
 

 

MRCNN: A Stateful Fast R-CNN  
 Using temporal consistency in R-CNN for video object localization and classification 

Philippe Burlina 

Applied Physics Laboratory and Dept. of Computer Science 

Johns Hopkins University

 
Abstract— Deep convolutional neural networks (DCNNs) 

perform on par or better than humans for image classification. 

Hence efforts have now shifted to more challenging tasks such as 

object detection and classification in images, video or RGBD. 

Recently developed region CNNs (R-CNN) such as Fast R-CNN 

[7] address this detection task for images. Instead, this paper is 

concerned with video and also focuses on resource-limited 

systems. Newly proposed methods accelerate R-CNN by sharing 

convolutional layers for proposal generation, location regression 

and labeling [12][13][19][25]. These approaches when applied to 

video are stateless: they process each image individually. This 

suggests an alternate route: to make R-CNN stateful and exploit 

temporal consistency. We extend Fast R-CNNs by making it 

employ recursive Bayesian filtering and perform proposal 

propagation and reuse. We couple multi-target 

proposal/detection tracking (MTT) with R-CNN and do 

detection-to-track association. We call this approach MRCNN as 

short for MTT + R-CNN. In MRCNN, region proposals -- that 

are vetted via classification and regression in R-CNNs -- are 

treated as observations in MTT and propagated using assumed 

kinematics. Actual proposal generation (e.g. via Selective Search) 

need only be performed sporadically and/or periodically and is 

replaced at all other times by MTT proposal predictions. 

Preliminary results show that MRCNNs can economize on both 

proposal and classification computations, and can yield up to a 10 

to 30 factor decrease in number of proposals generated, about 

one order of magnitude proposal computation time savings and 

nearly one order magnitude improvement in overall 

computational time savings, for comparable localization and 

classification performance. This method can additionally be 

beneficial for false alarm abatement. 

Keywords—Region CNNs in Video, Deep Learning, ConvNets, 

Region Proposals, Fast R-CNN. 

I.  INTRODUCTION  

Looking back at over two decades of work in visual 
detection and recognition, algorithms have used varied 
strategies. Non-exhaustive examples include approaches 
leveraging statistical moments, histogram of gradients/features, 
decomposable part models, or combination and ensembles 
thereof accrued with various machine learning techniques (e.g. 
[1][2][3][4][5]). These have led to varying degrees of success, 
some yielding very good performance for specific object 
detection (e.g. face [20]). But progress in convolutional neural 
nets (CNNs) exploiting deeper networks, large training 
datasets, novel non-linear layers, GPU processing, and 
improved techniques for ConvNet training, have recently led to 
significant performance improvements for general purpose 
image classification. It is now possible to achieve certain tasks, 

e.g. whole image classification, with accuracy on par or better 
than humans (see [6][14][15][16][17][18]). 

The focus has now shifted from classifying dominant 
objects in images to more challenging problems such as 
detecting, localizing and classifying individual objects in 
images. Recently such efforts have produced techniques with 
notable accuracy/speed improvements [7][12][13][19][25]. 

 

Figure 1 Flow diagram for MRCNN: (top-left): region proposals are 

periodically generated via Selective Search (or alternates such as 

Edge Boxes [27] or Bing [26]). (Bottom-left): proposals are input to 

Fast R-CNN which outputs scored regions that are filtered and non-

maximum suppressed, producing vetted object detections that initiate 

tracks in MTT (upper-right). Then, proposal generation need only be 

computed sporadically or periodically as MTT instead provides 

predicted object positions as proposals input to Fast-RCNN, leading 

to computational savings and false alarm abatement. (Bottom-right): 

a Hungarian algorithm associates scored proposals output by Fast R-

CNN with tracked objects in MTT.  

Our work is motivated by the use of R-CNN for 
applications not in images but in video. It is also guided by the 
need for computational efficiency when implementation cannot 
afford the use of high-end GPUs (e.g. NVIDIA Titan) or GPU 
clusters, but instead is bound to utilize small embedded 
systems or systems on a chip (SOCs) such as NVIDIA 
TK1/TX1s [21][22]. These use a small GPU and processor(s) 
with reduced computational capabilities more consistent with 
deployment in smart phones or vision systems embedded in 
smart cameras or drones. 

