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Abstract—In this paper, we focus on training a classifier
from large-scale data with incompletely assigned labels. In other
words, we treat samples with following properties: 1. assigned
labels are definitely positive, 2. absent labels are not necessarily
negative, and 3. samples are allowed to take more than one
label. These properties are frequently found in various kinds of
computer vision tasks, including image and video classification
and retrieval.

Many online algorithms for multi-label task employ label sam-
pling, which selects a label pair that reduces the largest penalty to
update the model, thereby avoiding waste of computation. In the
setting above, however, there are “false-negative” labels, which
are originally positive labels but regarded as negative. Since it
is high likely for label sampling to select these labels as negative
labels in the sampled pair, it may severely degrade classification
performance.

In order to solve this problem while preserving convergence
property of the online algorithms, we propose a novel label
sampling approach, which aims to fetch “true-negative” labels
via false-negativeness measure based on independently trained
uni-class classifiers. Experimental results show the effectiveness
of our approach.

I. INTRODUCTION

Training a classifier with high precision from large-scale
data is crucial in computer vision. However, many kinds
of data in real-world applications, especially in image or
video recognition, frequently come with incompletely assigned
labels, constituting a setting in which:

1) assigned labels are definitely positive,
2) absent labels are not necessarily negative, and
3) samples are allowed to take more than one label.

For example, we may have to build a classifier for images
uploaded on SNS (Social Networking Site), using attached
tags as labels, as in Fig. 1. Since tags are manually provided,
as with “indoor” or “people” in the example, we can say that
1. assigned labels are positive. On the other hand, images also
contain objects that are not provided as tags, such as “pet
bottles”, “smart-phones”, or “chairs” in the example figure.
As such, since it is rare to have images whose complete set
of objects are provided as tags, data also have a property that
2. absent labels are not necessarily negative.

Recently, many online algorithms have been developed in
order to handle large-scale data. Especially, in computer vision
domain, Passive Aggressive [1] is often utilized in practice
because of its performance and implementability. Naively
applying it to multi-labeled data takes O(|Y | ⇥ (k � |Y |)),

indoor 

!"#$ 

table 

people 

Fig. 1: Example of image and tags uploaded on SNS.

where |Y | is the number of relevant labels for a sample and
k is the total number of classes (We explain further in Sec.
III), because the loss function which should be minimized
includes all (positive label, negative label) pairs, and it is
computationally expensive. To avoid waste of calculation,
[1] relaxed loss function to have only one (positive label,
negative label) pair which generates maximum penalty. In
other words, the algorithm selects positive label having lowest
score and negative label having highest score based on an
old classifier before optimization for each step. Such label
sampling approach based on maximum error reduction works
effectively in practice and many methods follow it.

In our setting, however, positive labels may exist in absent
labels (we call them “false-negative” labels throughout this pa-
per), and such labels tend to be selected with high probability
by maximum error reduction sampling strategy because they
tend to have high score (intuitively, the images in which “dog”
exists but without “dog” label tend to have high score for
“dog” classifier.). Although one way to alleviate this problem
may be sampling label pair randomly, the convergence of
learning is slow.

We propose a novel label sampling strategy combined
with widely used Passive Aggressive algorithm, in order to
avoid sampling false-negative labels, while preserving fast
convergence. This enables the model to be updated with
more accurate “true-negative” labels. Our approach trains an
additional uni-class classifier to estimate false-negativeness of
samples to explicitly avoid sampling negative label which is
originally positive. Since a uni-class classifier is constructed
from labeled samples only, we can use it as reliable side-
information. In spite of simplicity of our proposed method,
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experimental results show that it adds robustness to trained
model against label incompleteness while preserving fast con-
vergence property.

Our main contributions are as following:
1) propose a novel label sampling approach for multi-label

online learning from incompletely labeled data, and
2) demonstrate the effectiveness of our approach from ex-

periments on several datasets.
In Sec. I, we describe the goals and contributions of this

work. We then discuss related works in Sec. II. In Sec.
III, we explain our label sampling approach based on false-
negativeness measurement. In Sec. IV, experiments conducted
to investigate the efficacy of our proposed method on several
datasets are described and discussed. Then we conclude our
work in Sec. V.

