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Abstract—In this paper, we propose a saliency detection model
for RGB-D images based on the contrasting features of color and
depth within a Bayesian framework. The depth feature map is
extracted based on superpixel contrast computation with spatial
priors. We model the depth saliency map by approximating
the density of depth-based contrast features using a Gaussian
distribution. Similar to the depth saliency computation, the color
saliency map is computed using a Gaussian distribution based
on multi-scale contrasts in superpixels by exploiting low-level
cues. By assuming that color- and depth-based contrast features
are conditionally independent, given the classes, a discriminative
mixed-membership naive Bayes (DMNB) model is used to cal-
culate the final saliency map from the depth saliency and color
saliency probabilities by applying Bayes’ theorem. The Gaussian
distribution parameter can be estimated in the DMNB model
by using a variational inference-based expectation maximization
algorithm. The experimental results on a recent eye tracking
database show that the proposed model performs better than
other existing models.

I. INTRODUCTION

Saliency detection is considered the problem of identifying
the points that attract the visual attention of human beings. Le
Callet and Niebur introduced the concepts of overt and covert
visual attention and of bottom-up and top-down processing[1].
Visual attention selectively processes important visual infor-
mation by filtering out less important information and is an
important characteristic of the human visual system (HVS)
for visual information processing. Visual attention is one of
the most important mechanisms that are deployed in the HVS
to cope with large amounts of visual information and reduce
the complexity of scene analysis. Visual attention models
have been successfully applied in many domains, including
multimedia delivery, visual retargeting, quality assessment of
images and videos, medical imaging, and stereoscopic 3D
image applications[1].

Borji and Itti provided an excellent overview of the current
state-of-the-art 2D visual attention modeling and included a
taxonomy of models (cognitive, Bayesian, decision theoretic,
information theoretical, graphical, spectral analysis, pattern
classification, and more) [2]. Many saliency measures have
emerged that simulate the HVS, which tends to find the most
informative regions in 2D scenes[3], [4], [5], [6], [7], [8],
[9], [10]. However, most saliency models disregard the fact
that the HVS operates in 3D environments and these models
can thus investigate only from 2D images. Eye fixation data
are captured while looking at 2D scenes, but depth cues
provide additional important information about content in the

visual field and therefore can also be considered relevant
features for saliency detection. Stereoscopic contents carry
important additional binocular cues for enhancing human depth
perception[11]. Today, with the development of 3D display
technologies and devices, there are various emerging appli-
cations for 3D multimedia, such as 3D video retargeting[12],
3D video quality assessment[13] and so forth. Overall, the e-
merging demand for visual attention-based applications for 3D
multimedia has increased the need for computational saliency
detection models for 3D multimedia content. In contrast to
saliency detection for 2D images, the depth factor must be
considered when performing saliency detection for 3D im-
ages. Therefore, two important challenges when designing 3D
saliency models are how to estimate the saliency from depth
cues and how to combine the saliency from depth features with
those of other 2D low-level features.

In this paper, we propose a new computational saliency
detection model for RGB-D images that considers both color-
and depth-based contrast features within a Bayesian frame-
work. The main contributions of our approach consist of two
aspects: (1) to estimate saliency from depth cues, we propose
to model the depth saliency map by approximating the density
of depth-based contrast features using a Gaussian distribution
and create the depth feature map based on superpixel contrast
computation with spatial priors, and (2) by assuming that color-
based and depth-based features are conditionally independent
given the classes, the discriminative mixed-membership naive
Bayes (DMNB) model is used to calculate the final saliency
map by applying Bayes’ theorem.