For real-time applications, recent progress in R-CNNs was 
aimed at addressing computational bottlenecks, including 
proposal generation [12] and proposal scoring. This has 
recently led to extending R-CNNs to ConvNet designs that 

2016 23rd International Conference on Pattern Recognition (ICPR)
Cancún Center, Cancún, México, December 4-8, 2016

978-1-5090-4846-5/16/$31.00 ©2016 IEEE 3507



 

 

share convolutional layers for objectness scoring, classification 
and bounding box regression, where training is done with the 
multiple tasks of proposal generation and classification [12].  
Such work includes: fast RCNN [13], Faster RCNN [12], Yolo 
[19] and SSD [25]. These approaches have proven to be 
elegant, efficient and fast, that is, consistent with video-rate 
processing (e.g. 5 fps for Faster R-CNN) when used with high-
end GPUs (e.g. NVIDIA Titan or K40s). Additionally, 
accuracy was kept on par or exceeded former best of breed 
algorithms for Pascal VOC challenges. 

When applied to video, a common feature shared by all 
these methods is that they are stateless: they all process each 
image individually. While there is virtue in doing stateless 
processing (it leads to simpler systems with no error 
propagation), taking video applications into account, we 
propose instead a different path that exploits temporal 
consistency and promotes proposal reuse and correction. This 
stateful approach has potentially key additional benefits such as 
incorporating object kinematics for proposal prediction and 
performing label association from frame to frame. At the time 
of submission of this work, and to the best of our knowledge, 
our approach was the first and only to propose a stateful R-
CNN in video object detection. Very recently however, a new 
approach exploiting temporal tracking was reported in [32]. 

The method reported here exemplifies this stateful 
approach to video R-CNN. While it specifically extends Fast 
R-CNN [7][13], it is a general blueprint for augmenting other 
recent R-CNN approaches such as Faster R-CNN, Yolo or SSD 
[12][19][25]. Our approach uses Bayesian Filtering in a 
multiple target observer/predictor tracker (MTT) framework to 
propagate proposals that are vetted by the Fast R-CNN stage. It 
uses a Hungarian algorithm for overall K nearest neighbor 
optimization (KNN) to associate R-CNN vetted proposals to 
proposal tracks in MTT. In preliminary experiments, we show 
that this method provide benefits for computational savings 
while exhibiting classification behavior qualitatively similar to 
the baseline Fast R-CNN. This work is further described in the 
following sections: Section II details the method, Section III 
reports on experiments, and Section IV discusses and compares 
the approach with recent developments in R-CNNs including 
limitations and possible extensions.  

  

Figure 2 Comparing proposals generated and used in the baseline 

Fast R-CNN approach (left) and MRCNN (right) where only tracked 

object proposals and their bred children are used. 

II. METHOD 

Our approach extends Fast R-CNN and focuses on allowing 

propagation, association and prediction of vetted object 

proposals, and is described next: 

A. Overall Approach 

The method leverages Fast R-CNN inside a Bayesian multiple 
target tracking (MTT) and data association framework. Video 
sequences are decomposed into cycles of fixed length including 
the first frame (interframe) and subsequent intraframes. 
Processing works as pictured in Figure 1: at the start of each 
cycle, proposals are generated in interframes via Selective 
Search (SS) (top-left). These are fed (black arrow) to a Fast R-
CNN (lower-left) that generates outputs including (red arrow) 
object detections with regressed positions and label for each 
input proposal. R-CNN output detections are trimmed down 
via a down-selection filtering step including non-maximum 
suppression and are used to initiate tracks (green arrow) in the 
Bayesian MTT (top-right) framework. Inside video cycles and 
for each intraframe: proposal generation via SS is turned off 
and instead the MTT generates predicted proposals (blue 
arrow). Each such prediction breeds child proposal replicas 
with varying aspect ratios around each parent proposal. For 
intraframes or interframes, all proposals are then input to Fast 
R-CNN, whose outputs are considered observations for MTT 
and then passed on (red arrow) to the association stage, 
associating tracks to the vetted detections output by Fast R-
CNN. These associated observations are finally fed to the 
Bayesian MTT for track correction. The MTT then produces 
new predicted proposals for the next intraframe (blue arrow), 
completing the loop. Details follow. 