II. RELATED WORK

Many online learning algorithms have recently been pro-
posed, and have also been widely utilized in computer vision
field. [1] proposed online Passive Aggressive (PA) algorithm,
and further proposed a soft version of PA, in which constraints
are further relaxed and loss function is added, in order to
avoid updating the model by a large margin when incorrect
labels are sampled. [2] proposed Confidence Weighted (CW),
in which they took the confidence of training weights for
each dimension into consideration. [3] introduced Adaptive
Regularization of Weight (AROW), which modified CW so
that it is applicable to noise during training. [4] proposed
Gaussian Herding (NHERD) by extending PA to second-order
algorithm. [5] proposed Soft Confidence Weighted (SCW),
which relaxed the conditions of constraints with the same
motivation as PA. In order to apply online PA to multi-
class multi-label problems, [1] selected one (positive, negative)
pair of sample to update the model, instead of updating
with all (positive, negative) pairs to train PA, which enabled
efficient learning. Other algorithms in similar manner have
been proposed to deal with multi-class multi-label domain
[6]. As we have seen, various online learning algorithms
have been proposed, but PA is known to be comparable to
state-of-the-art online learning algorithm, such as SCW, in
image recognition task [6], and has been widely used due
to its simple implementability. In many large-scale datasets,
however, labels attached are often incomplete, and contain
false-negative labels. As discussed in Section 1, current label
sampling approaches are prone to sample those labels, which
degrades the accuracy of the model.

Some works have attempted to address label incompleteness
in multi-label learning as label deficits [7]. [8] tried to elimi-
nate the influence of label deficits in the optimization process
by adding a regularization term to rank loss, which forces the
difference between scores for positive and negative labels to
be group-sparse. Subsequently, [9] used conditional Restricted
Boltzmann Machine to denoise the label deficit. [10] simulta-
neously computes the classifier and reconstructs lacking labels,
taking label’s sparsity and correlation into consideration. Since
[8], [9], [10] are batch algorithms that necessitate repetitive

computations with all samples for updating the model, it is
difficult to apply them to online setting in which each sample
is processed one at a time and cannot be re-used for update.
It is an advantage of our proposed model over the methods
described in [8], [9], [10].

III. PROPOSED APPROACH

In this section, we describe our proposed label sampling
approach. Let X ⇢ Rd be sample space and Y = {0, 1}k be
the possible set of labels where d and k denote dimension
of samples and the number of classes respectively. A dataset
S = {(x1,y1), (x1,y1), ..., (xN ,yN )} having N samples is
generated from an unknown distribution on X ⇥ Y . A set of
relevant labels for sample xt is denoted as Yt. The weight
of model is written as W 2 Rd⇥k, and its i-th column
corresponding to classifier for i-th class is wi.

A. Multi-label Passive Aggressive

Firstly, we explain application of Passive Aggressive to
multi-label task. Multi-label PA is a natural extension of multi-
class PA proposed in [1]. It aims to minimize rank loss `rank,
which imposes the penalty on scoring higher value for an
irrelevant class than relevant one through minimization of
surrogate hinge loss ˆ`rank, with minimum weight’s update.
Thus, for sample x, the model is updated as

W

(t+1)
= arg min

W
||W �W

(t)||2 + Cˆ`rank(W; (xt, Yt))
2,

where
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C is a hyper-parameter that controls trade-off between two
functions. (·)+ is the hinge function that returns max(0, ·).
Since naive optimization for this loss includes |Y | ⇥ (k �
|Y |) updates, it is computationally expensive. In order to solve
this problem, [1] proposed to reduce it to include only one
(positive, negative) pair which has the highest penalty of (1).
The loss function for optimization can be re-written as

W

(t+1)
= arg min

W
||W �W

(t)||2 + Cˆ`mc(W; (xt, Yt))
2,

where

ˆ`mc(w; (xt, Yt)) =
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T
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+
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and

rt = arg min

r2Yt

w

T
r xt,

st = arg max

s/2Yt

w

T
s xt. (3)

