
Axioms to Characterize Efficient Incremental Clustering

Sambaran Bandyopadhyay
IBM Research

sambband@in.ibm.com

M Narasimha Murty
Indian Institute of Science

mnm@csa.iisc.ernet.in

Abstract

Although clustering is one of the central tasks in ma-
chine learning for the last few decades, analysis of clus-
tering irrespective of any particular algorithm was not
undertaken for a long time. In the recent literature, ax-
iomatic frameworks have been proposed for clustering
and its quality. But none of the proposed frameworks
has concentrated on the computational aspects of clus-
tering, which is essential in current big data analyt-
ics. In this paper, we propose an axiomatic framework
for clustering which considers both the quality and the
computational complexity of clustering algorithms. The
axioms proposed by us necessarily associate the prob-
lem of clustering with the important concept of incre-
mental learning and divide and conquer learning. We
also propose an order independent incremental cluster-
ing algorithm which satisfies all of these axioms in some
constrained manner.

1 Introduction

The problem of clustering [4, 3] has been one of the
central topics of machine learning. But there was not
much literature which explains clustering irrespective
of any particular algorithm. Most of the well-known
definitions of clustering are either not mathematically
rigorous or they fail to distinguish data clustering from
data partitioning. Recently, some approaches have been
made to propose a theoretical framework for clustering
[6, 8]They provide axioms and claim that these axioms
should naturally be satisfied by any good clustering al-
gorithm. But all of these frameworks only consider the
quality of the resulting clustering and no one has ax-
iomatized the computational aspects of it.

In one step ahead, it is also very hard to define the
term “efficiency” in the context of clustering. Efficiency
may depend on the application or may be on the type
of clustering algorithm. If we consider clustering as
a computational problem, then efficiency depends on

the quality and the computational aspects of cluster-
ing. In this paper we try to build an axiomatic frame-
work for clustering which considers both the quality and
the computational aspects through different axioms and
hence it would try to characterize efficient clustering.

In the current era of big data analysis, the time and
space complexities associated with any clustering algo-
rithm are the key points to evaluate it. Ideally if we
can design an algorithm which needs to scan each data
point exactly once and requires a small memory to work
with, we can easily apply it to any big data related prob-
lem. So in our framework of clustering, we capture this
issue properly and address the concept of incremental
learning [7]. To the best of our knowledge, a theoreti-
cal analysis of incremental clustering has not been ad-
dressed so far. Not only that, we bring another useful
learning strategy known as divide and conquer to our
clustering framework. It permits parallelism. Addition-
ally it would be better if the algorithm satisfies some
more desirable properties of clustering. All of these
concepts will be formally explained in the subsequent
sections.

Thus in this paper, we construct an axiomatic frame-
work for incremental clustering, which contains both
the quality and computational aspects of clustering. We
bring the concepts of divide and conquer learning and
deletion of data instances from clustering in our ax-
iomatic framework and fit them in the incremental clus-
tering paradigm. We propose an order independent in-
cremental clustering algorithm to show the existence of
such an algorithm which can satisfy all the axioms of
our framework in some constrained manner.

2 Background and Related Work

As discussed earlier, there are some axiomatic
frameworks for clustering present in the literature. Ac-
cording to Jon Kleinberg [6], any clustering algorithm
should satisfy three axioms namely Scale Invariance,
Richness and Consistency. To make the paper self-
contained, we give a brief description of these axioms.

2016 23rd International Conference on Pattern Recognition (ICPR)
Cancún Center, Cancún, México, December 4-8, 2016

978-1-5090-4846-5/16/$31.00 ©2016 IEEE 445

Scale Invariance ensures that scaling the distance
function by any arbitrary positive constant does not
change the resulting clustering. Richness ensures that
a clustering algorithm is able to produce all possible
partitions of the data set. The last axiom Consistency
ensures that reducing (or keeping them same) the intra
cluster distances and increasing (or keeping them same)
the inter cluster distances among the data points of a
clustering would not change the resulting clustering.

But in the same paper, he has shown that there is no
algorithm which can satisfy all these properties simul-
taneously. So instead of Richness, we use the property
k-richness [8], which says that a clustering algorithm
should be able to produce all possible k-partitions of
the data set. It can be easily noticed that, all of these
properties are dealing with the end product of clustering
and none of them has mentioned anything about the way
clustering algorithms should produce them and the as-
sociated computational complexity. We have addressed
this research gap in this paper.

