
Distributed Data Augmented
Support Vector Machine on Spark

Tu Dinh Nguyen, Vu Nguyen, Trung Le, and Dinh Phung
Center for Pattern Recognition and Data Analytics, Deakin University, Australia

{tu.nguyen, v.nguyen, dinh.phung}@deakin.edu.au, trunglm@hcmup.edu.vn

Abstract—Support vector machines (SVMs) are widely-used
for classification in machine learning and data mining tasks.
However, they traditionally have been applied to small to medium
datasets. Recent need to scale up with data size has attracted
research attention to develop new methods and implementa-
tion for SVM to perform tasks at scale. Distributed SVMs
are relatively new and studied recently, but the distributed
implementation for SVM with data augmentation has not been
developed. This paper introduces a distributed data augmentation
implementation for SVM on Apache Spark, a recent advanced
and popular platform for distributed computing that has been
employed widely in research as well as in industry. We term our
implementation sparkling vector machine (SkVM) which supports
both classification and regression tasks by scanning through the
data exactly once. In addition, we further develop a framework
to handle the data with new classes arriving under an online
classification setting where new data points can have labels
that have not previously seen – a problem we term label-drift
classification. We demonstrate the scalability of our proposed
method on large-scale datasets with more than one hundred
million data points. The experimental results show that the
predictive performances of our method are comparable or better
than those of baselines whilst the execution time is much faster
at an order of magnitude.

Index Terms—Apache Spark, support vector machine, dis-
tributed computing, large-scale classification, big data.

I. INTRODUCTION

Support vector machines (SVMs) [2] are widely-used ma-
chine learning methods for classification. Given the rise of big
data, these methods have also been recently applied for large-
scale linear classification [17]. However, most of the SVM-
based implementations are running on a single machine, whilst
the ever growing collection of data nowadays is far beyond
the capacity that a single machine can handle. Therefore,
there is a need for frameworks that support parallel and
distributed data processing on multiple machines, both for
research communities as well as industry demands.

A new emerging class of such frameworks is Apache Spark
[18]. Spark is a cluster computing platform that supports dis-
tributed computing, scalability and fault tolerance. Compared
with MapReduce [3], a well-known disk-based distributed
framework, Spark provides an in-memory processing solution
which bypasses the heavy disk I/O bottleneck of reloading the
data when performing iterative machine learning methods. In
addition, the platform also supports high-level APIs which are
more friendly for developers, and especially supplies REPL
(read-eval-print-loop) environment for data scientists.

Traditionally, SVMs have been solved via convex optimiza-
tion techniques (e.g., popularly used SMO method [14]). More
recently, SVMs have been reformulated under a probabilistic
setting where the original SVM optimization problem can be
framed as an MAP estimation [15], [9]. Data augmentation
and MCMC technique such as Gibbs sampling have been
developed and shown to be effective as an alternative approach
to train SVMs. More specifically, Polson et al. employed data
augmentation formulation in terms of complete data sufficient
statistics to improve the mixing rate and computation complex-
ity of SVMs. However, Polson’s formulation was developed
for binary classification, we further extend this work to support
multiclass classification and regression in this paper.

Multiclass classification is the workhorse in the literature
of classification, where a set of predefined classes is required
either in a batch mode (e.g., [7]) or in an online learning setting
(e.g., [1]). These models, however, fail to work in the case
where the class labels are not known in advance, a problem we
term online label-drift classification, in a similar spirit of the
concept drift problem known in the literature [5]. Label-drift
classification problem naturally occurs in many applications,
especially in the context of streaming and online settings
where the incoming data may contain samples categorized
with new classes that have not been previously seen [6],
[13]. Despite its significance, this problem has received little
research attention.

To handle data with new classes, one straightforward solu-
tion is to restart the whole process to incorporate new unseen
data and labels. However, retraining models requires looping
over the entire data again and again, leading to an expensive
computation that is undesirable for large (growing) datasets.
To this end, our proposed solution can naturally handle the
new classes without retraining from scratch using an efficient
algorithm to update the model on the fly. This significantly
reduces the computational complexity, resulting in a very fast
and flexible training procedure.

