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Abstract—Micro-expression is a brief involuntary facial ex-
pression which reveals genuine emotions and helps detect lies.
It intrigues psychologists and computer scientists’ (especially on
computer vision and pattern recognition) interests due to its
promising applications in various fields. Recent research reveals
that color may provide useful information for expression recogni-
tion. In this paper, we propose a novel color space model, Tensor
Independent Color Space (TICS), for enhancing the performance
of micro-expression recognition. An micro-expression color video
clip is treated as a fourth-order tensor, i.e. a four-dimension
array. The first two dimensions are the spatial information, the
third is the temporal information, and the fourth is the color
information. We transform the fourth dimension from RGB into
TICS, in which the color components are as independent as
possible. The combination of dynamic texture in the independent
color components can get higher accuracy than that in RGB. In
addition, we define a set of Regions of Interest (ROIs) based on
Facial Action Coding System (FACS) and calculated the dynamic
texture histograms for each ROI. The experiments are conducted
on two micro-expression databases, CASME and CASME 2, and
the results show that the performance in TICS is better than that
in RGB or gray.

I. INTRODUCTION

Micro-expression is a brief and subtle facial expression

which reveals an emotion that a person tries to conceal,

especially in high-stake situations [1]. Compared with ordinary

facial expressions, micro-expression has two significant charac-

teristics: short duration and low intensity [2]. The importance

of micro-expression study is derived from its potential practical

applications in many fields, such as clinical diagnosis, national

security and interrogations [3][4][5].

Though micro-expression has potential applications in vari-

ous fields, human beings are difficult to detect and recognize

them. The difficulty may stem from its short duration, low

intensity and fragmental action units [1][6]. Though there is

a debate on the duration, the generally accepted upper limit

duration is 0.5 second [7]. The micro-expressions are usually

very subtle since individuals are trying to control and repress.

In addition, micro-expressions usually present only part of

the action units of full-stretched facial expressions [8]. These

three characteristics contribute to the difficulty of detecting and

recognizing them. In order to improve the human’s performance

in recognizing micro-expression, Ekman [9] developed the

Micro-Expression Training Tool (METT), which trains people

to better recognize the seven categories of micro-expressions.

However, Frank [5] found out that the performance in detecting

and recognizing micro-expressions peaked around 40% even

with the help of METT. Along with the rapid development

of computational methods, researchers turn to the field of

computer vision and pattern recognition to search for automatic

micro-expression recognition.

Up to now, there are only a limited number of researches on

automatic micro-expression recognition. Polikovsky et al. [10]

used 3D-gradient descriptor for micro-expression recognition.

Wang et al. [11] treated a micro-expression gray-scale video

clip as a 3rd-order tensor and used Discriminant Tensor Sub-

space Analysis (DTSA) and Extreme Learning Machine (ELM)

to recognize micro-expressiones. Pfister et al. [12] utilized a

temporal interpolation model (TIM) [13] based on Laplacian

matrix to normalize the frame numbers of spontaneous micro-

expression video clips. Then, the LBP-TOP [14] is used to

extract the dynamic texture features of micro-expressions and

multiple kernel learning is used to classify the features.

However, these methods didn’t take color into account. Color

is a fundamental aspect of human perception, and its effects

on cognition and behavior have attracted many interests of

generations of researchers [15]. Recent research efforts revealed

that color may provide useful information for face recognition.

Wang et al. [16] presented a Tensor Discriminant Color Space

(TDCS) model which used a 3rd-order tensor to represent a

color facial image. To be more robust for the noise, they [17]

used elastic net to make TDCS sparse and proposed Sparse

Tensor Discriminant Color Space (STDCS). Lajevardi and

Wu [18] treated a color facial expression image as a 3rd-order

tensor and showed that the perceptual color spaces (CIELab

and CIELuv) are better for facial expression recognition than

other color spaces.

In this paper, we propose a novel color space model, Tensor

Independent Color Space (TICS). In this color space, color

components are as independent as possible. The dynamic

textures of micro-expressions are extracted from the color

components. The independent dynamic textures lead to the

better performance of TICS.
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II. TENSOR FUNDAMENTALS

In this section, we introduce a general knowledge of ten-

sor. For details, please refer to [19]. A tensor is a mul-

tidimensional array, or more formally, a N-order tensor is

an element of the tensor product of N vector spaces. The

order of a tensor A ∈ R
I1×I2×···×IN is N. An element

of A denoted by Ai1i2...iN , where 1 ≤ in ≤ In, n =
1, 2, . . . , N . The mode-n unfolding matrix of A, denoted by

A(n) ∈ R
In×(I1×···×In−1×In+1×···×IN ). The mode-n product

of a tensor A ∈ R
I1×I2×···×IN by a matrix U ∈ R

Jn×In is a

(I1 × · · · × In−1 × Jn × In+1 × · · · × IN )-tensor of which the

entries are given by:

(A×nU)i1i2...in−1jnin+1...iN
def
=

∑

in

ai1i2...in−1inin+1...iNujnin .