To make the clustering algorithms computationally
efficient, we use the concepts of incremental learning
and divide and conquer paradigm in clustering. But it is
also known that incremental learning suffers from order
effects [7]. We already know some incremental clus-
tering algorithms (for example Leader, Birch [4]) and
incremental frequent patterns mining algorithms based
on PC-Tree [1]. But to the best of our knowledge, there
is no efficient order independent incremental clustering
algorithm present in the literature.

3 Efficient Clustering

As discussed earlier, efficiency depends on the qual-
ity and computational aspects of clustering. To discuss
the computational aspects of clustering, we bring fol-
lowing two important concepts.

3.1 Incremental Clustering

According to [7], a Learner L is Incremental if (i)
it processes one training example at a time, (ii) does
not reprocess any previously seen training example and
(iii) retains only one knowledge structure in the mem-
ory. Clearly incremental algorithms scan the input data
set at most once. It is also easy to use incremental algo-
rithms in online setting. A clustering algorithm is called
an Incremental Clustering Algorithm if it satisfies the
three conditions of an incremental Learner.

A Distance Function is defined as d : χ×χ −→ R,
where χ is the universal set of all instances (or data
points) and R is the set of Real numbers, such that, 1.
d(x, y) ≥ 0, the equality holds if and only if x = y

and 2. d(x, y) = d(y, x) Let X = χn, where n is the
number of instances. The Clustering Function can be
defined as, fd : X −→ ∆, where ∆ is the set of all
possible k partitions of a set of n instances. Here fd ba-
sically takes an ordered set of n instances and clusters
them to get a k-partition. We have put the distance func-
tion d in the subscript of f for notational convenience.

Generally clustering algorithms maintain a data
structure (or knowledge structure) in the memory which
is updated in each iteration of the algorithm. We call
this data structure as Abstraction in this paper. Ab-
straction can typically be the set of intermediate clusters
formed during the iterations of the algorithm. Here we
use A to denote the set of all abstractions.

Let us divide the whole process of clustering into two
sub-process, hd : A× χ −→ A and gd : A −→ ∆, and
viw it as follows. First there is some initial abstraction
(which can be empty) present in the memory. The func-
tion hd iteratively modifies the abstraction after scan-
ning a data instance. We get the final abstraction in the
memory after this scanning procedure ends. The func-
tion gd then maps this abstraction to the corresponding
clustering (or produce the corresponding cluster repre-
sentatives). So in this paper we can say that a clustering
function is incremental if it can produce the final ab-
straction and the cluster representatives incrementally
[7]. But it is also important for an incremental algo-
rithm to be order independent. An incremental cluster-
ing algorithm is Order Independent if irrespective of
any ordering of the data instances, the algorithm can
produce the same clustering.

3.2 Divide and Conquer Clustering

Here we divide the whole set of data instances into
C partitions. We apply the function hd on each of these
parts to getC different abstractions. Then we makeC/2
pairs of abstractions from the set of C abstractions (as-
suming C is divisible by 2) and merge (as defined in
Section 4) the two abstractions in a pair to get a new ab-
straction. In this way we get a set of C/2 abstractions.
We continue the same procedure until we get the final
abstraction. Then we apply the function gd on the final
abstraction to get the resulting clustering. If the merg-
ing of any two abstractions is independent from other
merging operations, we can exploit a huge amount of
parallelism in this process.

4 An Axiomatic Framework

In this section, we describe some desirable properties
of an efficient clustering algorithm. Although, axiom in
general may imply an intrinsic property of an object,

446

but in this work, we have used ‘axiom’ and ‘property’
interchangeably. Mainly Properties 1 to 4 deal with the
computational issues and Properties 5 to 7 will capture
the qualitative issues of clustering.

As described earlier, we maintain an abstraction in
the main memory and modify this abstraction as the
instances are coming. But the modification procedure
should not involve any other previously seen instance.
Otherwise the time to scan other instances would sig-
nificantly increase the total time to insert the current in-
stance to the present abstraction. So if the total number
of patterns in the input is n, we can order the patterns
as x1, x2, x3 · · · , xn and the memory abstractions as
A0, A1, A2 · · · , An. It is to be noted that patterns in the
input need not be unique.