This relaxation makes it possible to compute a closed-form
solution as following:

w

(t+1)
rt = w

(t)
rt + ⌧txt

w

(t+1)
st = w

(t)
st � ⌧txt (4)
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Algorithm 1 PA with proposed label sampling
INPUT: parameters C1, C2, �. number of iteration T .
INITIALIZATION: Wmc,Wuni 2 Rd⇥k, ✏
for t = 1, 2, ..., N · T do

fetch (xt, Yt) from dataset.
choose rt 2 Yt and st /2 Yt based on (15).
compute ⌧t as (17).
update Wmc as (4).
update Wuni and ✏ as (10) with respect to rt.

where

⌧t =
`mc

||xt||2 + 1/2C
(5)

By such relaxation, the convergence becomes significantly
faster in practice. As mentioned in Sec. I, in our setting,
positive labels may exist in absent labels, and such labels
tend to be selected with high probability by maximum error
reduction sampling strategy. Updates on such pairs will lead
learning to wrong direction, and the classification performance
will decrease. Such incorrect classification results from min-
imizing incorrect loss function. In other words, loss function
`rank estimated from the sum of all (positive, negative) pairs
can be decomposed into loss functions for (positive, true
negative) and (positive, false negative) pairs. While the former
is supposed to be treated as loss, we also end up incorrectly
minimizing the latter that is not supposed to be treated as loss.
By setting the former as `rank-true and the latter as `rank-false,
correct loss function becomes

`rank-true = `rank � `rank-false, (6)

which should be minimized. However, since we cannot know
false negative labels in advance, we approximate the false-
negativeness F for each negative class, as explained below.
Setting false-negativeness measure for class i as Fi, we utilize

`rank-false ⇡
X

r2Y

X

s/2Y

Fs. (7)

In this paper, we propose a novel method in which false-
negativeness is estimated by one-class classifier. In the next
subsection, we explain uni-class Passive Aggressive.

B. Uni-class Passive Aggressive

Here we explain Uni-class Passive Aggressive proposed
in [1]. It calculates representative point from only positive
samples. The update rule is written as

w

(t+1)
= arg min

w
||w �w

(t)||2 + C`uni(w, ✏;xt)
2 (8)

`uni(w, ✏;x) =

(
0 (if ||w � x||� ✏ < 0)

||w � x||� ✏ (otherwise)

(9)

This formalization also has a closed-form solution as

w

(t+1)
=

✓
1� ⌧t

||wt � xt||

◆
w

(t)
+

✓
⌧t

||wt � xt||

◆
xt (10)

where

⌧t =
`uni

1 + 1/2C
(11)

✏ can be learned together by appending it to the last element
of weight vector w. Since it does not leverage negative class
information, it has poor discriminative power. Even so, it has
desired property for the data in our setting: we can apply it
without influence of label incompleteness because it only uses
“reliable” positive samples. Therefore, it will be helpful to
utilize obtained classifiers as side information. Our approach
trains uni-class classifier simultaneously with main classifier
and uses obtained weight to measure false-negativeness of
samples.

C. Proposed label sampling

Our proposed algorithm is summarized in Algorithm 1. It
aims to fetch a pair of labels, whose update reduces much
loss, while avoiding false-negative labels and thus sampling
true negative labels. In order to achieve that, we propose to
measure false-negativeness of sample xt for class s as

Fs = ✏s � ||hs � xt|| (12)

where hs and ✏s are representative point of class s and its
radius trained by uni-class PA respectively. Intuitively, the
closer to the representative point the sample is, the more likely
it is false-negative. Using (6), (7), and (12), and applying hinge
loss as surrogate function, we obtain

ˆ`rank-true =
X

r2Yt

X

s/2Yt

�
1� (w

T
r xt �w

T
s xt)� �Fs

 
+

(13)

Our proposed label sampling is naturally derived by relaxing
(13) to include one label pair by maximum error reduction
strategy as

ˆ`mc =
�
1� (w

T
rtxt �w

T
stxt)� �Fst

 
+

(14)

where

rt = arg min

r2Yt

w

T
r xt, (15)

st = arg max

s/2Yt

w

T
s xt � �Fs. (16)

� is the hyper-parameter, which controls the influence of false-
negativeness measure on the label sampling. When � = 0,
the proposed algorithm is completely equal to the normal
Passive Aggressive algorithm. Weight’s update is the same as
(4) except

⌧t =
ˆ`mc

||xt||2 + 1/2C
(17)
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Fig. 2: Example images of Corel5k and Espgame.