(1)

By using tensor decomposition, any tensor A can be expressed

as the product:

A = S ×1 U1 ×2 U2 · · · ×N UN (2)

where S = A×1U
T
1 ×2U

T
2 · · ·×NUT

N is called the core tensor,

Un, n = 1, 2, . . . , N is an orthogonal matrix and contains the

ordered principal components for the mode-n.

III. TENSOR INDEPENDENT COLOR SPACE (TICS)

A micro-expression color video clip is naturally represented

by a fourth-order tensor, where mode-1 and mode-2 of a

tensor are facial spatial information, mode-3 of tensor is the

temporal information and mode-4 of tensor is the color space

information. For instance, a color micro-expression video clip

with the resolution of I1 × I2 is represented as a tensor

X ∈ R
I1×I2×I3×I4 , where I3 is the number of the frames and

I4 = 3 has 3 components corresponding to R, G and B in RGB

space. However, the R, G and B components are correlated. We

first transformed the three correlated components into a series

of uncorrelated components TICS1, TICS2 and TICS3, then

extracted the dynamic texture features from each uncorrelated

component. That can get better results.

Assuming M is the number of color micro-expression video

clip, Xi is the ith color micro-expression video clip. We want

seek a color space transformation matrix U4 ∈ R
I4×L4 (usually

L4 = I4) for transformation

Yi = Xi ×4 U
T
4 ,

i = 1, 2, . . . ,M.
(3)

such that the components of mode-4 of Yi are as independent

as possible. In order to obtain U4, we use ICA1 to decor-

relate the RGB color space. M fourth-order tensor Xi are

concatenated to a fifth-order tensor F ∈ R
I1×I2×I3×I4×M .

The mode-4 unfolding matrix F(4) is a 3 ×K matrix, where

K = I1×I2×I3×M and the three rows of F(4) corresponding

to the three components in RGB space, respectively.

1For ICA operations, we used Hyvarinen’s fixed-point algorithm http://www.
cis.hut.fi/projects/ica/fastica/.

Fig. 1. Illustration of a spatiotemporal volume of a video, the XY plane
(original frames) and the resulting temporal planes for LBP feature extraction.

The color space transformation matrix U4 can be derived

using ICA on F(4). The ICA of F(4) factorizes the covariance

matrix ΣF into the following form:

ΣF = U−1
4 �U−T

4 (4)

where � ∈ R
3×3 is diagonal real positive and U4 transforms

RGB color space to a new color space whose three components

are independent or the most independent three components. The

U4 in Eq. (4) can be derived using Comon’s ICA algorithm by

calculating mutual information and high-order statistics.

IV. LBP DESCRIPTION FROM THREE ORTHOGONAL PLANES

Local Binary Patterns (LBP) [20] operator was extended to a

dynamic texture operator, where the dynamic LBP description

from three orthogonal planes (LBP-TOP) of a space time

volume was formed.

Fig. 1 shows the spatiotemporal volume of a video. It also

illustrates the XY plane and the resulting XT and YT planes

from a single row of and column of the volume. The LBP-

TOP description is formed by calculating the LBP features from

the planes and concatenating the histograms. Intuitively it can

be thought that XT and YT planes encode the vertical and

horizontal motion patterns respectively.

The original LBP operator was based on a circular sampling

pattern but different radii and neighborhoods can also be used.

A elliptic sampling is used for the XT and YT planes:

LBP (xc, yc, tc) =

Pplane−1∑

p=0

s(gp − gc)2p (5)

where gc is the gray value of the center pixel (xc, yc, tc)
and gp are the gray values at the Pplane sampling points. s(u)
is 1 if u ≥ 0 and 0 otherwise. Pplane can be different on

each plane. The gray values gp are taken from sampling points:

(xc−Rx sin(2πp/Pxt), yc, tc−Rt cos(2πp/Pxt)) on XT plane

and similarly (xc, yc−Ry sin(2πp/Pyt), tc−Rt cos(2πp/Pyt))
on YT plane. Rd is the radius of the ellipse to direction of the

axis d (x, y or t). As the XY plane encodes only the appearance,

i.e., both axes have the same meaning, circular sampling is

suitable. The values gp for points that do not fall on pixels are

estimated using bilinear interpolation. The length of the feature

histogram for LBP-TOP is 2Pxy + 2Pxt + 2Pyt when all three

planes are considered.
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Fig. 2. The template face and 16 ROIs.