By examining the SVM with data augmentation under a
Bayesian setting, we further introduce a distributed model
that can parallelize the algorithm to compute its maximum
a posteriori (MAP) estimation. Although similar ideas on
the exploitation of data augmentation for SVM have been
independently proposed in the technical report of [12], our
work differs in two points. First we address the label-drift
classification problem mentioned previously, a natural, yet
challenging problem in big data analytics. Second, there is no

2016 23rd International Conference on Pattern Recognition (ICPR)
Cancún Center, Cancún, México, December 4-8, 2016

978-1-5090-4846-5/16/$31.00 ©2016 IEEE 493

distributed implementation for the SVM with data augmenta-
tion exists, and our work provides the first implementation of
its kind on Apache Spark providing the capacity to conduct
supervised learning tasks using SVM for massive datasets at
real-world and industry scale. This paper is an extension of
our previous work [10] and our implementation will also be
released to the research community and public use.

For data practitioners, our model has an additional advan-
tage where it has no hyperparameter to tune, thus there is
no need to perform an expensive cross-validation to choose
optimal hyperparameters. We conduct experiments on large-
scale datasets to demonstrate the capacity of the proposed
method. The results show that our method obtains a significant
speedup in the training phase, compared with the existing
baselines implemented in Spark, and is substantially faster
than our single machine implementation counterpart. At the
same time, the classification performances are better than or
comparable with those of the baselines. We term the resulting
model the sparkling vector machine (SkVM).

In short, our main contributions are: (i) the extension of a
powerful data augmentation technique for SVMs to support
multiclass classification, regression and label-drift classifi-
cation; (ii) the derivation of SkVM, a distributed method
that parallelizes the MAP estimation of such augmentation
approach; (iii) an implementation of our proposed model in the
recent advanced distributed system – Apache Spark; and (iv)
a comprehensive evaluation the capability and scalability of
SkVM on large-scale datasets with approximately one hundred
million data points.

II. SPARKLING VECTOR MACHINES

A. Latent variable models for SVMs
The SVM aims to find an optimal hyperplane that max-

imizes the margin between different labeled sets of data
samples. More formally, let D = {(xn, yn)}Nn=1 denote the
dataset wherein xn ∈ RD is the D-dimensional vector of the
data sample and yn ∈ {−1, 1} is the data label. The learning of
SVM with `α-norm regularization is to minimize the objective
function as follows:

L (w;C,α,σ) =

N∑
n=1

max
{
1− ynw

>xn, 0
}
+

1

Cα

D∑
d=1

∣∣∣∣wdσd
∣∣∣∣α (1)

where w is the vector of coefficient parameters, σd is the stan-
dard deviation of the d-th feature of x, C > 0 is the penalty
hyperparameter that can be tuned for the best performance
using cross-validation. The second term is a regularization
penalty corresponding to a prior distribution p (wd | C,α, σd).

A pseudo-likelihood of the label y has been introduced to
represent SVMs as latent variable models, so that Bayesian
inference techniques can be employed to perform parameter
estimation [15]. The pseudo-likelihood is: p (y | x,w) =
exp

{
−2max

(
1− yw>x, 0

)}
. Minimizing the loss function

in Eq. (1) now turns into estimating the maximum a posterior
(MAP) of the following pseudo-posterior distribution:

ŵMAP ∝ argmax
w

exp [−L (w;C,α,σ)]

∝ argmax
w

Zα (C,σ) p (y | x,w) p (w | C,α,σ)

in which Zα (C,σ) is a pseudo-posterior normalization con-
stant. For the purpose of model simplicity, we consider a
special case with Gaussian prior (α = 2) and a fixed penalty
constant C = 1.