TABLE I: Datasets used in ExperimentA and Experi-
mentB

Dataset Train Test Class Labels per sample
Corel5k 4500 499 260 3.40
Espgame 18689 2081 268 4.68

IV. EXPERIMENT

A. ExperimentA: Influence of hyper-parameter

In order to examine the influence of the hyper-parameters on
the performance of our proposed method, we performed exper-
iments on image annotation datasets, namely Corel5k [11] and
Espgame [12]. We used 7-th layer’s activation of CNN trained
on ILSVRC2012 [13] dataset, and used AlexNet [14] as our
network architecture. We deliberately set some of the labels
in training data as unknown, and performed the experiment on
fully-labeled test data. We varied the percentage of unknown
labels in training data by every 10% within the range 0�80%,
where each percentage was applied to the entire training data
randomly. As for the evaluation metric, average precision over
the samples was employed. Our proposed method involves
three hyper-parameters, namely trade-off parameter of PA
(denoted by C1), uni-class classifier’s parameter (denoted by
C2), and � to indicate how much weight should be assigned
to the metrics of false-negativeness. In order to examine the
influence of newly added hyper-parameters C2 and �, we
performed the following experiments:

(i) Fix � at � = 1, and vary C2 from C2 =

[0.001, 0.01, 0.1, 1, 10].
(ii) Fix C2 at C2 = 0.01, and vary � from � =

[0, 0.3, 0.5, 0.7, 1.0].
In both experiments, different values of C1 were applied from
C1 = [0.001, 0.01, 0.1, 1, 10], and the value yielding the best
result was chosen.

Results from each experiment are shown in Fig. 3 and Fig. 4
respectively. In the experiment where C2 was adjusted, it was
found that C2 = 0.1 or 0.01 yields the best result for Corel
5k, and C2 = 0.01 or 0.001 for Espgame. We conjecture that,
if C2 is too large, the uni-class classifier updates the model

by an excessively large margin when confronted with samples
far apart, whereas, if C2 is too small, update of the model
becomes slow. In both cases, the model cannot find a good
representation point of the class.

Results from the experiments where � was adjusted show
that our method outperforms the original PA regardless of
the value of �. In both datasets, small � tends to increase
the accuracy when the number of unknown labels is small,
and large � does a better job when the number of unknown
labels is large. It can be interpreted that, as a larger number of
unknown labels increases the number of false-negative labels,
the necessity to exclude them from the sampling also increases,
thus requiring a deficit-invariant training. The reason that our
proposed method outperforms the original PA even when the
percentage of unknown labels is 0% may be that there exist
some false-negative labels in the original dataset. Such false-
negative labels are frequently found in Espgame in particular,
which may be attributed to the way it was constructed.
Specifically, since two players provide the labels from the
screen, from which only overlapping labels are accepted, it
is highly likely that some labels that are originally positive
may have been classified as negative, enabling our proposed
method to work even without any deliberately generated noise.

B. ExperimentB: Convergence property
In order to test the convergence property of our proposed

method, we compared the performances of the three following
methods on the same datasets as in Experiment A:

• Basic: original Passive Aggressive. Sample class pairs
according to (3) and update their weights according to
(4). We fix C1 = 0.01.

• Random: identical to Basic, except sampling class pair
is performed randomly.

• Proposed: Passive Aggressive with proposed class sam-
pling described in Sec. III-C. We fix C1 = 0.01, C2 =

0.01, and vary � from � = [0.5, 1.0].
We attempted two percentages for setting unknown labels;
0% and 30% of the labels in the training data. Features and
evaluation metrics were identical as in Experiment A.

Results are shown in Fig. 5. Throughout the graphs, it is
shown that Proposed converges at roughly identical speed as
the Basic, while being consistently faster than Random model.
Also, when there are unknown labels, Basic method converges
at a low accuracy, while the accuracy of the proposed method
is comparable to that of Random. From these results, we can
say that our proposed method succeeds in both preventing
false-negative labels from being sampled, and training with
high efficiency.