V. ACTION UNIT AND REGION OF INTEREST

The Facial Action Coding System (FACS) [21] is an ob-

jective method for quantifying facial movement based on a

combination of 57 elementary components. These elementary

expressions, known as action units (AUs) and action descriptors

(ADs), can be seen as the phonemes of facial expressions:

words are temporal combinations of phonemes. Similar to

facial expressions, micro-expressions are spatial combinations

of AUs. Each AU depicts a local facial movement. We selected

a frontal neutral facial image as the template face and divided

the template face into 16 Regions of Interest (ROIs). These

ROIs are not exactly corresponding to the AUs. Since there

are overlaps between some AUs, the ROIs were modified to

be more independent between each other. The template face is

used not only to draw ROIs but also to avoid the large variations

in the spatial appearances of micro-expressions. The detailed

can be found in Section VI.

Fig 2 shows the template face, the 16 ROIs and the AUs

corresponding to the ROIs. Fox example, ROI R1 (or R2)

corresponds to AU1 and AU4 which represent the movements

of inner eyebrows. Table I lists the 16 ROIs, the corresponding

AUs and the facial movements. The ROIs are drawn to exclude

some noise, such as the nose tip and the eye ball movement.

TABLE I
ROIS, THE CORRESPONDING AUS AND THE FACIAL MOVEMENTS. a

ROIs AUs Facial Movements

R1, R2 AU1, AU4 inner eyebrows
R3, R4 AU2 outer eyebrows
R5, R6 AU7 lower eyelid
R7, R8 AU6 cheeks
R9, R10 AU6, AU10 side of the nose
R11, R12 AU12, AU13, AU14, AU15 mouth corner
R13, R14 AU16, AU20 side of the chin
R15 AU9 nose root
R16 AU17 chin

aROIs are not exactly corresponding to the AUs. since there are overlaps
between some AUs, the ROIs were modified to be more independent between
each other.

Fig. 3. The process of micro-expression registration.

VI. LBP-TOP ON TICS FOR MICRO-EXPRESSION

RECOGNITION

LBP-TOP is a dynamic texture operator and can extract not

only appearance information but also motion information. It

is already successfully used for expression recognition [14]

and micro-expression recognition [12]. However, only gray

video clips were used in [14] and [12]. Recent research shows

expression recognition gets better performance in the perceptual

color spaces [18]. Motivated by these researches, we propose

an novel idea to use LBP-TOP on Tensor Independent Color

Space (TICS) for micro-expression recognition.

To address the large variations in the spatial appearance

of faces, all faces were normalized to a template face by

registering 68 facial landmark points detected using the Active

Shape Model (ASM). First, we selected a frontal face image

M with neutral expression as the template, and the coordinates

of 68 landmarks of the template face were detected by ASM as

ψM . Second, for a sample micro-expression clip we detected

the 68 facial landmarks on its first frame as ψf1, and estimated

the 2D geometric transformation of the template face and the

current given sample face as: ψM = Tψf1, where T is the

transformation matrix. Third, we registered the sample face to

the template by applying the transformation T to all frames

of the micro-expression clip. Because there is no much head

movement in the video clip, the transformation T can be used

to all the frames in the same video clip. The sizes of each frame

of samples are normalized to 163× 134 pixels.

The process is illustrated in Fig. 3. As the figure shows,

all sample faces have the same spatial appearance as the

template face after the registration process, which facilitates the

comparison of local LBP-TOP features for the classification of

micro-expressions.

The frame number of each sample is normalized to I3 by

using linear interpolation, thus each sample was normalized to

an fourth-order tensor X 163×134×I3×3. Its mode-4 includes 3

color components (R, G and B) in RGB color space. TICS is

done to transform mode-4 from RGB into a new color space, in

which three color components are as independent as possible.