B. Implementation Details  

Rescaling: input video frames are rescaled to 640 by 480 in 
fashion similar to Fast RCNN’s rescaling. 

Video Cycles: processing cycles span N frames (decomposed 
into a first interframe followed by N-1 intraframes). N is varied 
in practice in the range N=5 to N=15 for videos taken at 30 fps. 
In experiments reported below we use N=10 for custom 
sequences, and N=5 for ImageNet VID sequences. 

Bayesian Filtering: detected objects bounding boxes (including 
position, width and height) output by Fast R-CNN are used as 
input to MTT: these initiate tracks (for interframes) or provide 
track observations (for intraframes). Tracking consists of one 
state vector per proposal track, with no interaction among 
tracks. The MTT uses linear Kalman Filters (KF) [29] for each 
track. Each KF assumes a uniform motion for each object and 
includes two entries for the extremal (upper left and lower 
right) points in the object bounding boxes. Each extremal point 
subsystem has equations (i and j are the time and track indices): 

Xi+1,j = A Xi,j +Np; X = [x, y, x’, y’]    

A = [1,0,1,0; 0,1,0,1; 0,0,1,0; 0,0,01]  

Yi,j = B Xi,j +No     

B = [1,0,0,0; 0,1,0,0]    

Above, X and Y are state and observation vectors for the 
extremal points of the object bounding box. Np and No are the 
process and observation noises. In experiments below the 
covariance matrices of observations are initialized to 3E-3.I for 
process and 3E-5.I for observations, with I the identity matrix. 

Association/Hungarian Algorithm: A distance matrix is 
computed where entries encodes all image domain distances (in 

3508



 

 

pixels) between the centroids of tracks’ bounding boxes and 
the Fast R-CNN detected objects’ bounding boxes. Association 
is obtained by minimizing the overall cost (sum of distances) 
for associating each detection to track. The Munkres Hungarian 
algorithm [28] is used for computing the optimal association. 

Proposal Breeding: Augmenting or reducing space margins 
around proposal bounding boxes can have a virtuous (because 
it adds space/context around the object) or deleterious effect 
(because it adds confounding nearby objects) on CNN 
classification performance. These effects depend on the image, 
the object class and training exemplars. Producing variants of 
base proposals bounding boxes with multiple aspect ratios 
allows for context plurality by enabling inclusion or exclusion 
of additional space around the object. Because of this we 
perform spawning (replication) of MTT–predicted proposals. 
For intraframes only, each prediction proposal obtained from a 
tracked object (called the parent) is replicated into children 
proposals forming an expanded proposal set that is then input 
to Fast R-CNN. Children proposal replicas are made up of 
rescaled and translated copies of the parent. For translated 
replicas, we form a grid of new offset positions around the 
predicted proposal center. In experiments below we use a set of 
offsets OS = [-10, 0, 10] (in pixels) along both the x and y 
directions. Therefore a number Mt = 9 of new translated 
children replicas are generated around each parent. For scaled 
replicas, proposals with modified aspect ratios are generated 
whereby the parent bounding boxes dimensions (w, h) are 
rescaled as (wnew, hnew) where wnew=(1+pw).w and hnew = 
(1+ph).h. Two sets of values are used for scale breeding. For 
large breeding we have (pw, ph) in {-p, 0, p} x {-p, 0, p} (in our 
implementation we chose p=0.2), producing Ms = 9 scaled 
children replicas. We also employ a smaller scale replication 
scheme (small breeding) where we use (wnew, hnew) in {(0.05, -
0.05), (0.10, -0.10)}, in this case producing Ms = 2 scaled 
children replicas. Combining rescaling and translation, for 
small breeding the total number of replicated children per 
original parent is Ms.Mt = 18, while for large breeding Ms.Mt = 
81 (Figure 2). 

Classes: Fast R-CNN is used and comes pre-trained on Pascal 
VOC classes. This includes 21 classes of which 20 are actual 
object classes and one class is used for the background.  