Data augmentation approach further introduces an auxiliary
variable λ > 0 for each observation label y [15], [11], in
such a way that p (y | x,w) becomes the marginal of the joint
distribution p (y, λ | x,w). More importantly, the auxiliary
variable λ can be efficiently sampled from an Inverse Gaussian
(IG) distribution:

p
(
λ−1 | x, y,w

)
∼ IG

(∣∣1− ywx>
∣∣−1 , 1)

Assuming a Gaussian prior for w: p (w) ∼ N (µ0,Σ0), the
data pseudo-likelihood and the posterior conditional distribu-
tion of w can be shown to have the following forms [15]:

p (y | x,w, λ) =
ˆ ∞

0

1√
2πλ

exp

{
−
[
λ+

(
1− yw>x

)]2
2λ

}
dλ

(2)
p (w | x, y, λ) = N (µ,Σ) (3)

where Σ−1 = X>diag
(
λ−1

)
X + Σ−10 , µ =

Σ
[
X>

(
1 + λ−1

)
+ Σ−10 µ0

]
with 1 denotes a vector of 1’s.

Here the data matrix is denoted by X = [x1,x2, ...,xN]
>.

Viewing SVMs under this latent variable perspective enables
us to employ either expectation maximization using point
estimation, or Markov chain Monte Carlo (MCMC) algorithms
using Bayesian inference to learn parameters [15]. It is also
proven that such algorithms are more robust and provide
more accurate parameter estimation than what learned by the
standard solvers of SVMs [15]. In addition, the latent SVM
offers a nice closed-form of MAP estimation that can be
efficiently parallelized in distributed manner (see Section II-E).

B. Multiclass latent SVMs

Here we extend the latent SVM schemes presented in Sec-
tion II-A for multiclass classification. Suppose that there are K
classes, the label yn now takes values on the set {1, 2, ..,K}.
We consider a set of parameters {w1,w2, ...wK} wherein the
parameter for the k-th class is wk. These parameters can be
initially set to 1. Then the auxiliary variable λn for the n-th
data point is independently sampled as follows:

λ−1n ∼ IG
(∣∣1−wyn

x>n
∣∣−1 , 1) (4)

Consider the case where the prior distribution for wk is a
normal distribution with zero mean (µ0 = 0) and unit variance
(Σ0 = I): p (wk | µ0,Σ0) ∼ N (0, I). We can then derive the
MAP for the posterior distribution for each wk as: wk = µk =
ΣkX

> [I + diag
(
λ−1

)]
Z + µ0Σ0 where Z ∈ {−1, 1}N×K

denotes the indicator matrix for the labels: znk = 1 if yn = k,
otherwise znk = −1. Let:

P ∈ RD×D = X>diag
(
λ−1

)
X + I (5)

Q ∈ RD×K = X>
[
I + diag

(
λ−1

)]
Z (6)

From Eqs. (3), (5) and (6), we have Pwk = Q·k where
Q·k is the k-th column vector of matrix Q. Therefore, we

494

obtain wk = P\Q·k wherein the backslash (\) indicates the
solving the system of linear equations. We prefer solving the
linear system of equations to computing the inversion of the
matrix P for computational efficiency. One can use an iterative
algorithm to alternatively sample the latent variable λn and
compute w. However, in practice we empirically find that
a single pass gains sufficiently good performance, thus we
only sample λn once. Once the parameters have been learned,
the label ŷnew for a newly seen data instance xnew can be
predicted as: ŷnew = argmax

k

[
w>k xnew

]
.

C. Label-drift latent SVMs

When the latent SVM scans through the data in one pass,
the sufficient statistic matrices P,Q to estimate the parameters
w can be updated incrementally as the new data come (see
Eqs. (4,5,6)). This allows the model to be learned in an online
setting where the data arrive in the form of mini-batches. When
a mini-batch contains only one data point, it reverts to the
standard online learning mode.

Furthermore, the parameters of each class in multiclass
latent SVMs are updated independently (cf. Section II-B).
This naturally suggests a new learning capability where our
proposed method can adapt, without retraining from scratch,
to learn new data with new class labels which have not been
seen before during the training phase – a problem we term
label-drift classification.

