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Abstract—Recent advances in the area of Deep Convolutional
Neural Networks have led to steady progress, mainly observed
in the field of object classification and localization. Extensive
testing helped generate frameworks guaranteeing the initiation
of successful network architectures. For this reason, the authors
focus on bringing added value on specific nodes of a generic
network configuration. We propose a novel type of convolutional
layer based on Autobinomial Markov-Gibbs Random Fields
(AutoMarkov Layer). Our choice is motivated by the fact that
each neuron in a layer is only connected to a local region in
the following layer. This property allows us to integrate Markov
Random Fields into the structure of a neuron, to account for
the probability of each particular pathway. Functional testing is
performed on the MNIST, CIFAR-10 and CIFAR-100 datasets,
showing clear improvements for correct classification scores on
all the datasets mentioned regardless of the network architecture.

I. INTRODUCTION

The technological advancement is currently underway and
in a significant extent supported by recent focus on the area
of Deep Learning. The ability of integrating large neural
networks into mass market appliances is already making a
profound impact on the user experience [1].

Deep Convolutional Neural Networks have led to a steady
progress for object classification [2]–[5] but they are also
successful when applied to object detection tasks [6]–[8]
or computational photography [9]–[11], achieving the best
results for all benchmarks and recent competitions [12]–[14].
The growing interest for this category of methods helped
solve many issues related to convolutional neural networks,
generating a list of steps that should be followed for building
a successful network architecture.

This paper focuses on methods that improve the outcome of
a convolutional neural network, without focusing on solving
only specific problems. Based on information extracted from a
state-of-the art review about how to select the best architecture
and parameters for the network [2], [5], [15], we focus on
adding prior knowledge in specific points of a generic network
configuration.

There is a close relation between neural networks and prob-
abilistic graphical models [16], both predicting effects derived
from multiple causes. However, if a neural network predicts
input to output relations, the probabilistic model focuses on
analyzing how neurons interact and which connections are

Fig. 1. Local Property of AutoMarkov Layers. We define Rξ ∈ Ωξ to be
the receptive field, β a learnable filter, α an additive bias and πξ ∈ Ωη the
probability assigned to a local system.

more likely. These structural differences represent the starting
point for the idea developed in this paper.

In the current structures of convolutional neural networks
each neuron is connected only to a local region in the previous
layer. This property builds a base for integrating Markov
Random Fields (MRFs) [17]–[19] into the structure of neurons
in order to consider how likely a particular pathway is.

We propose a novel type of convolutional layer based on
Autobinomial Markov-Gibbs Random Fields [20], [21] as
shown in Fig. 2, which we call AutoMarkov Layer.

Markov Random Fields have found widespread use across
image processing, in particular for texture classification [22]–
[24], image segmentation [25], [26] and restoration [27], [28],
but also in the field of machine learning, namely in object
detection [29], [30], object recognition [31], [32], or in relation
to neural networks [33], [34].

The remainder of this paper is organized as follows. Sec. II
gives a detailed overview of the proposed AutoMarkov Layers
and briefly describes the forward and the backward propaga-
tion steps, arguing the use of Markov Random Fields as prior
probability distributions in correlation with the Convolutional
Neural Networks. In Sec. III we share information about
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Fig. 2. Potential Architecture of Deep AutoMarkov Residual Network. AutoMarkov Layers compute the response of a neuron as being the local property
of a Markov Random Field.

the implementation, code and tools. A detailed experimental
evaluation of the results is performed in Sec. IV and the
conclusions are drawn in Sec. V.

II. AUTOMARKOV LAYERS

Taking a closer look at individual structures of a Convo-
lutional Neural Network, it can be inferred that the neurons
in each convolutional layer respect the Markov Property, as
described in Sec. II-A, in relation to adjacent layers. This fact
allows us to provide the following probabilistic description
by suitably adapting properties and definitions to meet distin-
guishing characteristics of the Convolutional Neural Networks.

A. Probabilistic Description

Markov Random Fields have been modeled to solve various
computer vision tasks which can be posed either as energy
minimization problems in image analysis, or as visual per-
ception problems where different objects have to be distin-
guished using a set of discriminating features. Let us consider
X = {Xη}∀η∈Ωη a random process defined on a probability
space (Ωξ,F ,P), where Ωξ is a finite set that refers to a set
of neurons, ξ. Let F refer to all neural pathways connecting to
the following layer Ωη 3 η and let P be the set of probabilities
assigned to each decision unit.

