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Abstract—When dealing with face recognition, multimodal
algorithms, with their potential to capture complementary char-
acteristics from the 2D and 3D data channels, can reach high
level of efficiency and robustness. In this paper, we explore
different combinations of iconic descriptors coupled with a
shape descriptor and propose a fully automatic, multimodal,
face recognition paradigm. Two iconic features extractors, the
Scale Invariant Feature Transform (SIFT) and the Speeded-Up
Robust Features (SURF), are used, in turn, to extract salient
points from the images of the faces. The corresponding points
on the scans are validated with Joint Differential Invariants,
a 3D characterisation method based on local and global shape
information. SIFT and SURF are then combined at feature level
and the 3D Joint Differential Invariants used to validate them
on the shape channel. The proposed method has been tested
on the FRGCv2 database. Experimental results highlight the
complementarity of the feature points extracted by SIFT and
SURF and the effectiveness of their 3D validation.

I. INTRODUCTION

Face recognition has seen major improvements in ac-
curacy and computational feasibility over the last decade.
The introduction of 3D techniques alone, or in conjunction
with 2D methods can be identified as the main factor of
improvement, and these are the techniques we intend to focus
on. A comprehensive treatment of the state of the art in 3D
and 2D+3D face recognition can be found in [5]. Recent and
successful 3D and 2D+3D face recognition methods ([12],
[15]) rely on the assumption that some predetermined facial
points, which usually comprise the nose tip and the eye
corners, can be robustly identified. To identify such points,
however, heavy limitations on pose variation must be imposed.
Moreover, facial expressions or acquisition noise can impair
their search or prevent their robust localisation. In the cited
works, the extracted points are subsequently used to initialise
a registration of two face scans, so failure in their localisation
will result in the impossibility to move on to the registration
step. If we aim at improving recognition rates in less restrictive
scenarios, where pose variations may occur, methods that
automatically select and match interest points of a pair of
image faces or scans are better suited. After two sets of
matching feature points of a pair of faces have been collected,
they are used to segment different areas of the faces, usually
the most stable to expression variations, and these areas are
coarsely registered using the correspondences of the points.
The coarse registration is refined either by means of the ICP

algorithm [3] or some of its variants, as in [12], [1], [11], or
by random based searches for the optimal registration, based
for instance on Simulated Annealing (SA) [15], or by both
[9]. ICP is a computationally efficient algorithm but it does no
guarantee that the transformed surface after the last iteration is
the one that globally minimises the mean squared error (MSE).
Indeed, depending on the coarse registration and the shape
of the areas, the iteration process might well stop at a local
minimum. On the other hand, the SA, being based on a random
search, does not incur local minima, but it is more demanding
from the computational point of view. The similarity measure
between two faces is given by the MSE after the last iteration
when the ICP is used, whereas in [15] a measure of the
intersection of the two surfaces (the Surface Interpenetration
Measure) is used. Both measures can be challenged by the
presence of expressions or differences in sample density.
With these premises, in [7] we started to explore alternatives to
the extraction of predetermined points and to the registration
of the scans. To extract feature points from a face image we
experimented the Scale Invariant Feature Transform (SIFT).
Corresponding feature points were subsequently projected on
the point clouds and used to generate joint differential in-
variants based on local and global shape information. The
number of invariant matches under a fixed threshold was used
as similarity score between scans. Experimental results showed
that the 3D invariants improve recognition rates over SIFT
alone, particularly when the number of SIFT matches is in the
range [3, 20]. It also became evident that, in order to reach
state of the art recognition rates, more iconic points needed
to be extracted. In this paper, we adopt an alternative iconic
points extraction method to SIFT, namely the Speeded-Up
Robust Features (SURF) [2]. Our choice fell on SURF after
the following consideration: SIFT provide accurate key-point
localisation but the descriptor is based on weak information
(local orientation histograms of image gradients); SURF, on
the other hand, are based on integral images, which lead to a
less stable key-point localisation, but adopt a descriptor which
outperform SIFT in almost all cases. Once that corresponding
SURF points are extracted, they are projected on the respective
point clouds and can be used to generate the 3D joint differ-
ential invariants by following the same procedure as in [7]. A
comparative analysis of the two procedures (SIFT augmented
by 3D invariants and SURF augmented by 3D invariants),
demonstrates the feasibility of a feature level fusion: SIFT
and SURF points from two images are extracted and matched
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separately, then joined in a set of iconic points from which the
3D invariants are calculated. Experiments run on the FRGCv2
database show that SURF are a suitable feature points extractor
for our multimodal paradigm. Results show that the fusion of
SIFT and SURF remarkably improves recognition rates, which
demonstrate the complementarity of SIFT and SURF in our
context.