Figure 1 shows an illustration of the data setup for this task.
In this setting, the data is divided into t + 1 mini-batches:
{Bi = (Xi,yi)}t+1

i=1. The labels of the first i batches belong
to the set Ki, thus Ki ⊆ Kj , i ≤ j. We have already trained
the model using the first t batches and the goal now is to
update its parameters using data batch t+ 1.

Fig. 1. An illustration of label-drift classification problem.

Denote Kt = {1, 2, ...,K} and Kt+1 = {1, 2, ...,K,K+ 1},
we adjust the parameters {w1,w2, ...wK} and sufficient statis-
tic {P,Q} of the latent SVM, and at the same time add new
parameters wK+1 and Q·[K+1] for the new class label K+1.
To do so, we introduce a new column Q·0 into the matrix
Q to keep information of previous data points as they will
be discarded later on. The additional column Q·0 is used to
penalize the sufficient statistic Q·[K+1] of the new class as
all previous data points do not belong to the new class. The
parameter update of label-drift latent SVMs for a mini-batch
is presented in Alg. 1.

D. Latent support vector regressions
We propose in this section the use of the latent SVM

presented in Section II-A for regression task. In a standard

Algorithm 1 Parameter update of label-drift latent SVMs for
a mini-batch containing M data points.

Input: y = {1, ..,K+ 1}M×1, {ym | ym = K+ 1}Mm=1 6= ∅,
X ∈ RM×D, P ∈ RD×D and Q ∈ RD×(K+1)

1: Initialize wk = 1, ∀k = 1, 2, ...,K+ 1

2: λ = [λm]
M
m=1 : λ−1m ∼ IG

(∣∣1−wym
x>m
∣∣−1 , 1)

3: P̂ = P + X>diag
(
λ−1

)
X

4: Z = [zmk]M×(K+1) : zmk = 1 | ym = k, zmk = −1 |
ym 6= k

5: Q̂·[1:K+1] = Q·[1:K+1] + X>
[
I + diag

(
λ−1

)]
Z

6: Q̂·[K+1] = Q̂·[K+1] −Q·0
7: Q̂·0 = Q·0 +

∑K
k=1 X>

[
I + diag

(
λ−1

)]
I [y = k]

8: wk = P\Q·k, ∀k = 1, 2, ...,K+ 1

Output: {w1,w2, ...,wK+1}, P̂, and Q̂ ∈ RD×(K+2)

support vector regression (SVR), the data label is represented
by a real-valued response variable yn ∈ R. The objective
function in Eq. (1) now becomes:

L (w;C,α,σ) =
N∑
n=1

max
(∣∣∣yn −w>xn

∣∣∣ , 0)+
1

Cα

D∑
d=1

∣∣∣∣wdσd
∣∣∣∣α

wherein we have utilized `1-loss function. One can use the
ε-insensitive loss [16], but this introduces a hyperparameter ε
(i.e., the precision parameter), and thus we do not include this
loss to keep our models hyperparemeter-free.

To develop a data augmentation approach for SVR, we
introduce two auxiliary variables λ, η > 0 (rather than one
as in latent SVMs for classification task) for each observation
label y. The inverses λ−1, η−1 of such auxiliary variables also
follow Inverse Gaussian (IG) distributions:

p
(
λ−1 | x, y,w

)
∼ IG

(∣∣y −wx>
∣∣−1 , 1)

p
(
η−1 | x, y,w

)
∼ IG

(∣∣y −wx>
∣∣−1 , 1)

The data pseudo-likelihood in Eq. (2) now turns into the
following double scale mixture form:

p (y | x,w, λ) =
ˆ ∞

0

1√
2πλ

exp

{
−
[
λ+

(
y −w>x

)]2
2λ

}
dλ

×
ˆ ∞

0

1√
2πη

exp

{
−
[
η −

(
y −w>x

)]2
2η

}
dη

The posterior conditional distribution of w:
p (w | x, y, λ, η) = N (µ,Σ) has the following mean
and covariance:

Σ−1 = X>
[
diag

(
λ−1

)
+ diag

(
η−1

)]
X + I

µ = ΣX>
[
diag

(
λ−1

)
+ diag

(
η−1

)]
y

The parameters of SVRs are then computed similarly to those
of the multiclass latent SVMs.