Fig. 4 illustrates the color components in RGB color space and

TICS color space. LBP-TOP is used to extract dynamic texture
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features from the TICS1, TICS2 and TICS3 components,

respectively. Fig. 4 also shows LBP codes on XT plane in

the color components. The LBP codes of R, G and B color

components all are 01110000. However, the LBP codes of

TICS1, TICS2 and TICS3 color components are 01111000,

00001111 and 11110000, respectively. So, the performance in

TICS color space is better than that in RGB color space. After

extracting LBP codes, the histograms of LBP on each ROI are

calculated and concatenated into a vector as inputs for classifier.

VII. EXPERIMENTS

A. CASME

The Chinese Academy of Sciences Micro-Expression

(CASME) database [2][22] includes 195 spontaneous facial

micro-expressions recorded by two different 60 fps cameras.

These samples were selected from more than 1500 facial

expressions. The selected micro-expressions either have a total

duration less than 500 ms or an onset duration (time from onset

frame to apex frame) less than 250 ms. These samples are coded

with the onset, apex and offset frames, furthermore tagged

with AUs. In this database, micro-expressions are classified

into 7 categories (happiness, surprise, disgust, fear, sadness,

repression and tense). Fig. 5 is an example.

CASME database is divided into two sets: Set A and Set B.

The samples in Set A were recorded by BenQ M31 consumer

camera with 60 fps, and the resolution 1280× 720 pixels. The

participants were recorded in natural illumination. The samples

in Set B were recorded by Point Grey GRAS-03K2C industrial

camera with 60fps, and the resolution 640 × 480 pixels. The

participants were recorded in a room with two LED lights. Set

B captured by industrial cameras, the color depth of which is

lower than that of consumer cameras, are more suitable for

color space transformation. So, Set B is used in the following

experiments.

In the experiments, we merged the 7 categories into 4

classes. Such classification may be more easily applied in prac-

tice. Positive contains happy micro-expression, which indicates

”good” emotion for the individual. Negative contains disgust,

sadness and fear, which are usually reflected as ”bad” emotions.

Surprise usually occurs when there is a difference between

expectations and reality, and can be neutral/moderate, pleasant,

unpleasant, positive, or negative. Tense and repression indicate

the ambiguous feelings of an individual and require further

inference, thus were categorized into another class. We selected

97 samples from Set B. In the 97 samples, the frame number

of the shortest sample is 10 and that of the longest sample is

68. The frame numbers of all samples are normalized to 70 by

using linear interpolation. So, each sample was normalized to

an fourth-order tensor with the size of 163× 134× 70× 3.

In the experiments, we compared the micro-expression

recognition accuracies in TICS, RGB and gray. A support

vector machine (SVM) classifier was selected and used the

linear kernel as the kernel function. We used the leave-one-

subject-out cross-validation in the experiments. For LBP-TOP,

the radii in axes X and Y (marked as Rx and Ry) were set as

1 and the radii in axes T (marked as Rt) was assigned various

values from 2 to 4. The number of neighboring points (marked

as P ) in the XY, XT and YT planes all were set as 4 or 8. The

uniform pattern and the basic LBP were used in LBP coding.

The results are listed in Table II.

TABLE II
MICRO-EXPRESSION RECOGNITION ACCURACIES (%) IN GRAY, RGB AND

TICS COLOR SPACES IN SET B OF CASME.

TICS RGB GRAY

Rt = 2

P = 4, uniform pattern 57.7320 52.5773 51.5464
P = 4, basic LBP 57.7320 52.5773 51.5464
P = 8, uniform pattern 59.7938 54.6392 52.5773
P = 8, basic LBP 59.7938 53.6082 51.5464

Rt = 3

P = 4, uniform pattern 61.8557 55.6701 53.6082
P = 4, basic LBP 61.8557 55.6701 53.6082
P = 8, uniform pattern 61.8557 54.6392 54.6392
P = 8, basic LBP 60.8247 54.6392 54.6392

Rt = 4

P = 4, uniform pattern 60.8247 54.6392 54.6392
P = 4, basic LBP 60.8247 54.6392 54.6392
P = 8, uniform pattern 57.7320 57.7320 54.6392
P = 8, basic LBP 60.8247 55.6701 54.6392

Among the three color spaces, the performance in TICS got

the best in each case. The recognition accuracy in TICS color

space is equal to that in RGB color space when Rt = 4, P = 8
and the uniform pattern is used. In most cases, The performance

of the uniform pattern is the same with that of the basic LBP,

but the code length of the uniform pattern is far shorter than that

of the basic LBP. In addition, the accuracies with P = 8 are

not better than the those with P = 4 in many cases. Therefore,

we used the uniform pattern and set P as 4 in the following

experiments.

