully adopted 
for numerous imaging applications. In [17], a CNN 
configuration is proposed for detection of salient regions in 
images where each super pixel is labeled based on its local and 
global context. Research efforts of [18-20] are recent examples 
of using deep neural networks for various medical image 
segmentation applications. In [18] a CNN is used for extraction 
of vessels in fundus images and [19] and [20] are applications 
of CNN for brain tumor segmentation. 

In this paper, we propose a deep CNN architecture for 
extraction of lesion region from skin images. The input images 
are generated by standard cameras; hence, they should be 
preprocessed in order to handle noisy artifacts. For this 
purpose, we have proposed to enhance the image by applying a 
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guided filter, reducing effects of disturbing elements on the 
accuracy of segmentation. This specific filtering procedure 
enhances the performance of the algorithm. Afterward a local 
patch is defined as a window around each pixel of the image, 
showing the local texture around the center pixel. In addition, a 
zoomed-out window, with the same center as the local patch, is 
used for revealing the global structure of the region. The two 
patches of local and global texture are fed to the proposed 
CNN. About 140,000 patches are obtained and used for the 
training of the CNN. The experimental results show that our 
proposed system can outperform other state-of-the-art methods 
in terms of lesion segmentation accuracy. 

The rest of this paper is organized as follow. In section II 
the proposed method is discussed. The experimental results of 
qualitative and quantitative evaluation of our method are 
presented in section III. Finally section IV concludes the paper. 

II. PROPOSED METHOD 

In this section the proposed method for automatic 
segmentation of skin lesions from non-dermoscopic images is 
explained in details. Our method consists of four steps which 
are summarized in Fig. 1. In the rest of this section these steps 
are discussed. 

 

(a) 

  

(b) 

  

(c) 

  

Fig. 2. Left column are input images. Right column are preprocessed 

images, resulted from applying guided filter. 

A. Pre Processing 

The input images of skin usually contain noisy artifacts 
such as hair, light reflection from skin surface and uneven 
illumination. These factors can have negative impact on 
segmentation performance and require handling. For this aim, a 
guided filter is applied on the input image as a preprocessing 
stage. Guided filter [21] is used as an edge preserving 
smoothing operator. It reduces the effect of noisy factors while 
causingminimaldistortiononlesion’sborder.Theinputimage
itself is used as guidance image for the guided filter 
computation. In Fig. 2 the effect of applying guided filter, on 
some sample images from the dataset, is shown. The shown 
images have 1640 × 1043 pixels and the size of the guided 
filter neighborhood is set to 100. Noisy effects and irrelevant 
local textures, that could misdirect segmentation procedure, are 
smoothed out, while borders between lesion and normal skin 
regions are preserved by the guided filter operator. This 
preprocessed image is fed to a CNN with an architecture that is 
explained in the following. 

B. Patch Extraction and CNN Architecture 

To decide whether a pixel in the image belongs to lesion 
region or normal skin, as a patch is considered by placing a 
window around the pixel. These patches are fed to the used 
CNN and the output would label the pixel in the center of the 
patch. A patch with small window size would show local 
texture around the pixel. Local information can be beneficial in 
accuratedetectionofthelesion’sborder.Meanwhiletheglobal
context of the region, as where the pixel is located, is also 
important fordecision aboutpixel’s label. A lesion on a skin 
surface can be easily identified in a global view. In some 
applications, consideration of local and global contexts 
simultaneously improves the segmentation accuracy of CNN as 
shown in deep networks of [17] and [19].  
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Fig. 1. Block diagram of four steps of the proposed method. 
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The used CNN architecture is shown in Fig. 3. In our 
method, the image is resized to 600 ×  400. Afterward, a local 
patch of size 31 × 31 is defined around each pixel of the 
image. Moreover, a window of size 201 × 201 is defined with 
the same center as the center of the local patch. This larger 
patch will also be resized to same size as the local patch, i.e. 
31 × 31. In this global patch the general structure of the 
pixel’sregionisvisible.In case a part of the patch falls outside 
of the image, the input image is padded. The padding is done 
by reflecting the image across 4 directions of left, right, up, 
down and along the directions of the four corners. By 
extraction of the local and global patches around each pixel, 
two patches are fed into two parallel CNNs with similar layers. 
At the end, fully connected concatenation layers are used 
where the results of analysis of the local and global textures are 
combined to form the final decision about the label of the 
central pixel in the patch.  

As can be seen in Fig. 3, each wing of the CNN consists of 
four layers with the following order: Conv1, MaxPool1, 
Conv2, and MaxPool2. The first convolutional layer has a 
kernel size of 6 × 6 × 3 and the kernel size in the second 
convolve layer is 5 × 5 × 60. Each convolutional layer 
consists of 60 feature maps. Each feature map in a 
convolutional layer detects a single kind of feature across 
entire image.  

The two convolutional layers are followed by max pooling 
layers with kernel size of 2 × 2 and 3 × 3 respectively. Usually 
in CNNs, convolve layers are followed by pooling layers. The 
pooling layers can facilitate the procedure of learning by 
reducing the number of variables that should be learned in the 
network. It will be done by ignoring the exact positional 
information of the extracted features. In the used CNN, the 

layers along two wings of the network, which process local and 
global patches, have same configurations.  

Finally, there is a fully connected layer with 500 neurons, 
followed by the output 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 layer with 2 neurons. It 
produces the probability of pixel’s membership in lesion and 
normal skin regions. 