495

E. Latent SVMs on Spark

In tackling large-scale data classification problems, the num-
ber of data points is often significantly greater than the number
of features, i.e., N� D. Our computational bottlenecks reside
in computing P and Q in Eqs. (5) and (6) with the com-
putational complexity of O

(
N×D2

)
and O (N×D×K),

respectively. These operations, however, can be parallelized
in a distributed system in a similar way to parallelize matrix
multiplication problem. Thus we can efficiently address these
issues using a distributed computing framework, specifically
on Apache Spark.

1) Distributed algorithm: Without loss of generality, we
present here the distributed version developed for the latent
SVMs for multiclass classification; the regression case follows
in a similar way. We first partition the data matrix X and the
label y into disjoint M parts: X =

[
X〈1〉,X〈2〉, ...,X〈M〉

]>
and y =

[
y〈1〉,y〈2〉, ...,y〈M〉

]>
. These partitions are then

stored distributedly in multiple machines. For the m-th part,
the auxiliary variables λ〈m〉 are sampled using Eq. (4) with
xn ∈ X〈m〉 and yn ∈ y〈m〉. These auxiliary variables reside
in the corresponding data partitions. The functions to compute
matrices P ∈ RD×D and Q ∈ RK×D can be reformulated
using M parts as: P =

∑M
m=1 P〈m〉 + I, Q =

∑M
m=1 Q〈m〉

wherein the m-th parts are computed as:

P〈m〉 = X〈m〉
>

diag
(
λ〈m〉

−1
)

X〈m〉

Q〈m〉 = X〈m〉
>
[
I + diag

(
λ〈m〉

−1
)]

Z〈m〉

It is clear that we only need the data part X〈m〉 and auxiliary
variable part λ〈m〉 to compute P〈m〉 and Q〈m〉. Therefore, in
the Spark system, the computation can be done in parallel
with each partition being processed by one worker node.
The sampling and computations of λ〈m〉, P〈m〉, Q〈m〉 are
map functions operating on the m-th partition. After the map
functions are computed for all M parts, reduce steps are
needed to summing over all results to obtain the P and Q. This
algorithm requires two phases of communications between
driver and worker nodes. In the first phase, the driver machine
must ship the parameters w to all worker machines which
perform map functions. The results of these functions are then
reduced and sent back to the driver in the second phase.

Once the matrices P and Q are fully specified, the driver
will compute the parameters w by solving the system of linear
equations. It is noteworthy to point out that this operator is
conducted on the driver node, thus not distributed. However,
it performs on the feature dimension with the computational
complexity O

(
D2.376

)
[4]. Thus this step will not become

a bottleneck in our method. The pseudo-code is described in
Alg. 2. We term our proposed method the sparkling vector
machines (SkVM).

2) Implementation: We use Python API1 of Spark version
1.4.1 to implement our proposed method. For reproducibility
of our experiments and open science, we make our source code

1http://spark.apache.org/docs/1.4.1/api/python/

Algorithm 2 Distributed learning algorithm of SkVM.

