
 
Fig. 1. Comparison between our method and previous methods. Top: 
Using joints produces constraints only on the relative distance. Bottom: 
Combining limbs and joints generates better candidate space.
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Abstract—Modeling the relationship among human joints is 
one of the most important components in human pose estimation. 
Previous methods usually define this relationship as geometric 
constraints on the relative location of two neighboring joints. In 
this definition, the local image appearance of the region 
connecting two neighboring joints is ignored. In fact, this image 
appearance, called human limb, plays an important role in 
human joint localization in human visual system. To make full 
use of this local image appearance, we propose to solve a new 
task: human limb detection. We combine it with human joint 
localization in one deep convolutional neural network. After 
getting coarse results, we employ a graphical model to remove 
false positive detections. Besides, shallow and deep features are 
combined in this model. We evaluate our method on the FLIC 
and LSP datasets. The experiments results show the effectiveness 
of our method. 

Keywords—Human Pose estimation; Limbs Detection;ConvNet, 
Graphical model 

I.  INTRODUCTION  
Human pose estimation is the task of estimating the spatial 

location of human parts from a 2D monocular image. This task 
is one of the fundamental tasks in computer vision and has 
wide applications in various computer vision systems, such as 
action recognition, human computer interface, and activity 
detection. Great improvements have been obtained in recent 
years, especially after the rise of Convolutional Neural 
Networks (ConvNets). However, it is still a challenging 
problem due to large variability of human pose, camera view 
and occlusion among different human parts. 

Most of previous methods in pose estimation are based on 
deformable part model [1], [2], [5]-[13]. In deformable part 
models, human body is represented by a collection of 
physiologically inspired parts, which are human limbs or joints. 
A graphical model over parts is defined with nodes 
representing parts and edges encoding constraints between 
pairwise human parts.  A fter this seminal work [1], a wide 
variety of features and relation models have been proposed [2], 
[5]-[13]. However, limited by the hand-crafted features and 
tree-based graphical models, the pose estimation accuracy was 
far from satisfactory. Thanks to the powerful learning capacity 
of ConvNets [15] and much larger human pose estimation 
datasets [11]-[13], ConvNets have been used to learn better 
representation and the joint relationship [16]-[21]. These 
ConvNet based models have achieved much better 
performance over traditional methods.  

In most of the current methods, the relations between two 
human parts is defined as constraints on their relative location 

and orientation, such as the Gaussian model in [5]-[13] and the 
conditional probability of joints’ location used in [20], [21]. 
For joints with high flexibility, like wrist, this constraint is too 
weak to remove false positive detections near to the reference 
joint. As shown in the top of Fig. 1, there are two wrist 
candidates in the similar range of the elbow joint. Only using 
relative distance constraints cannot differentiate these two 
candidates. However, they can be distinguished by combining 
the detection of elbow and lower arm as shown in the bottom 
of Fig. 1. The limb detection result augments the location 
constraints between joints, and it improves the possibility of 
finding the true joint location. Using human limbs, which 
model the local image appearance between two neighbor joints, 
can reduce candidate space of joints and remove the false 
positive detection that cannot be filtered by the relative location 
constraints. Previously, human limbs are used as parts [1]-[6] 
or contextual information for joints detection [7]-[13]. In these 
works, human limbs are detected by segmentation cues [5], [6] 
or simple hand-crafted feature [8], [9], [12]. However, these 
hand-crafted models cannot extract invariant information of 
human limbs due to their variety caused by the camera view, 
occlusion, clothes and poses of humans. 

In this paper, we propose a deep learning based architecture 
for human pose estimation by integrating limbs detection and 
joints localization. First, we design limbs detector to estimate 
the region of limbs from images. The limbs detector generates 
one per-pixel likelihood map for each limb. Because of the 
close relevance between joints and limbs, we integrate their 
detection in a single ConvNet. Then we filter the coarse 
detection by a graphical model. This graphical model defines 
appearance and distance constraints among joints and limbs 
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and is implemented as another ConvNet. Finally, we connect 
these two ConvNets into one ConvNet, where information 
from both deep layer and shallow layer are combined to 
improve localization accuracy. Moreover, we use some 
deconvolution layer to increase the resolution of final predicted 
maps. These layers eliminate the influence of pooling layers 
and improve the performance. 