Post-Processing: post processing of objects output from Fast 
R-CNN includes doing down-selection filtering and other steps 
entailed in association and MTT correction. Down-selection 
filtering uses: non-maximum suppression which involves 
removing overlapping detected objects of the same class when 
these have an intersection over union exceeding a set threshold 
TIOU, filtering out objects that are not in an interest list LI, 
filtering out objects whose score is less than a detection 
threshold TD, and filtering out occasional malformed bounding 
boxes from R-CNN. Numerical values used for the 
experiments below are TD=0.5 and TIOU=0.3. In the 
experiments below LI={person, monitor, chair, dog, car, plant, 
bottle} for the custom sequences experiment and LI={bicycle, 
airplane, boat, car, motorbike, train, horse, dog, bird, bus} for 
the ImageNet VID experiment. 

Proposals: for interframes, objects are found via selective 
search. Proposals with area less than TS = 40

2
 are removed. 

While different tuning parameters were tested for SS [24], in 
experiments below kvals was set to 50 and 200, and the max 
number of iterations for blob merging was set to 50.  

III. EXPERIMENTS 

 
Datasets and Platform: We used ten custom video 

sequences with everyday objects, some static and some 
dynamic. These sequences did not include ground truth. These 
can be seen in [30]. We also tested using 72 ImageNet VID 
video sequences. 

Implementation: MRCNN is implemented using the 
following components: OpenCV 3.1 Python bindings; Fast R-
CNN [31]; SciPy’s implementation of Munkres’ algorithm; 
OpenCV 3.1 Kalman filter; and DLIB’s implementation of 
Selective Search. Given our interest in testing on 
computationally-limited systems, MRCNN was deployed and 
tested on an NVIDIA Jetson TK1 for the custom sequences. 
Specifications of the TK1 include: the Tegra system on a chip 
which has four ARM processors, a Keppler architecture GPU, 
and a somewhat limited memory (2 Gb). (TK1’s successor, the 
TX1 has improved but still limited capabilities compared to 
high-end GPUs.) Because of this we use AlexNet as a ConvNet 
in Fast R-CNN. VGG16, while having better performance for 
recognition and also an option for R-CNN, cannot be run on 
the TK1 due to memory limitations. For VID experiments we 
deploy MRCNN on a 6-core I7 workstation with an NVIDIA 
980 GPU and 4 Gb VRAM.  

Performance Evaluation: We profile MRCNN by 
computing the number of proposals generated per frame and 
the average processing time per frame for the following steps: 
proposal generation, labeling, post-processing, and overall 
processing. These metrics are reported in Tables II-IV.  

Custom Sequences: comparisons are made for methods 
with and without MTT: method (a) is a baseline method using 
only SS + Fast RCNN and is reported in Table 1; two MRCNN 
approaches, both with N=10, including method (b) working 
with large breeding and method (c) with small breeding, are 
reported in Table II and Table III. Table IV provides a 
summary of gains over all sequences and methods. For custom 
sequences, accuracy is not reported quantitatively due to lack 
of ground truth. Instead, five of these sequences with overlaid 
result bounding boxes are available in [30] for judging 
accuracy. We also show a selection of intraframes from these 
sequences with overlaid results in Figures 3, 4 and 5 comparing 
all three methods. Visual inspection shows that the methods 
with and without MTT have qualitatively comparable accuracy 
performance with slight detection degradation or improvement 
depending on sequences/frames.  

ImageNet VID Sequences: to profile time along with 
detection accuracy, we test on a set of 72 sequences from VID 
using MRCNN and N=5. Comparing MRCNN vs. Fast R-CNN 
as a baseline (all numbers are per frame): the average number 
of proposals generated for MRCNN is 196.604 (vs. 782.767 for 
baseline); proposal generation time is 0.088s (vs. 0.371s), 
labeling time is 0.044s (vs. 0.068s), post-processing time is 
0.001s (vs. 0.001s), and total time is 0.133s (vs. 0.440s); 
(precision, recall) values averaged over all frames/sequences 

3509



 

 

are (42.666%, 75.721%) for MRCNN (vs. (44.519%, 
72.983%)). Thus MRCNN provides computational saving with 
similar detection performance. 