Input: y ∈ {1, 2, ...,K}N×1 ,X ∈ RN×D

1: Initialize wk = 1, ∀k = 1, 2, ...,K
2: The driver ships w1:K to every worker.
3: The workers perform the following steps for the m-th

partition:
4: λ−1n ∼ IG

(∣∣1−wyn
x>n
∣∣−1 , 1) ,∀n ∈ m-th partition,

5: P〈m〉 = X〈m〉
>

diag
(
λ〈m〉

−1
)

X〈m〉

6: Z〈m〉 =
[
z
〈m〉
nk

]
N×K

: z
〈m〉
nk = 1 | yn = k, z

〈m〉
nk = −1 |

yn 6= k

7: Q〈m〉 = X〈m〉
>
[
I + diag

(
λ〈m〉

−1
)]

Z〈m〉

8: The workers reduce and send P〈m〉 and Q〈m〉 back to the
driver to obtain P and Q

9: The driver computes: wk = P\Qk : ∀k = 1, ...,K

Output: {w1,w2, ...,wK}

available at https://github.com/tund/skvm. In the near future,
we also intend to release an implementation in Scala – the
native programming language in which Spark is written, and
its Python wrapper.

III. EVALUATIONS

In this section, we quantitatively evaluate the performance
of our proposed method on three tasks: standard classification,
label-drift classification and regression. Our main goal is to
demonstrate the scalability of SkVM in training large-scale
datasets, and its capability in handling the arrival of data
points with new labels, or the label-drift classification problem
described earlier. We directly compare the performance of our
proposed model with several existing methods implemented in
machine learning library (MLlib) of Apache Spark [8].

A. Data statistics

We use four large-scale public datasets (i.e., Epsilon, Susy,
MNIST8M and Airlines dataset) in which the number of
training samples is much larger than the feature dimension
(millions against hundreds). The first three datasets were ob-
tained from UCI repository2 and LIBSVM collection3. These
datasets are already available in the form of instance-feature
matrices, and divided into training and testing subsets.

The Airlines dataset is provided by the American Statistical
Association4. The dataset contains information of all com-
mercial flights in the US from October 1987 to April 2008.
The aim is to predict whether a flight will be delayed or
not. A flight is considered delayed if its delay time is above
15 minutes, and non-delayed otherwise. Our preprocessing
consists of two steps. First, we extract 11 fields (year; month;
days of week and month; scheduled departure and arrival
hours; unique carrier code; origin and destination airport

2https://archive.ics.uci.edu/ml/datasets
3https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
4http://stat-computing.org/dataexpo/2009/.

496

�

��

���

���

���

���

�

��

��

��

��

��

��

��

	�

�

���

�
��

�
��
��

	

�
�

�
��
�
�

������� ������������	�
�����

������� ����

�

��

���

���

���

���

���

���

���

�

��

��

��

��

��

��

��

	�

�

�
��

�
��
��

	

�
�

�
��
�
�

���� ��������������	�
��

������� ����

�

���

���

���

���

���

���

���

	��

��

�

��

��

��

��

��

��

��

	�

�

���

�
��

�
��
��

	

�
�

�
��
�
�

������� �������������	
����

������� ����

�

����

����

����

����

����

����

����

	���

���

�����

�

����

���

����

���

����

���

����

���

�
��

�
��
��

	

�������� ��������������	
�����

�� ���

Fig. 2. Comparison of classification performances with 7 baselines on four large-scale datasets.

codes; reason for cancellation; diverted or not) as categorical
features which are encoded into one-hot representations, and
distance as a real-valued feature. The departure delay time is
used to label the delayed flight. We then split the data into 90%
for training and 10% for testing. This results in 109, 106, 460
training and 12, 126, 373 testing data points with 857 features.

B. Classification

In the first experiment, we examine the performances of the
proposed SkVMs in binary and multiclass classification tasks.
The classification performance is evaluated using the accuracy
for the Epsilon, Susy, MNIST8M datasets as their label quan-
tities are almost equal, whilst using F1 for the Airlines data
as it is unbalanced with only 10% delayed labels. For further
comparison, we implement a version of our proposed model in
Matlab (denoted by Matlab-SkVM) and use 8 baselines imple-
mented in Spark: logistic regression using stochastic gradient
descent (Spark-LR-SGD) and limited-memory BFGS (Spark-
LR-LBFGS); Naive Bayes (Spark-NB); linear SVM (Spark-
LSVM); decision tree (Spark-DT); random forest (Spark-RF)
[8], Spark-LIBLINEAR with logistic regression (Spark-LLin-
LR) and with L2-loss SVM (Spark-LLin-SVM) [7]. All Spark-
based methods run on a Hadoop-Spark cluster with 8 worker
nodes, each node equipped with 32 vcores CPU, 128GB RAM.
The Matlab-SkVM runs in parallel on multiple vcores of a
single machine and alternatively loads and unloads smaller
chunks of data, which is more efficient than loading the entire
data.