II. THE ICONIC DRIVEN FACE RECOGNITION MODEL

SIFT have been successfully used for key point localisation
and 2D face recognition [4]. They are based on a scale-
space representation obtained by successive smoothing of the
original image with Laplacian of Gaussian kernels of different
size. Note that the LoG operator is circularly symmetric and
particularly suitable to detect blob-like structures. Recently,
Lowe proposed an efficient algorithm for object recognition
based on the approximation of the LoG by difference-of-
Gaussian (DoG) filters [10]. This approximation can signifi-
cantly accelerate the computation process, reaching real-time
performances. SIFT descriptors are based on local orientation
histograms of image gradients. They are invariant to scale
and rotation transformations but they are challenged by strong
illumination variations and face expressions. Moreover, a com-
mon drawback of the DoG representation is that local maxima
can also be detected in the neighbourhood of contours or
straight edges, where the signal change is only in one direction.
These maxima are less stable because their localisation is
more sensitive to noise or small changes and usually require
additional processing steps to remove unreliable points. SURF
[2] in turn, are based on a very basic Hessian-matrix approxi-
mation, obtained by the use of integral images. This approach
drastically reduces the computation time and usually increases
the number of key-points detected, at the cost of a less accurate
localisation. On the other hand, the SURF descriptors are built
on the distribution of first order Haar wavelet responses in x
and y direction rather than the gradient. This has proved to
be fast and to simultaneously increase the robustness of the
descriptor. In particular, Bay and colleagues have shown that
SURF descriptors outperform SIFT in case of blur and scale
changes.

The above mentioned characteristics of SIFT and SURF
make them the ideal iconic points extractors for our recognition
paradigm. Indeed, the 3D joint differential invariants are cal-
culated from triplet of surface points and produce a signature
that characterises the surface up to Euclidean motions [13]. In
the case of a point cloud, such as a face scan, computational
time issues impose that the invariants are calculated from a
small subset of scan points (see [6], where about 12 points
were selected). If the feature points between two faces are
already matched, however, the invariant step becomes much
less demanding from a computational point of view and more
feature points can be allowed (up to 100 per face). Since
SIFT and SURF both come with descriptors able to match
the points, we can take this burden off the 3D invariants and
speed up the 3D processing step by limiting the role of the
invariants to validating the matchings and defining a measure
of similarity between the two faces. In the following sections,
the proposed face recognition model is unfolded. In figure 1,
a block diagram of the proposed recognition paradigm applied
to a pair of faces is shown: it takes as input 2D and 3D face
data and returns the similarity score of the two faces.

Fig. 1. Block diagram of the similarity evaluation of two faces

A. Face Preprocessing

Our proposed model is based on both the texture and shape
information of a face. We require that these are registered:
each pixel of the face image corresponds to a point of the
scan. Before we extract SIFT and SURF points we need to
preprocess the face images. A light preprocessing on the scans
to remove spikes and noise is necessary.

1) 2D Face Localisation and Equalisation: To segment the
oval of the face we first use the Viola-Jones algorithm ([16]) to
locate the ROI of the face. From the ROI of the face we extract
the ellipse centred in the centre of the ROI and with axes equal
to the edges of the ROI. This approximates the face oval. SIFT
and SURF are sensitive to illumination variations. Since many
databases (FRGCv2 included) were collected in uncontrolled
illumination environments, we apply an histogram equalisation
algorithm to the images.