IV. DISCUSSION AND COMPARISON TO OTHER METHODS  

Factors Affecting Performance: Closer visual inspection of 
the custom sequence results reveal small detection differences 
likely due to the following: the main drawback of MRCNN is 
potential error propagation, i.e. if an object is not scored high 
enough in an interframe it remains undetected/unlabeled during 
the rest of the cycle. This interframe failure depends on 
performance of both the interframe proposal generation and 
labeling methods (here SS and Fast R-CNN). This potentially 
limits the length N of the cycle. Additionally, breeding may 
sometimes negatively affect detection. In particular 
rescaling/dilation of the bounding box during breeding can 
sometime interfere with non-maximum suppression and 
eliminate certain detections. Conversely, it can also be seen 
from the videos that MRCNN is able to propagate forward 
proposals that are sometimes lost by the baseline algorithm 
either due to SS or Fast R-CNN breakdowns. There is also a 
visible positive effect in MRCNN abating false alarms as seen 
in Figures 3-5. Other errors may arise, as for example on the 
painting where the DCNN can have issues finding persons in 
artwork.  

 Values reported in the Tables II-V show there is a 
significant decrease in generated proposals in MRCNN (10 to 
over 30 times less). Less proposals generated has a positive 
effect on detection: MRCNN may avoid redundant object 
detection (e.g. for Seq. 7 in Figures 3-5, we see a smaller 
number of detections being produced per single object, the 
plant for example). Having lesser but better proposals has also 
a positive incidence on the value of the scoring threshold TD. 

With fewer proposals generated, this acts as a false alarm 
mitigation scheme; a lower threshold on the score can then be 
used. This was also informally tested but is not reported here. 
With fewer proposals generated, processing time savings with 
factors up to one order of magnitude were observed. 

  SS tuning entailing higher numbers of proposals could have 
been considered—leading to higher relative computing savings 
in MRCNN. However increasing the number of proposals may 
eventually lead to swamping the classifier [12] and impact 
classification accuracy. Lastly, the reduction in proposals can 
be seen to impact labeling time. Method (c) labeling time is 
almost an order of magnitude better than (a) and proposal 
generation time is also similarly reduced. For VID, a higher N 
(e.g. 10) can be used for improved savings. 

Comparisons to other work: Detection and classification 
using CNNs has recently first relied on region proposal 
generation. The main thrust behind proposal generation was to 
avoid exhaustive approaches where sliding windows are used 
and sub-images passed on to CNNs for label scoring. Region 
proposal methods have been well researched in the past few 
years. A possible taxonomy [12] separates methods that use 
selection criteria (e.g. using edge distributions) applied over 
sliding windows (e.g. edge boxes [25]) and methods that use 
segmentation and aggregation (e.g. Selective Search [24]). 
Several best of breed methods are reported and their 
performance tested in [23].  

Needless to say, methods using region proposal showed 
computational gains over those using naïve sliding windows. 
Region CNN (R-CNN)—when first published in [7]—also 
showed substantial accuracy gains for detection and 
recognition over prior Pascal VOC leaderboard entries. R-CNN 
works by first finding region proposals via Selective Search in 
quality mode generating about 2K proposals per image. These 
are then fed to a CNN. Traditional networks (e.g. AlexNet or 
VGG16) are fine tuned to produce N+1 SoftMax outputs 
(N=20 Pascal VOC classes plus one background class). In one 
mode of operation, the method uses universal features out of 
the fine tuned network run on fixed input size images (e.g. 
227x227 sized images for AlexNet) leading to 4096 features. If 
the detected proposal window is highly rectangular this results 
in substantial warping prior to classification. One against all 
SVMs are trained and SVM scores for each class are input to 
non maximum suppression. The method performs dilation of 
proposal bounding boxes found by the region proposal stage to 
include context in the warped window. Using high-end GPUs, 
[7] cites run times per image that improve on methods such as 
DPM but are still not consistent with video processing. R-CNN 
can take up to over 40s per image on high-end GPUs (e.g. 
NVIDIA K40). 

Fast R-CNN’s main focus is to address time/computational 
cost [13]. One reason R-CNN is slow is because it does not 
share computations and does forward ConvNet computation for 
each proposal. Instead, the idea is to compute convolutional 
layers output once over the entire image and feed the output to 
a max-pooling layer. In Fast RCNN, the network first 
processes the entire image. A second CNN block ingests that 
output to produce a SoftMax output and regressed bounding 
box location. This second CNN has a ROI pooling layer for 
each proposal. It, in turn, outputs regression quadruplets for 
position, and a SoftMax distribution vector output. Therefore 
each image entails a fixed computation cost (the upstream feed 
forward of the entire image through the first CNN) and a cost 
per proposal (the connected layers following proposal pooling). 
Each proposal is generated via Selective Search as in R-CNN.  