II. RELATED WORK

As introduced in the section I, many computational models
of visual attention have been proposed for various 2D multi-
media processing applications. However, compared with the
set of 2D visual attention models, only a few computational
models of 3D visual attention have been proposed[14], [15],
[16], [17], [18], [19], [20]. These models all contain a stage in
which 2D saliency features are extracted and used to compute
2D saliency maps. However, depending on the way in which
they use depth information in terms of the development of
computational models, these models can be classified into three
different categories:

(1) Depth-weighting models−This type of model adopts
depth information to weight a 2D saliency map to calculate the
final saliency map for 3D images with feature map fusion[15].
The models in this category combine 2D features with a depth

2016 23rd International Conference on Pattern Recognition (ICPR)
Cancún Center, Cancún, México, December 4-8, 2016

978-1-5090-4846-5/16/$31.00 ©2016 IEEE 1882



Fig. 1. The flowchart of the proposed model. The framework of our model consists of two stages: the training stage shown in the top part of the figure and
the testing stage shown in the bottom part of the figure.

feature to calculate the final saliency map, but they do not
include the depth saliency map in their computation processes.
Apart from detecting the salient areas by using 2D visual
features, these models share a common step in which depth
information is used as a weighting factor for the 2D saliency.

(2) Depth-saliency models−This type of model combines
a depth saliency map and a traditional 2D saliency map simply
to obtain a saliency map for 3D images[16], [17]. The models
in this category rely on the existence of “depth saliency maps.”
Depth features are extracted from the depth map to create
additional feature maps, which are then used to generate the
depth saliency maps. These depth saliency maps are finally
combined with 2D saliency maps using a saliency map pooling
strategy to obtain a final 3D saliency map.

(3) Learning-based models−Instead of using a depth
saliency map directly, this type of model uses machine learn-
ing techniques to build a 3D saliency detection model for
stereoscopic images based on extracted 2D features and depth
features[18], [19], [20]. Iatsun et al. proposed a visual attention
model for 3D video using a machine learning approach. They
used artificial neural networks to define adaptive weights for
the fusion strategy based on eye tracking data[18]. Desingh et
al. investigated the role of depth in saliency detection in the
presence of competing saliencies such as appearance, depth-
induced blur and centre bias. The computed 3D saliency was
combined with 2D saliency models through non-linear regres-
sion using a support vector machine (SVM) to improve the
saliency maps[19]. Inspired by the recent success of machine
learning techniques in building 2D saliency detection models,
Fang et al. proposed a learning-based model for stereoscopic
images using linear SVM[20].

From the above description, the key to a 3D saliency
detection model is determining how to integrate the depth
cues with traditional 2D low-level features. In this paper, we
propose a learning-based stereoscopic saliency detection model
with a Bayesian framework that considers both color- and
depth-based contrast features. Instead of simply combining a
depth map with 2D saliency maps as in previous studies, we

propose a computational saliency detection model for RGB-D
images based on the DMNB model[21]. Experimental results
on a public eye tracking database demonstrate the improved
performance of the proposed model over other strategies.

III. THE PROPOSED APPROACH

In this section, we introduce a method that integrates the
color saliency probability with the depth saliency probability
computed from Gaussian distributions based on multi-scale
superpixel contrast features and yields a prediction of the final
3D saliency map using the DMNB model within a Bayesian
framework. First, the input RGB-D images are represented by
superpixels using multi-scale segmentation. Then, we compute
the color and depth map by the weighted summation and
normalization of the color- and depth-based contrast features,
respectively, at different scales. Second, the probability dis-
tributions of both the color and depth saliency are modeled
using the Gaussian distribution based on the color and depth
feature maps, respectively. The parameters of the Gaussian
distribution can be estimated in the DMNB model using
a variational inference-based expectation maximization (EM)
algorithm. The general architecture of the proposed framework
is presented in Figure 1.