2) 3D Filtering: Having extracted the face oval from the
2D image, we extract the 3D face from the scan by considering
the subset of 3D points corresponding to the pixels of the
face oval. 3D scans can arise from a variety of instruments:
structured light systems, laser scanners etc. Different acquisi-
tion systems lead to different types of acquisition errors. For
instance, a reflective patch of skin can cause spikes in the scan.
The 3D validation step relies on local information to estimate
the normals to the face at the characteristic points. To get
a robust estimation we need to remove outliers (spikes and
isolated points) and attenuate noise. To remove outliers from a
scan F of n points, we estimate the average sampling density
of the scan as δr(F ) = 1/n

∑n
j=1 δr(pj), where δr(pj) =

|{q|q ∈ Ur(pj)}| and Ur(pj) = {q ∈ F | ‖q − pj‖ < r} and
then remove the points pi ∈ F such that δr(pi) < δr(F )/4.
Noise is mostly due to acquisition error which occurs along
the z-coordinate. After removing outliers we found a mean
filter along the z-coordinate to be the most effective way to
attenuate noise in view of the normals estimation.

B. Iconic Feature Points Extraction and Matching

From each image face we extract two sets of characteristic
iconic points using SIFT and SURF.

1) SIFT Extraction: SIFT points are extracted using the
original algorithm implemented by Lowe (see [10]). For faces

4613



Fig. 2. Matched SIFT points of two images of the same subject.

Fig. 3. Matched SIFT points of two images of different subjects.

in the gallery database G, this step can be done off-line, so
for each face Gi ∈ G we will have a set of SIFT AGi which
includes the location of the SIFT points and the description
vector. When a probe face F comes in, SIFT AF are extracted
and matched against all gallery faces. After the SIFT matching
we will have two sets (Am

F , Am
Gi

), Gi ∈ G of matching image
points of equal cardinality (which in our experiment was in
the range [0, 64]), for all faces in the gallery. In figure 2, the
matching SIFT points of two images of the same subjects are
displayed, whereas in figure 3 we see the matching SURF
points of images relative to different subjects.

2) SURF Extraction: To compute the SURF the OpenSurf
code is used [OpenSurf]. Analogously to the SIFT extraction,
gallery faces can be processed off-line so for each face Gi ∈ G
we will have a set of SURF BGi which includes the location
of the SURF points and the description vector. To calculate
the distance between the descriptor vectors we implemented
the same technique used for SIFT with a threshold t = 0.6.
When a probe face F comes in, SURF BF are extracted and
matched against all gallery faces. After the SURF matching we
will have two sets (Bm

F , Bm
Gi

), Gi ∈ G of matching image
points of equal cardinality. In our experiments, the average
cardinality was higher than the one of SIFT, ranging from 0 to
85. In figure 4, the matching SURF points of two images of
the same subjects are displayed, whereas in figure 5 we see the
matching SURF points of images relative to different subjects.

3) Iconic Points Extraction: Once SIFT and SURF points
are extracted and matched from two faces F and Gi we can

Fig. 4. Matched SURF points of two images of the same subject.

Fig. 5. Matched SURF points of two images of different subjects.

join them into two sets of undistinguished iconic points: IF =
Am

F ∪Bm
F and IGi

= Am
Gi
∪Bm

Gi
. In figure 6, we can see on the

left all SIFT and SURF extracted from a face, and on the right
the surviving ones after the matching. SIFT are displayed with
red stars, SURF with blue circles. The right image in figure
shows there are 24 matching SIFT and 29 matching SURF,
and they located the same (or very close, up to about 4 pixels)
interest points 8 times, so there is an intersection between the
two sets of points of about 30%. The remaining points are
well spread in the face image which shows that the two iconic
extraction methods are able to select complementary points.
The union of the two types of features has the potential to
increase their descriptiveness.