C. Post Processing 

By applying each patch of the input image to the explained 
CNN a segmentation map for the image will be obtained. In 
this map, each point is labeled by the class with higher 
probability of membership. The map has label 1 if the pixel is 
lesion or it is labeled as 0 if the pixel belongs to normal skin 
region. At the end the output mask is refined by selection of 
largest connected component, since it is assumed that there is a 
single lesion in each image. Then a hole-filling morphological 
operation is applied. The segmentation results of our method 
and quantitative evaluations are given in the following section. 

III. EXPERIMENTAL RESULTS 

In this section, the performance of our method is evaluated 
on a dataset of skin lesion images from Dermquest database, 
which is publically available with segmentation ground-truth 
[22]. The used dataset consists of 126 digital images (66 
melanoma, 60 non-melanoma). The proposed method is 
implemented in Matlab and Caffe [23], on a system with Intel 
Core i7-4790K processor, 32 GB of RAM, and NVIDIA 
GeForce GTX Titan X GPU card. The experiment is done as a 
leave-𝑝-out cross-validation. The dataset is randomly split into 
four equal size groups. The experiment is done on one group 
that is left for test and three other groups are used as training, 
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Fig. 3. Architecture of the proposed CNN. 
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i.e. the train and test ratio is 75% to 25%. The procedure is 
repeated four times for all different test groups. 

The number of patches that are selected from each training 
image is 1500, where half of them are randomly chosen from 
lesion region and the other half are randomly selected from 

non-lesion parts. Hence, a total of about 140,000 randomly 
selected patches are extracted and used for training of the CNN 
in each run. The solver type is stochastic gradient descent 
(𝑆𝐺𝐷). Also, 𝑋𝑎𝑣𝑖𝑒𝑟 method is used for weight initialization 
and bias values are initialized to zero. 

 

 Ground truth TDLS [10] Proposed method 
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Fig. 4. Sample skin lesion segmentation results. Left column: input images superimposed by segmentation ground-truth (red line). Midle column: images of 

results of TDLS method [10]. Right column: masks resulted from our method. 
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A. Qualitative Evaluation  

In Fig. 4, ground-truth of some sample images are 
presented. Also, results of the proposed method are compared 
with TDLS algorithm [10], which is one of the state-of-the-art 
methods. Images of TDLS are obtained from [24]. Complex 
skin patterns that appear similar to lesions and some skin 
artifacts can mislead any segmentation algorithm. As can be 
seen in Fig. 4 (a), (c) and (h), the TDLS method has failed to 
accurately extract lesions’ borders and it suffers from too many 
false positive pixels. In some images such as Fig. 4 (b) and (g), 
complicated skin texture and presence of artifacts such as hair 
have prevented TDLS from correctly detecting the lesion’s
region. However our method has a high qualitative 
performance even in these challenging situations. 

B. Quantitative Evaluation 

For quantitative evaluation of our method, three commonly 
used metrics for classification problems are used. These 
metrics are sensitivity, specificity and accuracy. The 
segmentation problem can be stated as a classification problem, 
where each pixel is classified into one of the two classes of 
lesion (positive) and normal skin (negative). As a result, by 
comparing the output mask with the ground-truth, the 
classification metrics can be calculated as: 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 , 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 , 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 , 

where TP, TN, FP and FN denote the number of true positive, 
true negative, false positive and false negative classified pixels 
respectively.  

The proposed method is compared with five other methods 
based on reported results of the mentioned metrics on the same 
dataset. The results are shown in Table 1. As can be seen, the 
proposed method can reach the best performance in 
segmentation sensitivity and accuracy in comparison with other 
state-of-the-art methods. Also in terms of specificity we 
achieved a relatively high score.   

TABLE I.  QUANTITATIVE COMPARISION OF LESION SEGMENTATION 

RESULTS, BEST RESULTS ARE BOLDED. 

Segmentation Algorithm 
Segmentation Performance 

Sensitivity Specificity Accuracy 

L-SRM [9] 89.4 92.7 92.3 

Otsu-R [11] 87.3 85.4 84.9 

Otsu-RGB [12] 93.6 80.3 80.2 

Otsu-PCA [13] 79.6 99.6 98.1 

Segmentation Algorithm 
Segmentation Performance 

Sensitivity Specificity Accuracy 

TDLS [10] 91.2 99.0 98.3 

Proposed Method 95.0 98.9 98.5 

IV. CONCLUSION 

Proper segmentation of skin cancer images, for accurate 
identification of lesion region, is of great importance. 
Segmentation accuracy can highly affect the next steps of the 
diagnosis. In this paper a method based on deep convolutional 
neural networks was proposed for extraction of lesion region in 
digital clinical images. All input images are initially 
preprocessed by applying an edge preserving smoothing guided 
filter for reducing noisy artifacts. Then each pixel of the 
preprocessed image, as a center of a patch, is fed to a CNN. 
Two patches, with local and global natures, are formed around 
each pixel and are fed into a CNN. The output of the CNN is a 
label for the center pixel of the patch. The proposed 
preprocessing filter and the proposed CNN structure were 
highly suitable for this critical segmentation procedure. 
Experimental results showed that the proposed method can 
reach a very high accuracy of 98.5% and sensitivity of 95.0% 
that outperforms other state-of-the-art methods. 
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