The Markov Property [35] says that, given a set of inputs
Rξ, the variable η is conditionally independent to all variables
in the random field (Ωξ) except the receptive field (Rξ). Thus,

P
(
Xη = γη | XΩξ = γΩξ

)
= P

(
Xη = γη | XRξ = γRξ

)
for all ξ ∈ Ωξ, η ∈ Ωη and γ ∈ F .

This means that the response of a neuron η is directly
influenced only by the values of the receptive neurons Rξ,
which implies that the neurons inside a layer Ωη are only
connected to a compact subset of the previous layer.

The response (πξ) of a neuron ξ, as shown in Fig. 1, can be
expressed as the local characteristic of a random field which
is defined as the probability of assigning to each neuron η a
certain probability given the values of all neurons in the recep-
tive field. In other words πξ = P

(
Xη = γη | XRξ = γRξ

)
,

where πξ : F → [0, 1]. Mapping the outputs in a probability
space ensures that the learned filters β produce a stochastic
response to a spatially local input.

A receptive field on Ωξ could be described as a family R =
{Rξ}∀ξ∈Ωξ of subsets of Ωξ, which extracts elementary visual
features by enforcing a local connectivity between neurons of
adjacent layers.

The local property of a Markov Random field can be
interpreted in terms of energy (Eq. 1) and potential (Eq. 2),
leading to the following definition:

πξ =
e
−

∑
Rξ

VR(γ)∑
ϕ∈F

e
−

∑
Rξ

VR(ϕ, γ)
, (1)

where VR is the potential function and ϕ ∈ F .
To get the probability associated to a neuron η being

activated by Rξ, we need to define a potential function VR
in the receptive field. We refer to the auto-binomial model
that was introduced by Besag [36] to describe various types
of spatial processes, examining some stochastic models that
occur in the texture of various physical materials.
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Fig. 3. Forward and Backward Propagation. Simplified diagram of a
neuron ξ from an AutoMarkov Layer. The response πξ is an autobinomial
function with respect to the result of a convolution Cξ between a filter β and
the receptive field Rξ , where E stands for the error of the output given a
target response Tη and α is a bias.

The potential at a certain state of the neurons is given by:

VR =


−ln

(
Γξ
Γη

)
+ γξ if dim(Ωξ) = dim(F)

γξ · βξ otherwise.

(2)

It is worth mentioning that the product γξ · βξ,∀ξ ∈ R will
result in a convolution Cξ,β between the inputs γξ ∈ Fξ and
the filters βξ to which we add a bias αξ. The potential is equal
to zero outside the receptive field.

The set of inputs of a certain layer is Ωξ = Rm×n×d, the
connections space is F : N → R, where m,n, d ∈ N and Γη
represents the number of activations given by βξ in relation
to the total number of inputs Γξ. A larger difference between
the two numbers Γξ and Γη implies an increase to the overall
certainty.

By replacing Eq. 2 in Eq. 1, one gets the probability
assigned to a local system:

πξ =

(
Γξ
Γη

)
σΓη (1− σ)Γξ−Γη , (3)

where σ = σ(Rξ) is a real-valued and differentiable logistic
function of Cξ,β :

σ(Rξ) =
eCξ,β

1 + eCξ,β
, (4)

where Cξ,β = 〈Fξ, β〉 + αξ and 〈Fξ, β〉 is the convolution
of two matrices Fξ representing the connections to the input
layer Ωξ and β which is a learnable filter.

Detailed explanations of the Markov random fields and
Gibbs distribution are found in Pierre Bremaud’s book [20]
and the proof of Eq. 3 is found in literature as the Markov-
Gibbs Equivalence or Hammersley-Clifford Theorem [37].

By using the Markovian probabilistic model, we intend
to transform the response of each convolutional layer into a
probability value that takes into account both the receptive
field and the certainty induced by systematic variations in the
connections between adjacent layers.

B. Forward Propagation

After computing the values of the previous layer nodes, one
can generate the activation value of the propagation’s output
as being the probability πξ assigned to a local system, as seen
in Eq. 3. The local system of a certain neuron in the current
layer is composed by the receptive field of the previous layer,
a learnable filter β that may or may not be shared across the
entire visual field and a bias term αξ, as depicted in Fig. 2.

It should be mentioned that the forward step is shaped
through a binomial distribution, modeling Γξ independent
success-failure experiments, each of them yielding success
with probability σ(Rξ). The sigmoid function σ(Rξ) incor-
porates the convolution between the receptive field in Ωξ and
the kernel field β, which allows to separately forward the
convolution followed by the sigmoid and ending with the
binomial mapping, as shown in Fig. 3.

C. Backward Propagation

In order to propagate the error E = 1
2 (Tη − πξ)2 back

through an AutoMarkov node, the derivative of the error
function with respect to the weights ∂E/∂βξ,η needs to be
computed. Note that Tη represents the target output.