C. 3D Joint Invariants Validation

The proposed iconic extractors and descriptors are based on
local information around a point, and an established correspon-
dence derives from the similarity of the descriptors vectors.
Neither the SIFT nor the SURF descriptors take into account
the relative position of the points. Following the framework
in [6] we validate the iconic correspondences by calculating
3D invariants on the corresponding points in the scans. The
invariants we use arise from the Moving Frame Theory [13]
and are based on the relative position of the points and local
shape information. The procedure that leads to the generation
of the invariants is discussed in full details in [6], here we
just outline it. We generate invariants that depend on three
points at a time. The invariant a triplet of points generates is
a 9−dimensional vector whose first three entries are the inter-
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Fig. 6. Left: Extracted SIFT and SURF points on a subject image.
Right:Matched SIFT and SURF points on a subject image.

point distances and the last six are functions of scalar and
wedge products of various vectors, as defined by the formulae
that follow.

1) Invariants Definition: Let p1, p2, p3 ∈ F and νi be
the normal vector at pi. The directional vector v of the line
between p1 and p2 and the normal vector νt to the plane
through p1, p2, p3, are defined as:

v =
p2 − p1

‖p2 − p1‖ and νt =
(p2 − p1) ∧ (p3 − p1)
‖(p2 − p1) ∧ (p3 − p1)‖ .

The zero order invariants are the 3 inter-point distances
Ik(p1, p2, p3) for k = 1, 2, 3:

I1 = ‖p2 − p1‖, I2 = ‖p3 − p2‖ and I3 = ‖p3 − p1‖
whereas the first order invariants are

Jk(p1, p2, p3) =
(νt ∧ v) · νk

νt · νk
for k = 1, 2, 3

and

J̃k(p1, p2, p3) =
v · νk

νt · νk
for k = 1, 2, 3.

Each triplet (p1, p2, p3) of points on the surface is now
represented by a 9-dimensional vector whose coordinates are
given by (I1, I2, I3, J1, J2, J3, J̃1, J̃2, J̃3)

2) Invariants Generation and Matching: Given a set of
iconic point features (either SIFT, SURF or their union) of
a face F , and one of a face Gl we first generate the 3D joint
differential invariants for both faces. If there are n matching
points, there will be

(
n
3

)
invariant vectors. The next step is

to define a metric to compare the invariant vectors. Since
the invariants I1, I2, I3, J1, J2, J3, J̃1, J̃2, J̃3 are of different
nature and can assume values in a variety of ranges ([7]) we
proceeded by testing three different distances: Euclidean, Ma-
halanobis, Manhattan. The Euclidean distance was calculated
both on the invariant vectors as defined in section II-C1, and
on the same vectors normalised using standard deviation. We
found that, amongst all, the Euclidean distance on the original
vectors was the best suited one as it weighted slightly more the
inter-point distances (the first three coordinates of the invariant
vectors) which are more stable than the first order invariants

(corresponding to the last six coordinates of the vectors).
The invariant vectors of corresponding triplets are therefore
compared using the Euclidean distance in 9−dimensional
space. The similarity measure between the probe face F and
the gallery face Gl is given by the number of invariant vectors
of F whose distance from the corresponding invariant vector

in Gl is less than a fixed threshold σ: SGl
=

∣
∣
∣{d̃i | d̃i < σ}

∣
∣
∣. In

an identification scenario, the matching gallery face is chosen
to be the face Gj such that SGj

= maxGk∈G{SGk
}, i.e. the

face with the greatest similarity measure.

III. EXPERIMENTAL EVALUATION

The proposed method was tested on the FRGCv2 database.
Our goals were the following:

• Verify the feasibility of using SURF to extract iconic
features for our multimodal paradigm, i.e. to see if 3D
validated SURF features outperform SURF alone.

• Compare its performance to the baseline model of 3D
validated SIFT proposed in [7].

• Establish if SIFT and SURF features can be success-
fully joined and, if so, to measure the improvement
over SIFT+SURF alone and over the use of a single
iconic feature selector at a time.

A. FRGCv2 Description

The FRGCv2 database [14] collects scans and images of
466 subjects. There is a variable number of acquisitions per
subject, the maximum being 22, for a total of 4007 acqui-
sitions. Each acquisition consists of a scan and a registered
image whose resolution is 640 x 480. Faces were not captured
always from the same distance which results in different
resolutions of the images and different sampling density of
the scans. There is little variation in the pose of the subjects,
whereas variations of illumination and expressions are rele-
vant. Expressions are classified as “blank-stare” (i.e. neutral),
“happiness”, “sadness”, “disgust”, “surprise”, “others”. The
FRGC provides a training set, Spring2003, on which to train
algorithms or set thresholds. We used it to define a distance to
compare invariant vectors and to set the threshold σ. Different
values of σ in the range [1, 6] were considered. For σ = 4 the
best recognition rates were obtained so we set that value for
subsequent experiments on the validation test.