Axiom 1 Insertion Property: To generate Ak+1, it is
sufficient to know only Ak and xk+1. hd(Ak, xk+1) =
Ak+1,∀k = 0, 1, 2, · · · ∀xk+1 ∈ χ, ∀Ak, Ak+1 ∈ A

One major problem with most incremental learning
algorithms is order dependency. For example, in center
based clustering like incremental k-means [3], updating
centers incrementally introduces dependency on the or-
der in which the input instances are processed. If our
algorithm is order dependent, its performance may vary
significantly on different ordering of the instances and
also it would be hard to analyze its performance irre-
spective of any order. We present the basic axiom for
order independence in terms of two instances and will
generalize it in Claim 2.

Axiom 2 Swapping Property: ∀x, y ∈ χ and ∀A ∈ A,
hd(hd(A, x), y) = hd(hd(A, y), x)

We want to incorporate the operation of deletion of
a previously inserted instance from the present mem-
ory abstraction. Deletion itself can be a very common
requirement in clustering. It is specially relevant to an
incremental set up where instances are coming one by
one. So we want to have the following definition which
characterize deletion operation formally.

Definition 1 Deletion: Deletion is a function (or oper-
ation) which takes one abstraction and a valid instance
and outputs an abstraction such that the effect of that
instance is removed from the first abstraction. We will
call it as the deletion of that instance from the abstrac-
tion. An instance will be valid if it has been inserted
into the abstraction earlier but not deleted yet. Let us
denote the deletion of some valid instance xj from the
current abstraction Ak as: h′d(Ak, xj)

=h′d(hkd(A0, x1;x2; · · · ;xj−1;xj ;xj+1; · · ·xk), xj)

=hk−1d (A0, x1;x2; · · · ;xj−1;xj+1; · · ·xk)

where A0 is the initial abstraction, Ak is the
abstraction formed after inserting the k instances
x1;x2; · · · ;xj−1;xj ;xj+1; · · ·xk in order and hkd
means applying the function hd k-times consecutively.

One trivial way to delete any instance from the abstrac-
tion (or clustering itself) is to exclude that instance from
the input set of instances and then run the whole clus-
tering algorithm on the rest. But this process would be
extremely inefficient because it scans all the instances
every time we want to delete an instance. So we want
the deletion operation in our framework to be efficient
in the sense that the process only requires the present
memory abstraction and the instance to be deleted. It
should not need any previously seen instance.

Axiom 3 Invertible Property: For a given x ∈ χ, we
can uniquely determineA1 fromA2 where hd(A1, x) =
A2, ∀A1, A2 ∈ A, without scanning any other instance.

This is called Invertible Property as we can efficiently
find the inverse image of A2 under some fixed instance
x. This property would ensure efficient deletion as
shown in Lemma 3.

Now we will try to axiomatically capture the notion
of Divide and Conquer strategy discussed in Section
3.2.

Definition 2 Merge: Merge is a function (denoted by
◦) which takes two abstractions A1 and A2, and pro-
duce another abstraction, A1 ◦ A2 = A3, with the fol-
lowing condition.
Suppose x ∈ X and x = x1x2 · · ·xkxk+1 · · ·xn.
Let, x1 = x1x2 · · ·xk and x2 = xk+1 · · ·xn. Say,
A0 is the initial abstraction. hkd(A0,x

1) = A1 and
hn−kd (A0,x

2) = A2, then hnd (A0,x) = A3

So merge operation says that we can divide the data set
into two blocks and generate two abstractions by run-
ning the clustering functions separately on them. Then
we can merge these two abstractions such a way that the
resulting final abstraction is equivalent to the one gen-
erated by running the algorithm on the whole data set.
But again the merging operation can be done trivially by
running the clustering algorithm on the whole data set.
But we want to make the merging operation efficient by
the following axiom.

Axiom 4 Conquer Property: To merge any two ab-
stractions, it is sufficient to use only those two abstrac-
tions. In other words, we do not need to scan any other
instance to merge those two abstractions.

Now we want to present three axioms which can be
used to judge the quality of the resulting clustering.
They are well-explained in the literature and are also

447

Algorithm Insertion Swapping Invertible Conquer Scale Invariance k-rich Consistency
Leader Yes No No No No Yes No

k-means No Yes 1 No No Yes Yes No
Incremental k-means Yes No No No Yes Yes No

Single Linkage No Yes No No Yes Yes Yes
Tree Clustering Algorithm Yes Yes Yes Yes No 2 Yes No 2

Table 1. Different Clustering Algorithms Satisfying Some of the Axioms in our Framework

briefly discussed in Section 2. Here we will rephrase
them accordingly to fit into our framework.