A. Feature extraction using multi-scale superpixels

We introduce a color-based contrast feature and a depth-
based contrast feature to capture the contrast information
of salient regions with spatial priors based on multi-scale
superpixels using simple linear iterative clustering (SLIC)[22],
which are generated at various grid interval parameters S . We
further impose a spatial prior term on each of the contrast
measures holistically, which constrains the pixels that were
rendered as salient to be compact as well as centered in the
image domain. This spatial prior can also be generalized to
consider the spatial distribution of different saliency cues such
as the center prior and background prior[23]. We also observe
that the background often presents local or global appearance
connectivity with each of four image boundaries. These two
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(a) Input color image (b) Superpixels Sl=40 (c) Feature map in(b) (d) Superpixels Sl=20 (e) Feature map in(d) (f) Multi-scale fusion

(g) Input depth image (h) Superpixels Sl=40 (i) Feature map in(h) (j) Superpixels Sl=20 (k) Feature map in(j) (l) Multi-scale fusion

Fig. 2. Visual samples of different color and depth feature maps. (a)∼(f) multi-scale superpixel segmentation for color feature maps and (g)∼(l) multi-scale
superpixel segmentation for depth feature maps.

features complement each other in detecting 3D saliency cues
from different perspectives and, when combined, yield the final
3D saliency value.

Color-based contrast feature An input image is overseg-
mented at L scales, and the color feature map is formulated
as

f(pc) =
1

L

L∑
l=1

C(plc,Ψ
l
Bc)e

− (xl
p−μx)2+(yl

p−μy)2

2σ2 (1)

where plc is a quantified histogram in the CIE Lab color space
for each superpixel at any scale l, Ψl

Bc represents the pseudo-
background context that consists of superpixels from the four
boundaries of the RGB image, and C(·, ·) = ‖ · ‖22 is a typical
contrast function using the Euclidean metric. In Equation 2, the
center prior is formulated as a Gaussian model, where (xl

p, y
l
p)

are the coordinates of the centroid of the superpixel, (μx, μy)
is the image center and σ is the variance. The final pixel-wise
color feature map is obtained by assigning the feature value
of each superpixel to every pixel belonging to it, where Sl is
the grid interval parameter in [22], as shown in the first row
of Figure 2.

Depth-based contrast feature Similar to the construction
of the color feature map, we formulate the depth feature map
based on multi-scale superpixel contrast in the disparity map
that shows the parallax of each pixel between the left- and
right-view images:

f(pd) =
1

L

L∑
l=1

C(pld,Ψ
l
Bd)e

− (xl
p−μx)2+(yl

p−μy)2

2σ2 (2)

where pld is the depth value of the centroid calculated as the
mean depth value within the superpixel. Visual samples for
different depth feature maps are shown in the second row of
Figure 2.

B. Bayesian framework for saliency detection

Let the binary random variable zs denote whether a point
belongs to a salient class. Given the observed color-based
contrast feature xc and the depth-based contrast feature xd of
that point, we formulate the saliency detection as a Bayesian
inference problem to estimate the posterior probability at each
pixel of the image:

p(zs|xc,xd) =
p(zs,xc,xd)

p(xc,xd)
(3)

where p(zs|xc,xd) is shorthand for the probability of predict-
ing whether a pixel is salient, p(xc,xd) is the likelihood of the
observed color-based and depth-based contrast features, and
p(zs,xc,xd) is the joint probability of the latent class and ob-
served features, defined as p(zs,xc,xd) = p(zs)p(xc,xd|zs).

In this paper, the class-conditional mutual information
(CMI) is used as a measure of dependence between two
features xc and xd, which can be defined as I(xc,xd|zs) =
H(xc|zs)+H(xd|zs)−H(xc,xd|zs), where H(xc|zs) is the
class-conditional entropy of xc. We employ a CMI threshold
τ to discover feature dependencies. For simplicity, we assume
that the color-based contrast feature xc and depth-based con-
trast feature xd are conditionally independent given the classes
zs, that is, p(xc,xd|zs) = p(xc|zs)p(xd|zs). This entails the
assumption that the distribution of the color-based contrast
features does not change with the depth-based contrast feature.
Thus, the pixel-wise saliency of the likelihood is given by
p(zs|xc,xd) ∝ p(zs)p(xc|zs)p(xd|zs).

C. DMNB model for saliency estimation

Given the graphical model of DMNB for saliency detection
shown in Figure 3, the generative process for {x1:N , y} follow-
ing the DMNB model can be described as follows (Algorithm
1), where x1:N = (xc,xd), z1:N = zs = (zc, zd) and y is
the label that indicates whether the pixel is salient or not.