B. CASME2

The CASME2 [23] database includes 246 spontaneous facial

micro-expressions recorded by a 200 fps camera. These sam-

ples were selected from more than 2,500 facial expressions.

Compared with CASME, the database is improved in increased

sample size, fixed illumination, and higher resolution (both

temporal and spatial). The selected micro-expressions in this

database either had a total duration less than 500 ms or an

onset duration (time from onset frame to apex frame) less

than 250 ms. These samples are coded with the onset and

offset frames, as well as tagged with AUs and emotions. Fig. 6

is an example. There are 5 classes of the micro-expressions

in this database: happiness, surprise, disgust, repression and

tense. We select the first labeled data including 136 samples:

happiness (19 samples), surprise (16 samples), disgust (21

samples), repression (12 samples) and tense (68 samples).

In this database, the frame number of the shortest sample is

24 and that of the longest sample is 146. The frame numbers of

all samples are normalized to 150 by using linear interpolation.

The size of each frame is normalized to 163× 134 pixels. So,

each sample was normalized to an fourth-order tensor with the

size of 163× 134× 150× 3.

To evaluate the performance in TICS color space, we com-

pared the micro-expression recognition performance among
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Fig. 4. Illustration of R, G, and B color components, the various components generated by TICS and corresponding LBP-TOP codes on XT plane.

Fig. 5. An demonstration of the frame sequence in a micro-expression. The apex frame presents at about 100 ms. The AUs for this micro-expression is 4+10,
which indicates disgust.

Fig. 6. A demonstration of the frame sequence in a micro-expression. The apex frame presents at about 110 ms. The AUs for this micro-expression is 4+9
(with AU 17 kept almost unchanged), which indicates disgust. The three rectangles above the images show the right inner brow (AU 4) in zoom in mode.
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TICS, RGB and gray color spaces. The radii in axes X and Y

were assigned various values from 1 to 4. To avoid too much

combinations of parameters, we made Rx = Ry . The radii in

axes T were assigned various values from 2 to 4. The number

of neighboring points in the XY, XT and YT planes were all

set as 4. The uniform pattern was used in LBP coding. The

other settings are the same with the previous experiments. The

results are listed in Table III.

TABLE III
MICRO-EXPRESSION RECOGNITION ACCURACIES (%) IN TICS RGB AND

GRAY COLOR SPACES IN CASME 2.

Parameters TICS RGB GRAY

Rx = 1, Ry = 1, Rt = 2 56.6176 58.0882 56.6176
Rx = 1, Ry = 1, Rt = 3 58.0882 55.8824 57.3529
Rx = 1, Ry = 1, Rt = 4 61.7647 58.0882 55.1471

Rx = 2, Ry = 2, Rt = 2 57.3529 56.6176 52.2059
Rx = 2, Ry = 2, Rt = 3 58.8235 53.6765 52.9412
Rx = 2, Ry = 2, Rt = 4 61.0294 54.4118 54.4118

Rx = 3, Ry = 3, Rt = 2 55.1471 54.4118 53.6765
Rx = 3, Ry = 3, Rt = 3 57.3529 52.9412 50.0000
Rx = 3, Ry = 3, Rt = 4 60.2941 54.4118 54.4118

Rx = 4, Ry = 4, Rt = 2 53.6765 58.8235 51.4706
Rx = 4, Ry = 4, Rt = 3 55.8824 52.2059 52.2059
Rx = 4, Ry = 4, Rt = 4 58.0882 56.6176 54.4118

From the table, the performances in TICS color space got the

best in most cases. For the various parameters, the best accuracy

in TICS color space is 61.7647% and occurs in Rx = 1, Ry = 1
and Rt = 4. While the best accuracies in RGB and gray color

space are 58.8235% and 57.3529%, respectively. The amount

of information in RGB color space is three times as much as

that in gray. However, the accuracy in RGB color space is

sometimes worse than that in gray. This is derived from the lot

of redundant information in RGB color space in general. The

redundancy is an obstruction of further improvement of the

accuracy in RGB color space. As the redundancy is removed

from TICS color space, the accuracy in TICS color space is

better in general.

VIII. CONCLUSION

We have presented an novel color space TICS and extracted

LBP-TOP features of micro-expression. In this paper, we also

proposed a set of ROIs and calculated the histograms of LBP-

TOP on each ROI as inputs for SVM. The experiments on two

micro-expression databases revealed that the performance in

TICS is better than that in RGB or gray.
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