Axiom 5 Scale Invariance: hnd (A, xn) = hnd′(A, xn),
whenever d′ = α.d, where α is any positive real number
and xn as the sequence of n instances.

Axiom 6 Consistency: hnd (A, xn) = hnd′(A, xn),
where d’ is a Γ− transformation of d [6].

Axiom 7 k-richness: {gd(A) : A ∈ A} = ∆ = Set
containing all k-partitions of the n instances.

Table 1 shows some well-known clustering algo-
rithms [4] which satisfy some of the axioms in our
framework. It is possible to characterize most of the
clustering algorithms with the help of these axioms.
Following lemmas are given to formally relate the ax-
ioms with the related concepts 3.

Lemma 1 hd is incremental if and only if Axiom 1 is
satisfied.

Lemma 2 Suppose hd is incremental. Then it would
be Order Independent if and only if Axiom 2 is satis-
fied.

The “if” part above lemma can be proved by using prin-
ciple of mathematical induction. The “only if” part is
direct as Property 2 is the same as order independence
when the number of instances is 2.

Lemma 3 If hd is incremental and Order Indepen-
dent then deletion can also be performed efficiently
(incrementally) if and only if Axiom 3 is satisfied.

We call a Divide and Conquer Clustering (as dis-
cussed in Section 3.2) Efficient if the merging operation
can be done just based on the two given abstractions and
without scanning any other instance. Following lemma
connects it with our framework.

1k-means satisfies Swapping property under the assump-
tion that the initialization of centroids are fixed for a data set

2As discussed in Section 5, if we restrict the distance func-
tions only to be SPWDF, Tree Clustering will also satisfy
Scale Invariance and Consistency properties

3Due to page limitation, all the proofs are given in the
supplementary material

Lemma 4 A clustering algorithm is Efficient Divide
and Conquer algorithm if and only if it satisfies Axiom
4.

Hence from the above lemmas along with the Ax-
ioms 5, 6, 7, we can reach to the following theorem.

Theorem 1 Axioms 1 to 7 are necessary and suffi-
cient conditions for a clustering algorithm to be or-
der independent incremental and Efficient Divide and
Conquer algorithm having efficient deletion opera-
tion, which also satisfies Scale Invariance, Consis-
tency and k-richness.

5 Existential Result: Tree Clustering

Now we would show that it is possible to design
some algorithm which satisfies all the axioms proposed
in our framework, may be in some constrained manner.
For this purpose, we are going to construct a Clustering
Algorithm based on FP Tree [5]. We call this algorithm
Tree Clustering Algorithm.

5.1 Preliminary Setup for the algorithm

We represent any data instance x ∈ χ, as an or-
dered set (string) of some items, such as, x = acdef .
For each string, we mark the positions as 0, 1, 2 · · · ,
where item at 0th position corresponds to the first fea-
ture of the data instance and so on. Let these items
a, b, c, d, e, f, · · · ∈ I , where I is an ordered finite set
called Item Set. So for any two given items, we can al-
ways find out which one comes first in I . We can always
assume that blank symbol (or blank item) ε belongs to
the 0th position in I . Let us also assume that ε refers
to the absence of a feature value and it can occur (may
be in multiple numbers) only after all other non-blank
items of the instance. We consider maximum possible
length of any instance is a constant.

Now when we want to compare two instances x1 and
x2, there may be a match at position i if x1(i) = x2(i),
else there is a mismatch which can be of two types.

Definition 3 If x1(i) 6= ε and x2(i) 6= ε and also
x1(i) 6= x2(i), then it is called a strong mismatch at

448

position i. If either one of x1(i) or x2(i) is equal to ε
and the other one is not, then it is called a weak mis-
match at position i.

Now we introduce a particular class of distance func-
tions which is needed to prove the existential result.