C. ExperimentC: Application to data in the wild
ImageCLEF2014: In ImageCLEF2014 [15] image annotation
dataset, images come with information from the web page they
were extracted from, instead of labels. Thus, corresponding
mete-data such as filenames are provided so that appropriate
labels can be presumed. As shown in Fig. 6, since meta-
data are provided by the uploaders of the images, they tend
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Fig. 3: Results of Experiment A (i) on Corel5k (left) and
Espgame (right).

Fig. 4: Results of Experiment A (ii) on Corel5k (left) and
Espgame (right).

Fig. 5: Two leftmost figures show the results on Corel5k dataset with label deficit of 0% and 30% respectively. Two on
the right-hand side show the results on Espgame with the same setting of label deficits as Corel5k.
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Fig. 6: Examples of estimated labels from metadata.

to contain information relevant to the images in most cases.
However, they mostly contain only partial information of the
image, and the obtained data frequently contain false-negative
labels. In this experiment, labels are assigned by following
steps:

1) extract words from image tag of the html file correspond-
ing to the image.

2) let S be the set of these words and synonyms and
hyponyms of them obtained from WordNet [16].

3) let T be the set of target classes.
4) assign labels Y = T \ S to the image.

Fig. 8 displays examples of the images and the labels obtained
from web meta-data. From 500k samples of (image, meta-
data), we extracted 121,131 samples for training that contain at
least one label. For test, we used publicly available validation
dataset consisting of 100k images of 108 classes.

Sentiment Dataset [17]: We examined whether our pro-
posed method can be extended to a setting where the labels are
of subjective nature, such as sentiments of the image. Labels
of subjective nature inevitably form a setting with properties
discussed in Sec 1., since obtained positive labels are reliable
but the subjective nature permits many of the absent labels
to be positive as well. For example, images with label “cute”

may just as well be labeled as “funny” or “lovely,” which
may not have been provided as positive labels. Noting that
viewers’ comments toward images frequently correspond to
the sentiment of the images, The authors [17] collected images
from Flickr and DeviantArt, and collected associated com-
ments, extracting adjectives describing the sentiments of the
images. A series of Natural Language Processing techniques
was employed, aided by SentiWordNet [18], to make sure that
the adjectives correctly correspond to the sentiment of the
image. The authors filtered out the adjectives whose positive
and negative scores on SentiWordNet were both lower than the
threshold, and also filtered out the adjectives that were negated
(e.g., “not funny”), or were used to describe the speaker (e.g.,
“Im serious”), and manually removed the ones that are too
general (e.g., “good”, “great”). 20 most common adjectives
were finally selected as the possible labels for the images.
Table IV shows the obtained sentiment classes with their
scores on SentiWordNet in three sentiment polarities (positive,
negative, objective), along with the number of images in
each class. Some examples are shown in Fig. 7. Images are
treated in multi-label setting, containing up to 5 labels. In
the experiment, we randomly sampled 100k images from our
dataset. We refer to this dataset as Sentiment Dataset 1.

We compare our method to PA and SCW by repeating each
experiment three times and comparing the average values.
Results for each dataset are shown in Table II and Table III.
In both datasets, our method outperforms others. Since these
datasets contain a substantial amount of false-negative labels,
our method proves to be effective.

1http://www.mi.t.u-tokyo.ac.jp/static/projects/sentidata/
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Fig. 7: Example images of Sentiment Dataset.
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Fig. 8: Example images of ImageCLEF2014.

TABLE II: Experimental results on ImageCLEF2014

Method mean F (sample) mean F (class)
PA 0.344 0.306

SCW 0.324 0.274
proposed 0.362 0.325

TABLE III: Experimental results on Sentiment Dataset

Method mean AP (sample) meanAP (class)
PA 0.316 0.184

SCW 0.339 0.197
proposed 0.388 0.234

V. CONCLUSION

In this paper, our goal is to train a classifier from large-
scale samples with incompletely assigned labels, which are
frequently found in various kinds of multimedia data, includ-
ing images and videos.

In order to make learning robust and efficient on data
under such setting, we proposed a novel label sampling
approach for large-scale multi-label learning, which performs
true-negative label mining via utilizing independently trained
uni-class classifiers as false-negativeness measure. We also
conducted experiments on several datasets and demonstrated
the effectiveness of our approach.
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