In the experiments, we evaluate the proposed method on the 
two widely used datasets: Frame Labeled in Cinema (FLIC) 
dataset [11] and Leeds Sports Pose (LSP) dataset [12], [13]. 
The experiments results show the effectiveness of our method. 

II. RELATED WORK 
Due to the wide applications, human pose estimation is a 

very popular research area. There are many excellent methods, 
such as mixture of parts model [8], Pictorial Structures (PS) 
based model [2], [6], [11]. For a detailed review, please refer to 
[14]. In this paper, we just review the most related works on 
modeling human limb and CNN based human pose estimation.  

A. Limb Modeling 
Detecting and modeling limb region is critical component 

for appearance based relation model. In many early works, 
human limbs are used as human parts inspired by human visual 
system. In the PS framework [1], [2], human limbs are 
modeled as a rigid oriented rectangle, whose position and angle 
determine human pose. Since the limbs are modeled as bars [3], 
[4], limbs are detected by finding parallel edges. Compared 
with edge-based models, image segmentation methods are used 
to determine the limbs’ location in [5], [6]. In these models, it 
is needed to estimate several parameters for a limb, such as 
orientation, location, length and width. This is impractical in 
realistic images due to foreshorten and variation of view. 

Sapp et al. [7] defined a human part as two joints instead of 
one limb, which are at the end of the limb. Compared with 
fixed length and limited orientation bin in PS model, Sapp’s 
model can denote nearly any angle between parts and finely 
discretized limb length. Because the two joints model is more 
suitable for parts detection, it has been a principal model for 
human pose estimation [8]-[11]. Yang et al. [8] add another 
joint at the middle point of the limb to capture the appearance 
of the middle area in a limb. This addition of joints makes the 
model cover more contents of human body, so [8] outperforms 
previous methods. Compared with the equal model for joints 
and limbs, Wang et al. [9] use combined parts to model the 
middle area of limbs, which are generated from an appearance-
based latent SVM. 

In realistic images, limb region varies greatly both in its 
shape and appearance. As a result, it is tough to completely 
capture limb’s shape and appearance by one joint even with 
mixture models. However, the shape information is critical for 
parts detection in human vision system. In this paper, we model 
entire limb region as a wide line connecting these two joints. 
This representation could capture richer label and shape 
information, especially when part of the line are occluded. 

B. ConvNet based pose estimation 
In recent years, ConvNets have achieved huge success in 

many computer vision tasks [15]. Due to this success, many 

ConvNet based models have been developed for human pose 
estimation and achieved state of the art performance [16]-[21]. 

Chen et al. [16] use a ConvNet to extract appearance and 
type score, and then combine these in the DPM framework. 
The large improvement of experiment performance proves that 
features extracted by ConvNets are more effective than hand-
crafted feature. Toshev et al. [17] cascade two ConvNets to 
directly regress human joints coordinates from images. 
Although the performance is improved a lot compared with 
traditional methods, their method performs poorly in high 
precision metric. This result shows the difficulty of directly 
learning the mapping. Fan et al. [18] integrate local part 
appearance and holistic view of each part for accurate human 
pose estimation. Their method shows significant improvement 
in low precision. 

In contrast, [19]-[21] design a different framework in which 
ConvNets are used to generate a discrete heat-map for each 
human joint. Jain et al. [19] use a single ConvNet to map local 
window to a binary output for each joint. After obtaining the 
raw detection, a weak high-level spatial model is used to 
enforce the global consistency. Because of better adaption to 
pose estimation, their method achieves better performance in 
high precision metric. Following [19], [20] transforms the 
MRF-based graphical model as a ConvNet. To eliminate the 
effect of pooling layers, [21] employs another ConvNet to 
estimate the location offset given the previous predicted region. 
In essence, these methods are per-pixel classification problems 
with large contextual information. This frame reduces learning 
difficulty and obtains success.  

Different from the above works, we aim at modeling the 
human joints and human limbs together and promote human 
pose estimation by considering limb region. Our main 
contributions include: 

We propose to extract limb region by ConvNet explicitly 
and complete the detection of joints and limbs in one ConvNet. 