The derivative of the error function is easy to solve by using
the chain rule that may be written, in Leibniz’s notation, in
the following way:

∂E

∂βξ,η
=
∂E

∂πξ
· ∂π

ξ

∂σ
· ∂σ

∂Cξ,β
· ∂Cξ,β
∂βξ,η

. (5)

The derivative of the error with respect to the network
output gives ∂E/∂πξ = −(Tη − πξ), while the derivative of
the total network input with respect to the weights results in
∂Cξ,β/∂βξ,η = Fξ, which are similar consequences to those
of a regular convolutional layer.

From now on we focus our attention on the two middle
terms of the Eq. 5.

The derivative of the sigmoid function σ with respect to Cξ,β
has been often used as typical activation function in many
neural networks but has not been so successful as rectified
linear unit. As the sigmoid always has a positive derivative
∂σ/∂Cξ,β = σ(1−σ) the slope of the error function provides
a descent direction which can be followed.

We can perform a similar calculation to determine how the
probability assigned to a local system πξ changes with respect
to variations of σ(Rξ):

∂πξ

∂σ
= πξ · Γη − σ · Γξ

σ(1− σ)
. (6)

It easily follows that Eq. 5 can be significantly simplified,
as the multiplication between the two middle terms can be
reduced by a common factor:

∂E

∂βξ,η
= Fξ · (σΓξ − Γη) · πξ(Tη − πξ) . (7)

We have shown how to integrate AutoMarkov layers in
a multi-layer convolutional neural network, specifying that
the computation of the error terms must proceed backwards
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through the whole network, beginning with the output layer
and ending with the first hidden layer.

III. IMPLEMENTATION DETAILS

We have selected Microsoft’s Computational Network
Toolkit (CNTK) [38] as baseline for code integration. The
source code and the network description files required for
training reproduction are available on GitHub1, as well as are
the results of several tested models. As the current integration
of the proposed layer architecture is available only on GPU,
a video graphics card which supports CUDA is necessary.

As the development tendency of convolutional neural net-
works is to reach a unique vocabulary, accessibility from
Network Description Language (NDL) is also provided for
the developed AutoMarkov Layers, offering a flexible and
simplified user interface for specifying the network topol-
ogy, components and parameters including logging of various
statistics during processing.

Installation guidelines, a general introduction to compu-
tational networks and the core algorithms are found on the
repository’s wiki page.

IV. PERFORMANCE EVALUATION

This section focuses on the evaluation of the proposed
method by measuring the improvements brought by replacing
the regular Convolutional Layers with AutoMarkov Layers.

To quantify the effect of the proposed architecture on
different models, we perform an ablation study on CIFAR-10
that is an established computer-vision dataset used for object
recognition, representing a great starting point towards future
applications. Our aim is to assess and analyze the performance
gain if the standard convolutions are replaced with the prob-
abilistic model proposed in the present article by keeping the
same network architecture (in terms of hyperparameters) and
the same configuration for the learning method (momentum,
learning rate and batch size) as advised by the authors. Each
model has been trained from scratch, for one hour, then each
training result has been tested on the entire testing dataset and
the classification error has been retained in Tab. I.

TABLE I
COMPARISON ON CIFAR-10. COMPARISON BETWEEN STANDARD

CONVOLUTION LAYERS AND THE PROPOSED AUTOMARKOV LAYERS
WITHIN DIFFERENT NETWORK MODELS.

CIFAR-10 Testing Error - Top 1st

Regular Convolutions AutoMarkov Layers

ConvNet [2] 35.76% 32.49%

AlexNet [2] 27.48% 25.92%

BatchConv [15] 26.49% 25.80%

ResNet-20 [5] 18.67% 17.58%

The results show improvements up to 3.2% in terms of
correct classification on the preliminary epochs of training.

As shown in Tab. I, there are multiple models covered in this
testing scenario, as the proposed architecture can be used in

1git clone - -recursive -b AutoMarkov https://github.com/ctoca/cntk.git

combination with any convolutional neural network. However,
the main focus lies on an extensive performance testing of
Deep Residual Networks in combination with AutoMarkov
Layers. Deep Residual Networks, authored by Kaiming He
et al. [5], have recently achieved state-of-the-art results in
image classification and detection. For treating the underfitting
issues that appear beyond a certain depth even if batch nor-
malization is used, ResNets add skip connections that bypass
a few convolution layers at a time. They are standard feed-
forward convolutional networks where each shortcut generates
a residual block in which the convolution layers predict a
residual that is added to the block’s input.