Algorithm 1 Generative process for saliency detection follow-
ing the DMNB model

1: Input: α, η.
2: Choose a component proportion: θ ∼ Dir(θ|α).
3: For each feature:

choose a component zj ∼ Mult(zj |θ);
choose a feature value xj ∼ p(xj |zj ,Ω).

4: Choose the label: y ∼ p(y|zj , η).

In this work, both the color- and depth-based contrast
features are assumed to have been generated from a Gaussian
distribution with a mean of {μjk, [j]

N
1 } and a variance of

{σ2
jk, [j]

N
1 }. The marginal distribution of (x1:N ,y) is

p(x1:N ,y|α,Ω, η) =∫
p(θ|α)(

N∏
j=1

∑
zj

p(zj |θ)p(xj |zj ,Ω)p(y|zj , η))dθ (4)

where θ is the prior distribution over K components, Ω =
{(μjk, σ

2
jk), [j]

N
1 , [k]K1 }, p(xj |zj ,Ω) � N (xj |μjk, σ

2
jk). In
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two-class classification, y is either 0 or 1 generated from
Bern(y|η). Because the DMNB model assumes a genera-
tive process for both the labels and features, we use both
X = {(xij), [i]

M
1 , [j]N1 } and Y = {yi, [i]

M
1 } as a collection of

M superpixels in trained images from the generative process
to estimate the parameters of the DMNB model such that
the likelihood of observing (X ,Y) is maximized. Due to the
latent variables, the computation of the likelihood in Equation
4 is intractable. In this paper, we use a variational inference
method, which alternates between obtaining a tractable lower
bound to the true log-likelihood and choosing the model
parameters to maximize the lower bound.

Fig. 3. Graphical models of DMNB for saliency estimation. y and x are the
corresponding observed states, and z is the hidden variable.

We use L to denote the lower bound:

L =Eq[log p(θ|α)] +Eq[log p(z1:N |θ)]
+Eq[log p(x1:N |z1:N , γ)]−Eq[log q(θ)]

−Eq[log q(z1:N )] +Eq[log p(y|z1:N , η)] (5)

where Eq[log p(y|z1:N , η)] ≥ ∑K
k=1 φk(ηky − eηk

ξ ) − ( 1ξ +
log ξ) and ξ > 0 is a newly introduced variational parame-
ter. Maximizing the lower-bound function L(γk, φk, ξ;α,Ω, η)
with respect to the variational parameters yields updated equa-
tions for γk, φk and ξ as follows:

φk ∝ e
(Ψ(γk)−Ψ(

∑K
l=1 γl)+

1
N (ηkyi− eηk

ξ −∑N
j=1

(xij−μjk)2

2σ2
jk

))
(6)

γk = α+Nφk (7)

ξ = 1 +
∑K

k=1
φke

ηk (8)

The variational parameters (γ∗, φ∗, ξ∗) from the inference
step provide the optimal lower bound for the log-likelihood
of (xi,yi), and maximizing the aggregate lower bound∑M

i=1 L(γ∗, φ∗, ξ∗, α,Ω, η) over all of the data with respect
to α, Ω and η, respectively, yields the estimated parameters.
For η, we have

ηk = log(

∑M
i=1 φikyi∑M
i=1

φik

ξi

). (9)

Based on the variational inference and parameter estima-
tion updates, it is straightforward to construct a variational
inference-based EM algorithm to estimate (α,Ω, η). After ob-
taining the DMNB model parameters from the EM algorithm,
we can use η to perform saliency prediction. Given the feature
(x1:N ), we have

E[log p(y|x1:N , α,Ω, η)] ={
ηTE[z]−E[log(1 + eη

T z)] y = 1

0−E[log(1 + eη
T z)] y = 0

(10)

where z is an average of z1:N over all of the observed features.
The computation for E[z] is intractable; therefore, we again
introduce the distribution q(z1:N , θ) and calculate Eq[z] as an
approximation of E[z]. In particular, Eq[z] = φ; therefore,
we only need to compare ηTφ with 0.