Fig. 2 presents the classification performance on the testing
set and execution time on both training and testing sets. Note
that the Python API of Spark-LR-SGD and Spark-LSVM
have not supported multiclass classification, and the Spark-
NB has not been implemented to model Gaussian distribution
(real-valued data). Hence their results for some datasets are
not available. Overall, the training time of SkVM is consis-
tently superior to the Spark-implementation baselines and our
Matlab implementation while keeping comparable predictive
performances. Our method can achieve ten times speedup in
training the largest dataset (Airlines). Particularly, compared
to the Spark-LIBLINEAR – the most competitive baseline,
the SkVM achieves comparable classification results and from
10% (Airlines) to 250% (Susy) faster speed. For Susy dataset,
the Matlab-SkVM performs surprisingly fast as this dataset is
small in terms of size on disk (less than 1GB), thus the model
can load data significantly faster.

C. Label-drift classification

Next we demonstrate the new classification capacity of
our proposed method in handling the label-drift classification
problem using the MNIST8M dataset. The data contains
images of 10 classes of handwritten digits ranging from 0 to 9.
Let {i0, i1, ..., i9} be an array of class indices in an arbitrary
order. The dataset is then partitioned into ten blocks. The first
block contains one-tenth the number of instances of class i0,
denoted by

{
1
10 i0

}
. The second block contains another one-

tenth and one-ninth of class i1, denoted by
{

1
10 i0;

1
9 i1
}

, and

497

�

��

��

��

��

���

� ��� ��� ��� ��� ��� ��� 	�� ���

���������	
�������

��������
 ���

Fig. 3. The label-drift classification performance on MNIST8M dataset.

similarly for the remaining 8 blocks. Thus the last one consists
of
{

1
10 i0;

1
9 i1; ...;

1
2 i8; i9

}
. After training the model on each

block, we record its classification performance on the original
testing part of MNIST dataset which contains 10,000 images.

Fig. 3 shows the relative performance with respect to
classification accuracy and computational time cost of SkVM
and Matlab-SkVM. It is clear that our Spark implementation
consistently performs much faster than the Matlab imple-
mentation. There is a minor difference between accuracies
of SkVM and Matlab-SkVM with the higher belonging the
SkVM due to the random sampling process. After seeing the
entire data, the final classification result is slightly worse than
that of learning in the standard multiclass classification setting
(see Fig. 2). This is because the numbers of class instances
are not equal in each stage when the model receiving the new
data block. Thus this task can be referred to as the unbalanced
classification that is more difficult.

D. Regression

Our last experiment is to validate the capability of our pro-
posed method for regression problem with `1-loss described in
Section II-D. We use the Airlines dataset (predict flight delay
minutes) and compare with five baseline implementations in
Spark MLLib [8]: Spark-DT, Spark-RF, linear regression us-
ing SGD (Spark-LinR-SGD), lasso using SGD (Spark-Lasso-
SGD) and ridge regression using SGD (Spark-RidR-SGD).
We do not include the Spark-LIBLINEAR in this experiment
as it does not support regression. Table I reports the results
measured using mean absolute error (MAE). Our proposed
models achieve the most optimal regression results which are
18% better than that of the best baseline – Spark-Lasso-SGD.
For wall-clock time, the SkVM outperforms the fastest Spark-
implementation baseline by twice, and significantly improves
the speed of Matlab-SkVM by 30 times.