The functional testing in the present work is performed on
MNIST [39], CIFAR-10 [14] and CIFAR-100 [14] datasets.
In this case the models have been trained from scratch, for
ten hours, then each training output has been evaluated on the
corresponding testing dataset and the classification error has
been retained in Tab. II, Tab. III and Tab. IV.

TABLE II
CLASSIFICATION ON MNIST. COMPARISON BETWEEN STANDARD

CONVOLUTION LAYERS AND THE PROPOSED AUTOMARKOV LAYERS
WITHIN RESNET MODELS ON 28-BY-28 GRAY LEVEL IMAGES DIVIDED

INTO 10 CLASSES.

MNIST Testing Error - Top 1st

Regular Convolutions AutoMarkov Layers

ResNet-56 [5] 0.59% 0.43%

TABLE III
CLASSIFICATION ON CIFAR-10. COMPARISON BETWEEN STANDARD
CONVOLUTION LAYERS AND THE PROPOSED AUTOMARKOV LAYERS

WITHIN RESNET MODELS ON 32-BY-32 COLOR IMAGES DIVIDED INTO
10 CLASSES.

CIFAR-10 Testing Error - Top 1st

Regular Convolutions AutoMarkov Layers

ResNet-20 [5] 8.26% 7.83%

ResNet-56 [5] 6.43% 5.55%

TABLE IV
CLASSIFICATION ON CIFAR-100. COMPARISON BETWEEN STANDARD

CONVOLUTION LAYERS AND THE PROPOSED AUTOMARKOV LAYERS
WITHIN RESNET MODELS ON 32-BY-32 COLOR IMAGES DIVIDED INTO

100 CLASSES

CIFAR-100 Testing Error - Top 1st

Regular Convolutions AutoMarkov Layers

ResNet-56 [5] 28.29% 27.61%

By testing the proposed neuronal architecture within a
configuration of ResNet with 56 layers on the MNIST database
of handwritten digits has been observed an improvement of
0.16% leading to a correct classification rate of 99.57%.

In the case of the same model, the proposed convolutions led
to an improvement from 93.57% to 94.45%, corresponding to
3rd position on CIFAR-10, while in the case of a shallow model
composed of 20 convolutional layers, it has been measured an
improvement of 0.45%.

If the number of classes is much bigger, as in the case
of CIFAR-100, the improvements brought by the proposed
convolutional layers have been increased up to 0.68%.
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Fig. 4. Training and Testing Error. Both AutoMarkov and ResNet have 20 layers. The dotted lines overlapping the test results represent a moving average
with a step of twenty.

Fig. 5. Training Time. Comparison between ResNet-20 and AutoMarkov Layers shows that no critical overhead is added to the epochs’ training time during
the computation of forward and backward steps.

The results shown in this section demonstrate the effective-
ness of the proposed layers regardless of network type or size.

Analyzing the behavior of the classification errors over
multiple epochs (observed in Fig. 4) it can be noticed that
AutoMarkov has a higher error rate than ResNet during the
training process, but presents an improvement of nearly 0.5%,
reaching 92.17% correct classification during the testing stage.

These results prove that the proposed AutoMarkov Layers
improve the network generalization making it less prone to
overfitting.

Regarding the training time, Fig. 5 shows that the compu-
tation of forward and backward steps of AutoMarkov Layers
does not add a critically overhead to the epochs training time.

On average, training an epoch of a neural network with
added AutoMarkov Layers took 223s compared to the original
model (ResNet-20) that took 220s on CIFAR-10. This means
that we process about 227 images/s on a NVIDIA GeForce
GTX 980 Ti graphics card, with 2 images/s less than the
baseline version.

Deep neural networks usually have a large number of
parameters detailing the complicated relationships between

their inputs and outputs. With limited training data, these
relationships will be the result of sampling noise leading to
overfitting. If the network is just large enough to provide an
adequate fit, it is unlikely for the model to overfit the training
data, but the computation of a network’s depth for specific
scenarios represents an extremely difficult problem.

All test results and network description files required for
training reproduction for each AutoMarkov architecture are
available on GitHub.

V. CONCLUSIONS

This article presents a novel type of convolutional layer
based on Autobinomial Markov-Gibbs Random Fields, called
the AutoMarkov Layer. The proposal exploits the standardized
architectural deep network configurations developed in recent
years and adds prior knowledge to the neurons by integrating
a probabilistic model which focuses on their interaction and
probabilities associated to particular pathways. Improvements
of up to 1% have been observed for correct classification
by replacing the Standard Convolutional Layers with the
AutoMarkov Layers.
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