Definition 4 A distance function is called a Strongly
Prefix Weighted Distance Function (SPWDF) if
all of the following 3 conditions are satisfied,
∀x, y, x1, x2, y1, y2 ∈ χ. Here len(.) returns the
number of non-blank items of an instance.
1. Additive Distance: d(x, y) = d(x(0, i), y(0, i)) +
d(x(i + 1, l), y(i + 1, l)); where l =
max(len(x), len(y)), The sub instance x(i, j) de-
notes the instance formed by taking the items from
position i to j of the instance x.
2. Item Set Consistent: d(x(i, i), y(i, i)) increases
if the distance between the ith items in x and y is
increased in the item set I and vice versa.
3. Strong Prefix Weightage: If d(x1(0, i), x2(0, i)) =
d(y1(0, i), y2(0, i)) and
I. If match at (i+1)th position between x1 and x2 and
strong mismatch at (i+1)th position between y1 and y2,
then d(x1, x2) < d(y1, y2).
II. If weak mismatch at (i+1)th position between x1 and
x2 and strong mismatch between (i+1)th or some higher
position of y1 and y2, then d(x1, x2) < d(y1, y2).
III. If match at (i+1)th position between x1 and x2,
weak mismatch between (i+1)th position of y1 and y2
and there is no Strong mismatch onwards in x1 and x2,
then d(x1, x2) < d(y1, y2).

Clearly SPWDF gives more importance to the prefix
part of an ordered instance and more weight to a strong
mismatch than a weak mismatch. An important prop-
erty of SPWDF is that, if a distance function d belongs
the class of SPWDF, then it would be possible to rank
n data instances based on their distance d from a given
data instance without knowing the exact definition of d
(just by checking strong and weak mismatches).

Example 1 Let us consider four instances x1 =
abcde · · · , x2 = ab′cde, x3 = abc′d′e′ · · · and x4 = a.
Here b′ means some non-blank symbol other than b.
Similar is for c′, d′ and e′. If the distance function sat-
isfies SPWDF, then d(x1, x2) > d(x1, x3) > d(x1, x4).

5.2 Description of Tree Clustering Algorithm

The first part of our algorithm is to build a Tree
Structure which we call Incremental Frequent Pat-
tern Tree (IFPT). The generation process of IFPT is
similar to that of FP Tree. But we do not need to sort

Figure 1. Tree abstractions

the items of an instance (as defined in the previous sub-
sections) and we do not need to have pointers between
same items at different paths of the Tree. This help us
to generate the Tree incrementally using only a single
scan over the data set. Similar to FP Tree, each node
in this tree contains two fields. First one is for carry-
ing the item name and the second field is to count the
occurrence of that item in that path.

In this algorithm, the input is an ordered set of n in-
stances, each of which is as defined earlier. At first,
there is just a single starting node (root) T as the initial
abstraction. When the first instance comes, it creates
a node for each non-blank item of it in the order and
places as a branch in the tree. The node containing the
first item becomes a child of the root node of the tree.
When the next instance comes, it tries to find the branch
with maximal prefix match in the existing abstraction.
Say it finds a branch where there is the maximal match
up to item i. Then it will increase the counter by 1 for
the first i nodes of that branch and then create a new
child at the ith node and put the remaining item nodes
consequently with counter value 1. In this way we will
build an IFP Tree from the set of instances. We call this
tree as tree abstraction. Then we will try to find k cluster
representatives, k ≤ n as there in Algorithm 1.

To get the final clustering, we assign each instance
to its nearest representative measured by SPWDF. It is
equivalent as comparing the prefix part of the instance
to the cluster representatives and assigning it to where
the prefix matching is maximum in length. We give an
illustrative example here.

Example 2 Consider the following instances: x1 =
abcef ; x2 = abc; x3 = acd; x4 = acdg; x5 = acdh
First we build the IFPT and get the abstraction shown
in the left part of Figure 1. Here m = 3 for this IFPT.
Now suppose we set k = 3. So we consider each path
as a representative of a cluster. So we assign x1 and x2
in a cluster corresponding to the representative abcef ,
x3 and x4 in the cluster corresponding to the represen-
tative acdg and x5 in the cluster corresponding to the
representative acdh. If the value of k is 2. So we need 2

449

representatives. We modify the tree according to the al-
gorithm to get the tree as shown in the right one of Fig-
ure 1. The assignment of instances to the clusters will
again be based on maximal prefix matching or equiva-
lently by nearest distance measured by SPWDF.

Following theorem shows that there exist some clus-
tering algorithm which satisfies all the axioms (satisfia-
bility of the Axioms 3 and 4 has been addressed in Sec-
tion 5.3) of our framework in some constrained manner.