 We design a graphical model to capture the relations 
among joints and neighbor joints. 

Our method outperforms the baseline [20] and achieves 
comparable performance to the state of the art. 

III. MODEL 
First, we illustrate our notations. In this paper, a human 

body is represented as a set of human joints  𝑼  and human 
limbs 𝑬. And 𝑁 = |𝑼|,𝑀 = |𝑬| is the number of human joints 
and human limbs respectively. We represent a pixel coordinate 
as a two dimension vector  𝐱 ∈ {1, …𝐻} × {1, …𝑊} ⊂ 𝑅2 , 
where 𝐻 and 𝑊 are the height and width of input images. We 
use  𝑝𝑢(𝐱)  to denote the likelihood that the image patch 
centered at pixel coordinate  𝐱  belongs to joint  𝑢 ∈ 𝐔 . We 
use 𝑝𝑢𝑣(𝐱) to denote the likelihood for the human limb 𝑢𝑣 ∈ 𝐄, 
whose endpoints are joint 𝑢 and joint 𝑣. For simplicity, we use 
𝑝𝑢  to denote the whole likelihood 𝑝𝑢(𝐱),∀𝐱 ∈ {1, …𝐻} ×
{1, …𝑊}. 

In this paper, we attempt to parse human limbs to promote 
the accuracy of human joints localization, especially the joints 
with higher flexibility, such as elbows and wrists. In other 
words, we focus on the detection of arms and legs, which 
severely affect the precision of joints localization. To improve 
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Fig. 2.  Joint and limb detector with overlapping contexts (model used on Flic dataset)

the robustness of detection to limbs variations, we divide a 
human limb into two small straight limbs at an elbow or a knee 
joint. In other words, we use lower arm, upper arm, lower leg 
and upper leg for whole body detection. Compared with whole 
limbs, the shape of human limbs within this definition are 
similar to cylinders, as shown in Fig. 2. Because of less 
variation of limb’s shape, it is much easier to detect them than 
to detect the whole limbs.  

Like most of the methods for pose estimation, our method 
consists of two stages. In the first stage, a ConvNet is used to 
compute 𝑁 + 𝑀 heat-maps for 𝑁 human joints and 𝑀  human 
limbs. In the second stage, we employ a graphical model to 
remove the false positive detection, which is implemented by 
another ConvNet. Finally, we connect them and combine the 
information both from shallow layer and deep layer. 

A. Human joints and limbs detector 
Generally, human joints are in the proximity of limbs. So 

they share similar contextual information, such as similar color 
and texture, which constitutes the constraints for their 
localization. Considering this close relevance between joints 
and limbs, we combine their detection in one ConvNet. In this 
ConvNet, several layers are shared to extract common features 
for these two tasks. After obtaining the same features, several 
individual layers are used to seek their unique properties to 
distinguish limbs from joints. This design takes full advantage 
of the close relevance as well as their individual property. 

Due to the excellent performance and high efficiency of 
Tompson’s model [20], we use a similar ConvNet. Different 
from [20], we add a new branch in the last layer of the 
ConvNet. This branch is to search the unique property of 
human limbs. Moreover, we use one resolution bank rather 
than multiple resolution banks. The resulting ConvNet for 
FLIC dataset is shown in Fig. 2. The network for LSP just 
varies in the size of input images and output heat-maps. This 
ConvNet in Fig. 2 takes a RGB image as input and outputs 
𝑁 +𝑀  heat-maps. The heat-map of the joint 𝑢  and a limb 
𝑢𝑣 ∈ 𝐄  describes its per-pixel likelihood   𝑝𝑢 , 𝑝𝑢𝑣  separately. 
Due to the presence of two pooling layers, the resolution of 
heat maps is a quarter of that of input images. Firstly, an image 
gets through the local contrast normalization (LCN) layer. 
Then, the LCN image is input to six convolution layers and two 
max pooling layers. Each of the last two convolution layers in 
the network simulates a fully-connected layer for a target input 
patch size, which is typically a much smaller context than the 
input image. Refer to [20] for more details. 