 Faster RCNN [12] addresses the cost of proposal 
generation, the main bottleneck in Fast RCNN, using a 
combined CNN strategy for both proposal generation, scoring 
and position regression. Faster R-CNN has two components: 
one is a region proposal network (RPN) made up of a fully 
convolutional network that generates proposals meant to 
replace selective search. The RPN uses a sliding window and 
for each anchor position generates nine different proposals with 
set aspect rations that are then passed to the rest of the network.  
The second CNN component is identical to the Fast R-CNN 
detector ROI pooling and fully connected layers.  

 Yolo is another more recent [19] approach based on related 
design principle of sharing network components where a 
network simultaneously predicts multiple bounding boxes and 
class probabilities for those boxes. Speed gains are also 
obtained by dividing the image into a preset grid where each 
grid cell predicts a set number of bounding boxes. For each 
bounding box, prediction includes position and confidence 
score. Some limitations according to [19] are that small objects 
may not be detected and that it imposes fixed sizes on 
bounding boxes grids. 

3510



 

 

 The above mentioned methods show significant 
improvements in computation time using two techniques: (1) 
sharing of network to do proposal generation, proposal 
refinement, and label scoring and (2) gridding the image and 
controlling the proposal location and size. These are in-image 
and stateless methods. Ours is a temporal consistency method 
that is orthogonal and complementary in design—and could be 
used to augment the above methods. This would provide 
computational benefits. It would also provide value in terms of 
usage of tracking kinematics, association of detection, and, as 
discussed above, would entail additional benefits in terms of 
better proposals and false alarm mitigation. 

V.  CONCLUSION 

We describe MRCNN, a framework that—unlike prior 

art—exploits temporal consistency for efficient R-CNN in 

video. We show that MRCNN uses a significantly lower 

number of proposals compared to a baseline (Fast R-CNN) 

method, with comparable detection/classification 

performance. This confers computational gains for proposal 

generation and labeling time. Better/fewer proposals generated 

can lead to false alarm abatement. While this paper uses a 

MTT framework in combination with Fast R-CNN the design 

principle applies to, and similar benefits could be realized 

with, other object detection approaches such as Yolo or SSD.  

Finally, the framework addresses association which is not 

considered in prior methods. 

ACKNOWLEDGMENTS 

This work was supported by internal JHU/APL research 
funding. Assistance from N. Joshi and N. Fendley for the VID 
sequences testing is gratefully acknowledged. 

TABLE I.  COMPUTATIONAL PROFILE FOR BASELINE (SS+FAST RCNN)  

 

TABLE II.  COMPUTATIONAL PROFILE FOR MRCNN/LARGE BREEDING 

 

 

 

 

 
Figure 3 Comparison between (top) baseline (middle) MRCNN large 

breeding and (bottom) MRCNN small breeding for 2 intraframes (right: 31, 

left: 42) in sequence 7 

 
 

 

 

 

 
Figure 4 Comparison between (top) baseline (middle) MRCNN large and 

(bottom) MRCNN small for 2 intraframes (right: 95, left: 107) in sequence 7 

 

 
 

3511



 

 

 

 

 
Figure 5 Comparison between (top) baseline (middle) MRCNN large and 

(bottom) MRCNN small for 2 intraframes (right: 116, left: 169) in sequence 7 

TABLE III.  COMPUTATIONAL PROFILE FOR MRCNN/SMALL BREEDING 

 

TABLE IV.  COMPUTATIONAL GAINS FOR PROPOSALS GENERATED AND 

PROCESSING TIMES 

 
 

REFERENCES 

[1] D. Lowe. Distinctive Image features from scale invariants keypoints. 
IJCV, 2004. 

[2] N. Dalal and B. Triggs. Histograms of oriented gradients for human 
detection. CVPR, 2005.  

[3] Rajagopalas, A. N., Burlina, P., & Chellappa, R. Detection of people in 
images. IEEE International Joint Conference on Neural Networks, 1999. 

[4] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object 
detection with discriminatively trained part based models. TPAMI, 2010.  

[5] Parizi, S. N., Oberlin, J. G., & Felzenszwalb, P. F. Reconfigurable 
models for scene recognition. CVPR,  2012. 