IV. CONCLUSION

We have introduced a distributed version termed sparkling
vector machine (SkVM) which is implemented in Apache
Spark. The SkVM is based on the data augmentation technique
for SVMs. Our main contributions are the extensions to handle
multiclass classification, regression, label-drift classification,
and the distributed algorithm. Our experiments on large-scale

TABLE I
COMPARISON OF REGRESSION PERFORMANCES.

Dataset Airlines
Method MAE Time

Matlab-SkVM 10.89 3,882.38
Spark-LinR-SGD 13.86 272.73
Spark-Lasso-SGD 13.52 325.17
Spark-RidR-SGD 13.85 283.79

Spark-DT 13.78 363.64
Spark-RF 13.82 661.36

SkVM 11.07 142.73

datasets with hundreds of million data points confirm the
scalability of our proposed method as well as its predictive
performance where the performance of our proposed SkVM
are comparable or better than state-of-the-art baselines (includ-
ing those already implemented in Spark) whilst the execution
time is much faster at an order of magnitude.

REFERENCES

[1] A. Borodin and R. El-Yaniv, Online computation and competitive
analysis. Cambridge University Press, 2005.

[2] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[3] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[4] G. H. Golub and C. F. Van Loan, Matrix computations. JHU Press,
2012, vol. 3.

[5] D. Hand, “Classifier technology and the illusion of progress,” Statistical
Science, vol. 21, no. 1, pp. 1–14, 2006.

[6] X.-S. Hua and G.-J. Qi, “Online multi-label active learning for large-
scale multimedia annotation,” Tech. Rep., 2008.

[7] C.-Y. Lin, C.-H. Tsai, C.-P. Lee, and C.-J. Lin, “Large-scale logistic re-
gression and linear support vector machines using spark,” in Proceedings
of IEEE International Conference on Big Data, 2015, pp. 519–528.

[8] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine learning
in apache spark,” arXiv preprint arXiv:1505.06807, 2015.

[9] K. Nguyen, T. Le, V. Nguyen, T. D. Nguyen, and D. Phung, “Multiple
kernel learning with data augmentation,” in Proceedings of the 8th Asian
Conference on Machine Learning (ACML), 2016.

[10] T. D. Nguyen, V. Nguyen, T. Le, and D. Phung, “Sparkling vector
machines,” in Proceedings of the Workshop on Machine Learning
Systems at Neural Information Processing Systems (NIPS), Palais des
Congres de Montreal, Montreal, Canada, December 2015.

[11] V. Nguyen, T. D. Nguyen, T. Le, D. Phung, and S. Venkatesh, “One-
pass logistic regression for label-drift and large-scale classification on
distributed systems,” in Proceedings of the IEEE International Confer-
ence on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016.

[12] H. Perkins, M. Xu, J. Zhu, and B. Zhang, “Fast parallel svms using data
augmentation,” Technical Report, Department of Computer Science and
Technology, Tsinghua University, 2013.

[13] A. T. Pham, R. Raich, X. Z. Fern, J. P. Arriaga, and D. UNICAN, “Multi-
instance multi-label learning in the presence of novel class instances,”
in Proceedings of The 32nd ICML, 2015, pp. 2427–2435.

[14] J. C. Platt, “12 fast training of support vector machines using sequential
minimal optimization,” Advances in kernel methods, pp. 185–208, 1999.

[15] N. G. Polson, S. L. Scott et al., “Data augmentation for support vector
machines,” Bayesian Analysis, vol. 6, no. 1, pp. 1–23, 2011.

[16] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statistics and computing, vol. 14, no. 3, pp. 199–222, 2004.

[17] G.-X. Yuan, C.-H. Ho, and C.-J. Lin, “Recent advances of large-scale
linear classification,” Proceedings of the IEEE, vol. 100, no. 9, pp. 2584–
2603, 2012.

[18] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: cluster computing with working sets,” in Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, vol. 10, 2010,
p. 10.

498