IV. EXPERIMENTAL EVALUATION

In this section, we conduct some experiments to demon-
strate the performance of our method. To date, there are no
specific and standardized measures for computing the similari-
ty between the fixation density maps and saliency maps created
using computational models in 3D situations. Nevertheless,
a range of different measures exist that are widely used to
perform comparisons of saliency maps for 2D content. We use
an evaluation methodology and quantitative evaluation metrics
that are similar to those proposed in[15], [16], [20]. The
correlation coefficient (CC)[24], the area under the receiver
operating characteristic curve (AUC)[25] and normalized scan-
path saliency (NSS)[26] are used to evaluate the quantitative
performance of the proposed model.

A. Qualitative experiment

In this experiment, we use the IRC-cyN/IVC 3D Gaze
database[27] proposed in [16] to evaluate the performance of
the proposed model. As shown in Table I, we compute the
CMI for all of the RGB-D images, and we set τ = 0.2,
which is a heuristically determined value. In Image 4, the
widespread presence of faces and artificial color attracts the
viewer’s attention to most of the areas in the scene, and the
CMI of the color- and depth-based contrast features is affected
by the centre bias factor. The saliency map generated based on
either the color salient features or depth might predict parts of
the salient area, but not the all area, as shown in Figure 4. We
are also interested in the contributions of different features
in our model. The ROC curves of saliency estimation from
different features are shown in Figure 5(a). This may be why
color and depth saliency maps show comparable performance,
whereas their combination produces a much better result. We
divide the databases into two equal subsets and then choose
one subset for training and the other for testing. The parameters
of the DMNB are determined via 5-fold validation.

TABLE I. CMI OF ALL OF THE RGB-D IMAGES IN TERMS OF THE

IRC-CYN/IVC 3D GAZE DATABASE

ID Image1 Image2 Image3 Image4 Image5 Image6

CMI 0.1816 0.0256 0.0096 0.1916 0.0058 0

ID Image7 Image8 Image9 Image10 Image11 Image12

CMI 0.0032 0.0977 0.0071 0.1944 0 0.1965

ID Image13 Image14 Image15 Image16 Image17 Image18

CMI 0.0011 0 0.0735 0.0515 0.1994 0.0818

B. Comparison of 2D models combined with DSM

In this experiment, we first compare the performance of
existing 2D saliency models before and after fusing the depth
saliency map (DSM), which is produced by our proposed
depth feature map, as a depth-saliency method [16] in the
IRC-cyN/IVC 3D Gaze database. We select six state-of-the-art
2D visual attention models: IT[3], AIM[4], FT[5], GBVS[6],
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(a) RGB image ID 4 (b) Disparity map (c) Fixation map

(d) Color-feature map (e) Depth-feature map (f) Saliency map

Fig. 4. Visual samples for different feature maps and saliency map.
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Fig. 5. Experimental results in terms of the IRC-cyN/IVC 3D Gaze database.
(a) The ROC curves of different saliency maps. (b) The quantitative compar-
isons of the performance of depth cues. + indicates a linear combination
strategy, and × indicates a weighting method based on multiplication. DSM
means depth saliency map, which is produced by our proposed depth feature
map. CSM means color saliency map, which is produced by our proposed
color feature map.

ICL[7] and LSK[8]. Figure 5(b) presents the experimental
results, and we present some visual comparison samples in
Figure 6, where + and × denote a linear combination strategy
and a weighting method, respectively, based on multiplication
as used in [16]. These visual comparison samples illustrate the
strong influence of using the DSM on the distribution of visual
attention in terms of the viewing of 3D content. Although
the simple late fusion strategy achieves improvements, it still
suffers from inconsistency in the homogeneous foreground
regions, which may be ascribed to treating the appearance and
depth correspondence cues in an independent manner.