B. Experimental Set Up

To test the proposed models and compare them to the
baseline in [7] , we maintain the same experimental set up,
which was also adopted in [8], [12], [15], [9] and it is usually
named “First versus All” . The gallery set “First” consists of
the pairs of scans and images relative to the first acquisition
of each subject. There are therefore 466 pairs. Almost all
of them are neutral. The probe set “All” consists of all the
remaining acquisitions: 3541 pairs, of which 1984 are labelled
as neutral and 1557 as non-neutral. We assume an identification
scenario, where a probe subject has to be correctly matched
to his instance in the gallery database.

Given this experimental set up we implemented different
recognition paradigms:
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TABLE I. COMPARATIVE RESULTS OF DIFFERENT RECOGNITION

METHODS ON THE FIRST-V-ALL EXPERIMENTAL SET UP

Method Recognition Rates

SIFT 76.6%

SIFT+Inv 81%

SURF 71.6%

SURF+Inv 80.1%

SIFT+SURF 82.5%

(SIFT+SURF)+Inv 86.7%

(SIFT+Inv)+(SURF+Inv) 85.2%

• SURF on face images

• 3D validated SURF on face images and scans, which
will be called SURF+Inv

• SIFT+SURF on face images

• 3D validated SIFT and SURF points, which will be
called (SIFT+SURF)+Inv

The first and third are purely 2D identification tests that
use, in turn, the number of SURF and SIFT+SURF matches
as a similarity score. Each face in the probe set was compared
to all faces in the gallery set. The gallery face with the highest
number of SURF (SIFT+SURF) matches was matched to the
probe face. The second and fourth are two versions of the
iconic driven face recognition model: SURF followed by 3D
invariant validation and SIFT+SURF followed by 3D invariant
validation. For each face of the probe set, the similarity scores
with all faces in the gallery set were calculated. The gallery
face with the highest similarity score was chosen as the
correct match. All algorithms were implemented in MatLab
and the running time for comparing a probe face to all 466
gallery faces was on average 120s for SURF+Inv and 160s for
(SURF+SIFT)+Inv on a Intel Core i7 workstation.

C. Experimental Results

Recognition rates for the proposed recognition paradigms
are shown in table I. In the first two lines, results from
the baseline experiment with SIFT carried out in [7] are
reported. From the third line onward, recognition rates for the
paradigms SURF, SURF+Inv, (SIFT+SURF)+Inv are shown.
SURF prove to be less reliable than SIFT, but when validated
by invariants they score only 1 percentage point less than the
SIFT+Inv, so the invariants are very effective at validating
SURF matches, mainly by discarding false matches when
comparing faces of different subjects. SIFT+SURF however,
outperforms both SURF and SIFT, so the two iconic features
extraction methods prove to be complementary. This is still
evident in the experiment (SIFT+SURF)+Inv, where recogni-
tion rates are almost seven percentage points higher than those
of the SIFT+Inv baseline experiment. The last row in the table
refers to recognition rates obtained by fusing the scores of
SIFT+Inv and SURF+Inv. The fusion at score level in this
case is less effective than that at feature level, making SIFT
and SURF ideal partners for the extraction of iconic feature
points.