Algorithm 1 Tree Clustering Algorithm
1: Input: Set of data instances, number of clusters k
2: Output: k cluster representatives
3: Build the IFP Tree from the set of instances.
4: Say M = Set of paths from root to leaf nodes, |M | = m
5: while m > k do
6: From the set M , take the two paths of minimum distance

(based on SPWDF) from each other and delete the path from
M which lexicographically comes later;

7: m← m− 1
8: end while
9: while m < k do

10: Choose the node N such that N belongs to at least one path
from the set M , and the count value of N is greater than the
sum of the count values of its children

11: If there are more than one of such nodes, choose the node N
with the least level (level of root is 0) among them

12: Insert the path from root T to N into M , and m← m+ 1
13: end while
14: Return all the selected cluster representatives

Theorem 2 If we allow feasible distance functions
only from SPWDF, then Algorithm 1 is an order in-
dependent incremental clustering algorithm satisfying
Scale Invariance, k-richness and consistency.

To the best of our knowledge, this is the first order in-
dependent incremental clustering algorithm which also
satisfies other conditions of efficiency. Even for a gen-
eral class of distance, Tree clustering would satisfy all
the axioms except Scale Invariance and Consistency.

5.3 Efficient Deletion and Divide-Conquer

Efficient Deletion: We have presented the Algo-
rithm 2 to delete any valid instance from an abstraction.
Please note that while deleting any valid instance from
the abstraction, we never scan any other instance. So
deletion in this case satisfies Axiom 3 in section 4.

Efficient Divide and Conquer: The basic concept
is to divide the whole data set into several parts and
use Tree Clustering algorithm for each part to gener-
ate separate tree abstractions independently. Then we
can merge different tree abstractions using Algorithm 3
which does not scan any other instance while merging
two abstractions. So it satisfies Axiom 4 in Section 4.

Algorithm 2 Deletion Algorithm
1: Input: Tree abstraction T and an instance x to delete
2: Output: Modified abstraction T after deleting x (if it is valid)
3: Starting from the children of the root node T, find a path which

matches with the given instance x
4: If we get the match for the whole instance, reduce the count of

each node of the matching path by 1.
5: If we do not get a match, output that the instance x is not valid.

Algorithm 3 Merge Abstractions
1: Input: Two tree abstractions indexed by root pointers T1 and T2

2: Output: Merged abstraction T1
3: for Each child node of T2 do
4: If the item i of the child node is NOT in a child of T1, create a

new child at T1 which will point to the whole subtree rooted
at i of T2.

5: Else increase the count of i at T1 by the count of i at T2
and call recursively Merge Abstractions function with input
pointers at the node i of T1 and the node i of T2.

6: end for

6 Conclusions and Future Work

In this paper, we have proposed an efficient cluster-
ing framework which is very important in characteriz-
ing different clustering algorithms. We also show the
existence and propose a clustering algorithm which sat-
isfies all the axioms of our framework in a constrained
manner. A through experimental evaluation of the algo-
rithm can be done in some future work.

References

[1] V. S. Ananthanarayana, M. N. Murty, and D. K. Sub-
ramanian. An incremental data mining algorithm for
compact realization of prototypes. Pattern Recognition,
34(11):2249–2251, 2001.

[2] S. Bandyopadhyay, R. Narayanam, P. Kumar, S. Ram-
churn, V. Arya, and I. Petra. An axiomatic framework for
ex-ante dynamic pricing mechanisms in smart grid, 2016.

[3] W. Barbakh and C. Fyfe. Online clustering algorithms.
International Journal of Neural Systems, 18(03):185–
194, 2008.

[4] R. Duda, P. Hart, and D. Stork. Pattern classification.
2nd. Edition. New York, 2001.

[5] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent pat-
terns without candidate generation: A frequent-pattern
tree approach. Data mining and knowledge discovery,
8(1):53–87, 2004.

[6] J. M. Kleinberg. An impossibility theorem for clustering.
In NIPS, pages 446–453, 2002.

[7] P. Langley. Order effects in incremental learning. Learn-
ing in humans and machines: Towards an interdisci-
plinary learning science. Pergamon, 136:137, 1995.

[8] R. Zadeh and S. Ben-David. A uniqueness theorem for
clustering. In UAI, pages 639–646, 2009.

450