We train the model in Fig. 2 by minimizing the Mean 
Square Error (MSE) distance between the predicted heat-maps 
and the ground truth heat-maps for all joints and limbs. The 
ground truth heat-map for each joint is a 2D Gaussian with a 
constant variance (σ = 1.5 pixels) and mean centered at the 
ground-truth location. However, the ground truth locations of 
limbs are not annotated in most of the datasets for human pose 
estimation. It is time-consuming and difficult to manually 
annotate human limbs accurately, since edges of limbs vary 
tremendously. Nevertheless, coarse labels of human limbs can 
be generated according to the location of joints. We use the 
following procedure to create these labels. For each limb, we 
start with a zero matrix, whose size is equal to the size of 
original images. Then we assign a fixed value to each pixel in 
the straight line, which connects the endpoints of the limb. 
Finally, this matrix is smoothed by a Gaussian filter. We regard 
the resulting matrix as the ground truth of this limb. This 
procedure is too simple to obtain accurate annotation, but it 
provides enough information where human limbs located. Our 
experiment shows it works well. 

After obtaining all the ground truth heat-maps, we define 
the MSE distance as 

 

To train this ConvNet, we perform standard batched 
Stochastic Gradient Descent (SGD). We use Nesterov 
momentum as well as RMSPROP [22] to accelerate the leaning. 
L2 regulation and dropout on the input to each of 1×1 
convolution layers are employed to reduce over-fitting. In the 
training, we also perform random perturbations of the input 
images (random flipping, rotating and scaling the images) to 
increase generalization performance. In the experiment, we 
found this random perturbation can improve the performance 
significantly by 2-5%, more in small distance error. 

B. Graphical Model 
We have employed a ConvNet accomplishing the detection 

of human joints and limb. In the experiment results, however, 
the predicted heat-maps still contain several unreasonable 
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where  ̂     and       are the predicted and ground truth heat-
maps at coordinate   respectively for the     joint,  ̂     and 
      for the kth limb similarly. In our experiments, the 
different between the MSE value of human limbs and joints 
can be adjusted automatically. So we use 1 for the balancing 
coefficient. 
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Fig. 3. Our full model for flic dataset

poses violating the constraints among limbs and joints, 
especially the heat-maps for wrist and elbow with higher 
flexibility. For example, the wrist joint lies far from the lower 
arm. This means the relations among joints and limbs are not 
completely captured by our detection model. According to our 
ConvNet in Fig. 1, the probability in each coordinate depends 
on a 64 × 64 local image region, which is not large enough to 
capture the whole body. As a result, an explicit model is 
needed for capturing these relations.  

We employ a graphical model to capture these relations and 
integrate the detection results of human limbs and joints. For 
each joint or limb, we construct its probability at location 𝐱 
based on its score as well as the probability of other joints and 
limbs around  𝐱 . The filtered probability 𝑝̅𝑢  of joint  𝑢 at 
coordinate 𝐱 is defined as 

 | |

1
( ) ( ) ( ) ( ) ( )u v u v ev u ev

v ev E

p p p p p
Z ∈ ∈

= + + + 
 
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∑∑ ∑∑

U m m

x x m m x m m   (2) 

where 𝐦 ∈ {1, …𝐾} × {1, …𝐾} ⊂ R2 represents a pixel 
coordinate, 𝐾  is the size of the condition prior,  𝑝𝑣 , 𝑝𝑒𝑣  are 
unary likelihood for arbitrary joint 𝑣  and limb 𝑒𝑣 , 𝑝𝑢|𝑣(𝐦) 
represents the conditional prior that joint 𝑢 is in the location 𝐦 
when the joint 𝑣 is in the center, similar for 𝑝𝑢|𝑒𝑣(𝐦) and Z is 
the partition function. According to [20], we can omit the 
partition function. These condition priors, which are learned 
from the dataset directly, model the relations among joints and 
limbs. The filtered probability for limbs is constructed similarly.  