We calculated the NSS, CC and AUC values of the
proposed model on the IRC-cyN/IVC 3D Gaze database as
shown in Figure 7. From Figure 7, we can see that the CC
and AUC values of the proposed model are larger than those
of the other compared models and that the NSS value of the
proposed model is lower than those of the compared models.
We also provide the ROC curves for several compared models
in Figure 8. The ROC curves demonstrate that the proposed
stereoscopic saliency detection model performs better than the
compared models do.

C. Comparison of 3D models

We compared the proposed model with other existing
models described in [15], [16]. In this paper, Wang’s model[15]
and Fang’s model[16] are classified as depth-weighting and
depth-saliency models, respectively. Similar to [15], [16],
we calculate the AUC value for the proposed model from
the database. The quantitative comparison results of the 3D

(a) RGB image ID 10 (b) Disparity maps (c) Fixation map

(d) IT[3] (e) IT[3]×DSM (f) IT[3]+DSM

(g) AIM[4] (h) AIM[4]×DSM (i) AIM[4]+DSM

(j) FT[5] (k) FT[5]×DSM (l) FT[5]+DSM

(m) GBVS[6] (n) GBVS[6]×DSM (o) GBVS[6]+DSM

(p) ICL[7] (q) ICL[7]×DSM (r) ICL[7]+DSM

(s) LSK[8] (t) LSK[8]×DSM (u) LSK[8]+DSM

(v) Color feature map (w) Depth feature map (x) Our method

Fig. 6. Visual comparison of saliency estimations of different methods.
(a)∼(c) are original images in the IRC-cyN/IVC 3D Gaze database. (d),
(g), (j), (m), (p) and (s) are saliency maps computed using 2D saliency
detection approaches. (e)∼(f), (h)∼(i), (k)∼(l), (n)∼(o), (q)∼(r) and (t)∼(u)
are saliency maps computed using 2D method confusion with DSM. (v) and
(w) are feature maps generated by our feature extraction method.

TABLE II. COMPARISON OF DIFFERENT 3D SALIENCY DETECTION

MODELS BASED ON THE IRC-CYN/IVC 3D GAZE DATABASE.

Method AUC Method AUC

IT[3]×DSM in[15] 0.671 IT[3]×DSM in[16] 0.688

IT[3]+DSM in[15] 0.676 IT[3]+DSM in[16] 0.683

AIM[4]×DSM in[15] 0.540 AIM[4]×DSM in[16] 0.671

AIM[4]+DSM in[15] 0.656 AIM[4]+DSM in [16] 0.675

FT[5]×DSM in[15] 0.667 FT[5]×DSM in[16] 0.660

FT[5]+DSM in[15] 0.677 FT[5]+DSM in[16] 0.670

3D framework in [15] 0.740 Our Method 0.773
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saliency detection models are provided in Table II. The AUC
values used for the other existing models came from the
original papers [15], [16]. From this table, we can see that the
AUC value of the proposed model is larger than those of the
compared models, which demonstrates that the proposed model
can achieve better performance levels than most of the other
compared models in terms of saliency. This is mainly because
the saliency detection within Bayesian framework enhances the
consistency and compactness of salient pathes.

Fig. 7. Comparison results from different 2D saliency detection models
combined with DSM in terms of the IRC-cyN/IVC 3D Gaze database.
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Fig. 8. The ROC curves of different stereoscopic saliency detection models in
terms of the IRC-cyN/IVC 3D Gaze database. + indicates a linear combination
strategy, and × indicates a weighting method based on multiplication. DSM
means depth saliency map, which is produced by our proposed depth feature
map.

V. CONCLUSION

In this study, we proposed a saliency detection model
for RGB-D images that considers both color- and depth-
based contrast features within a Bayesian framework. The
experiments verify that the proposed model’s depth-produced
saliency can serve as a helpful complement to the existing
color-based saliency models. Compared with other competing
3D models, the experimental results based on a recent eye
tracking database show that the performance of the proposed
saliency detection model is promising. We hope that our work
is helpful in stimulating further research in the area of 3D
saliency detection.
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