[6] Krizhevsky, A., Sutskever, I. and Hinton, G. Imagenet classification 
with deep convolutional neural networks. Advances in neural 
information processing systems. 2012. 

[7] Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for 
accurate object detection and semantic segmentation. IEEE CVPR 2014. 

[8] Banerjee, A., Burlina, P., & Diehl, C. A support vector method for 
anomaly detection in hyperspectral imagery. IEEE Transactions on 
Geoscience and Remote Sensing, 2006. 

[9] Burlina, P., DeMenthon, D., & Davis, L. S. (1992, May). Navigation 
with uncertainty: Reaching a goal in a high collision risk region. IEEE 
ICRA, 1992. 

[10] Juang, R., & Burlina, P. Comparative performance evaluation of GM-
PHD filter in clutter. IEEE International Conference on Fusion, 2009. 

[11] Banerjee, A., & Burlina, P. Efficient particle filtering via sparse kernel 
density estimation. IEEE Trans. Image Proc., 19(9), 2480-2490, 2010. 

[12] Ren, S., He, K., Girshick, R., & Sun, J. Faster R-CNN: Towards real-
time object detection with region proposal networks. In Advances in 
Neural Information Processing Systems (pp. 91-99). 2015. 

[13] Girshick, Ross. Fast R-CNN. ICCV, 2015. 

[14]  Szegedy, Christian, et al. Going deeper with convolutions. CVPR. 2015. 

[15] Simonyan, K., and A. Zisserman. Very deep convolutional networks for 
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 

[16] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R. and LeCun, 
Y., Overfeat: Integrated recognition, localization and detection using 
convolutional networks. arXiv preprint arXiv:1312.6229, 2013. 

[17] Russakovsky, Olga, et al. Imagenet large scale visual recognition 
challenge. International Journal of Computer Vision 115.3, 2015. 

[18] Razavian, Ali, et al. CNN features off-the-shelf: an astounding baseline 
for recognition. CVPR Workshops. 2014.  

[19] Redmon, J., et al. You only look once: Unified, real-time object 
detection. arXiv preprint arXiv:1506.02640 2015. 

[20] Viola, P, and Jones, M.J. "Robust real-time face detection." International 
journal of computer vision, 2004. 

[21] Ukidave, Yash, et al. Performance of the NVIDIA Jetson TK1 in HPC. 
IEEE Int. Conf. on. Cluster Computing, 2015. 

[22] Paolucci, Pier Stanislao, et al. Power, Energy and Speed of Embedded 
and Server Multi-Cores applied to Distributed Simulation of Spiking 
Neural Networks: ARM in NVIDIA Tegra vs Intel Xeon quad-cores." 
arXiv preprint arXiv:1505.03015, 2015. 

[23] Hosang, J., Benenson, R. and Schiele, B., How good are detection 
proposals, really?. arXiv preprint arXiv:1406.6962, 2014. 

[24] Uijlings, J.R., van de Sande, K.E., Gevers, T. and Smeulders, A.W., 
2013. Selective search for object recognition. International journal of 
computer vision, 104(2), pp.154-171. 2013. 

[25] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., & Reed, S. SSD: Single 
Shot MultiBox Detector. arXiv preprint arXiv:1512.02325, 2015. 

[26]  Cheng, Ming-Ming, et al. BING: Binarized normed gradients for 
objectness estimation at 300fps. CVPR. 2014. 

[27]  Zitnick, C.L. and Dollár, P., Edge boxes: Locating object proposals 
from edges. In Computer Vision–ECCV 2014. Springer International 
Publishing. 2014. 

[28] Munkres, James. Algorithms for the assignment and transportation 
problems. Journal of the Society for Industrial and Applied 
Mathematics 5.1 32-38. 1957 

[29] Bar-Shalom, Yaakov. Multitarget-multisensor tracking: advanced 
applications. Norwood, MA, Artech House, 1990, 391 p. 1 1990) 

[30] https://drive.google.com/file/d/0B3nkZdEsK1qIbVV1VXFLZ1hrd2s/vie
w?usp=sharing 

[31] https://github.com/rbgirshick/fast-rcnn 

[32] K. Kang, W. Ouyang, H. Li, X. Wang; Object Detection from Video 
Tubelets with Convolutional Neural Ntworks, CVPR 2016.

 

3512