By using the matrix representation, (2) can be rewritten as 

 | |u v u v ev u ev
v ev E

p p p p p
∈ ∈

= ∗ + ∗∑ ∑
U

  (3) 

where ∗ denotes convolution operation. So we can implement 
our graphical model in (3) as one convolution layer, whose 
kernel size is much larger than normal convolution layer to 
capture the whole image. However, convolution layer with 
large kernel will ignore tiny and local constraints, leading to 
inaccurate localization. To solve this problem, we cascade 
multiple convolution layers, whose kernel size are reduced 
gradually. In this way, each convolution layer operates on 
smaller and smaller image region. Thus, the joints relationship 
is modeled more and more accurately. Currently, we use two 
convolution layers for balancing the performance and 
efficiency. The part of Fig. 3 contained in the red box is the 
implementation of our graphical model. We train this graphical 
model by minimizing the MSE between the ground truth and 
the filtered heat-maps. 

Compared with the graphical model in [20], our model has 
three differences. First, we add the detection results of human 
limbs to the graphical model, which can produce tighter 
constraints for the location of joints and limbs. Second, we 
cascade multiple convolution layers, whose kernel size are 
reduced gradually to model the relationship more and more 
accurate. Finally, we use sum instead of the product over 
different joints and limbs in the construction of filtered 
prediction. The sum operation makes the training easier to 
converge. Since sum operation is less sensitive to its factor, it 
can better represent the different role of human joints.  

As shown in Fig. 3, we connect the network in Fig. 2 and 
graphical model into a unified model, where we combine 
information from shallow layer and deep layer by 
concatenating the two maps. Through this operation, more 
details in high resolution are introduced into the final features. 
This ConvNet works in higher resolution, which is better for 
accurate localization. For clear show, some middle layers of 
detection model are omitted and the first 60 × 90 layer is the 
final result of the detection model. To train the full network, we 
train the network in Fig. 2 and store the generated heat-maps of 
the training images. Then, we train the graphical model. Its 
input is results of the detection model and torso locations. The 
labels are the same as the first step. Finally, we combine these 
two networks and retrain them jointly, with parameters 
initialized by the parameters obtained in the last two training 
steps. Finally, we fine tune the full model in Fig. 3. 

IV. EXPERIMENTS 

A. Dataset and Evaluation Metric 
We evaluate the proposed method on FLIC dataset [11] and 

LSP dataset [12, 13], both of which consist of still RGB images 
with 2D ground-truth joint location. While most people in 
FLIC are front-facing standing up, human poses in LSP are 
much more various. Many images in the FLIC contain multiple 
persons, while only one is annotated. Therefore, an 
approximate torso bounding box is provided for the single 
labeled person in the scene. We incorporate this data by 
including an extra “torso-joint” to the input of the graphical 
model so that it can learn to select the correct feature 
activations in a cluttered scene.  

 For performance evaluation, we use the Percentage of 
Detected Joints (PDJ) suggested by Sapp et al. [11]. PDJ 
measures the performance using a curve of the percentage of 
correctly localized joints by varying localization precision. For 
fair comparison with prior works [17, 20], we use observer-
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centric coordinate (OC) on FLIC dataset and person-centric 
coordinates (PC) on LSP dataset. 

B. Implementation detail 
For the FLIC dataset, we discard the left hip joint.  Because 

of the tiny distance among the nose and eyes location, we use 
their average location as a face joint. As a result, we use 7 
joints for the FLIC dataset. Besides, the image resolution in 
FLIC dataset is 480×720. If they are directly passed into the 
ConvNet, too large memory will be consumed. So we resize 
them to 240×360. The estimated coordinates are multiplied by 
2 to calculate the PDJ curve in original resolution. For LSP 
dataset, we use all the 14 joints. For the joint without 
annotation, we use a ground truth heat-map with all zero value. 
Since the size of images in LSP dataset varies a lot, we crop or 
pad them into 256×256, then pass them into the ConvNet. 

We implement our model with the open-source CNN 
library Caffe [23]. For layers which are not contained in current 
Caffe, like LCN layer and data layer with random perturbation, 
we implement these layers and will release them in the future. 
In training, all the convolution weights are initialized randomly 
and the learning rate are 4 × 10−4 and 5 × 10−5 for FLIC and 
LSP respectively. According to equation (1) in [24], the time 
complexity of our ConvNet is 5.3 × 1010 , little less than 
5.7 × 1010 in [20]. On a 2 CPU workstation with a NVIDIA 
Tesla K40m GPU, training part detectors takes approximately 
48 hours, the graphical model 24 hours, full model 10 hours. 
The test for a single image takes 136ms for Flic dataset.  

C. Experimental Results 
First, we illustrate the impact of adding human limbs on 

human pose estimation. We train a new model without human 
limbs. The experiment results of them on FLIC dataset are 
shown in Fig. 4(a). Compared with the new model, the original 
model achieves better performance. The performance increase 

is about 5%-10%, larger in smaller distance error. This proves 
that human limbs play important role in human pose estimation. 
In Fig. 4(b), we show the performance of models with different 
components. The “joint+limb” is the result of our detector. The 
“joint+limb+gra” represents the result of our graphical model. 
As expected, our graphical model increases the performance by 
5% to 15%. The “joint train” represents a model without the 
combination of shallow information and deep information. The 
“Full model” represents the complete model. These two curves 
illustrate combination of shallow and deep information adds an 
additional 2-10% detection rate. Besides, we compare our 
model with the 1 resolution bank model [20]. Our model 
outperforms the 1 resolution bank model even without shallow 
information. 

Then, we compare our proposed method with several state 
of the art methods [16]-[18], [20], [21] on FLIC dataset. The 
PDJ curves of them at the elbows and wrists on FLIC dataset 
are shown in Fig. 5. From this figure, we can see that an 
improvement is obtained over the baseline [20], especially in 
large normalized distance error. What’s more, we use 1 
resolution banks rather than 3 banks [20]. This owes to that 
new constraints added by limbs can remove the remote false 
detections. In Fig. 5, our method surpasses all the methods 
except [21]. Their model can be cascaded with our model, 
which will improve the performance in low distance error. 

 Fig. 6 shows the PDJ curves of our method and [16]-[18], 
[20] at elbow, wrist, knee and ankle on LSP dataset. We can 
see that the proposed method outperforms all the comparison 
methods except Fan et al. [18]. Note that [16] and [18] use 
observer-centric coordinate, which leads to better results. The 
PDJ gain of the proposed model over Tompson et al. [20] in 
LSP is larger than that in FLIC. This shows that human limbs 
play a more important role in complex pose. 

Finally, sample human pose estimation results on FLIC and 
LSP test-sets are shown in Fig. 7. Our model produces accurate 

   

Fig. 4.  Performance comparison on wrist joint of Flic dataset 
   

        (a) LSP: Elbow                                 (b) LSP: wrist 

        
         (c) LSP: Knee                                  (d) LSP: Ankle       

Fig. 6.  PDJ comparison on LSP. Note that [16] and [18] use OC coordinate 

  

   
(a) FLIC:  Elbow                            (b) FLIC:  Wrist 

Fig. 5. PDJ comparison on FLIC dataset 
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Fig. 7. our model’s predicted joint location, Top Row: FLIC Test-Set, 
Bottom Row: LSP Test-Set

localization for all human joints, even though the pose is rare, 
like the last image of Fig. 7. In all experiments, our method 
improves the performance largely in big distance error. In 
failure cases, our predicted locations are in the limbs region 
instead of the background. We ascribe this to the use of limbs 
and a more accurate graphical model. The performance of the 
proposed method can be further improved using the techniques 
from other state-of-the-art models, such as fine tuning AlexNet 
in [18], multiple conditional priors, or image pyramid in [20].  

V. CONCLUSION 
This paper proposes a shared convolutional network to 

integrate human limbs detection and pose estimation to take 
advantage of the close relevance between these two tasks. After 
obtained coarse detection results, a graphical model is used to 
capture the relations among human joints and limbs, which is 
implemented by convolution layers. Moreover, we combine 
information from both a shallow layer and a deep layer to 
utilize the information from different resolutions. By testing on 
the FLIC and LSP dataset, our method significantly 
outperforms the baseline [20] in big distance error, especially 
on LSP dataset. This shows the effectiveness of limb-based 
pose detection deep learning model.  

Although our graphical model can remove some false 
positive, it is still too simple to capture the variety of 
relationship among human joints and limbs. In the future, we 
expect to further improve the performance by designing more 
accurate model, like the mixture of relations model as in [8]. 
Besides, we can use much deeper ConvNet, like VGG16, to 
replace the simple ConvNet. 
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