The search for other iconic points extractors arose when the
baseline experiment showed that low performances occurred in

TABLE II. IDENTIFICATION SCORES FOR DIFFERENT SIFT MATCHES

RANGES IN THE FIRST-V-ALL CASE

Range of

SIFT matches

Nr. of matches

over Nr. of scans in range

SIFT SIFT+Inv

0 ≤ N ≤ 2 0/111 0/111

3 ≤ N ≤ 5
4/252 23/252

1.6% 9.13%

6 ≤ N ≤ 10
211/574 319/574

36.76% 55.57%

11 ≤ N ≤ 20
1213/1320 1237/1320

91.89% 93.71%

21 ≤ N
1284/1284 1284/1284

100% 100%

TABLE III. IDENTIFICATION SCORES FOR DIFFERENT SURF MATCHES

RANGES IN THE FIRST-V-ALL CASE

Range of

SURF matches

Nr. of matches

over Nr. of scans in range

SURF SURF+Inv

0 ≤ N ≤ 2 0/35 0/35

3 ≤ N ≤ 5
0/116 1/116

0% 0.86%

6 ≤ N ≤ 10
30/418 115/418

7.18% 27.51%

11 ≤ N ≤ 20
855/1309 1060/1309

65.32% 89.98%

21 ≤ N
1651/1663 1657/1663

99.28% 99.64%

the cases where a face did not have enough SIFT matches with
its counterpart in the gallery database, see table II. We show the
same analysis based on matches ranges in the case of SURF in
table III. It turns out that SURF matches are more numerous
on average. If we analyse the different matches ranges for
the fusion of SIFT and SURF (see table IV) we notice that
there are less faces with few iconic feature points. Indeed,
for the SIFT matches alone were ≤ 10 for 937 faces out of
3541, whereas SIFT+SURF are ≤ 10 for only 196 cases. The
addition of SURF points to the SIFT ones has therefore proved
to provide complementary iconic points and boost recognition
results.

The Cumulative Match Curve (CMC) for all experiments
carried out is presented in figure 7. At rank 2 the recognition
rate for the (SIFT+SURF)+Inv experiment is 89.8%, at rank
10, 93.5%.

In table V, it is shown how different expressions in
the probe set “All” affect recognition in the experiment
(SIFT+SURF)+Inv. Confirming the finding in our previous
work [7], faces labelled by the FRGCv2 as Blank-Stare (neutral
faces) prove to be easier to recognise by the algorithm.

IV. CONCLUSION

The work presented in this paper was motivated by the
work in [7] in which SIFT were coupled to 3D joint differential
invariants to provide a multimodal face recognition model
that would not require neither the location of predetermined
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TABLE IV. IDENTIFICATION SCORES FOR DIFFERENT SURF+SIFT
MATCHES RANGES IN THE FIRST-V-ALL CASE

Range of

SURF+SIFT matches

Nr. of matches

over Nr. of scans in range

SURF+SIFT (SURF+SIFT)+Inv

0 ≤ N ≤ 2 0/12 0/12

3 ≤ N ≤ 9
0/148 8/148

0% 5.41%

10 ≤ N ≤ 19
141/461 218/461

30.59% 47.29%

20 ≤ N ≤ 29
545/675 600/675

80.74% 88.89%

30 ≤ N ≤ 39
680/689 681/689

98.69% 98.84%

40 ≤ N
1556/1556 1556/1556

100% 100%

Fig. 7. Cumulative Match Curve for the experiments in table I.

TABLE V. (SIFT+SURF)+INV RECOGNITION RATES ON EXPRESSION

SUBSETS OF THE PROBE SET ALL

Expression Nr. of matches/Nr. of scans Recognition Rates

Blank Stare 1821/1984 91.78%

Happiness 246/304 80.92%

Other 425/537 79.14%

Surprise 280/339 82.60%

Disgust 143/201 71.14%

Sadness 148/176 84.09%

iconic (or 3D) points nor the registration of the scans. The
results were promising: the validation of SIFT through 3D
invariants improved recognition rates. However, it was also
evident that SIFT alone was not a robust enough method to
extract enough salient points, which spurred us to search for
more iconic points to be added to the SIFT ones. Here we
have explored the use of SURF, which consist of a key-point
detector based on integral images and a descriptor that is
more robust to blur and scale changes than the SIFT one.
SURF proved to be less descriptive when used alone, but
reached almost the same recognition rates when coupled to
3D invariants. Moreover, the fusion a feature level of SIFT and
SURF iconic points, followed by validation through invariants
induced a remarkable improvement in recognition rates. Most
recent 2D-3D techniques ([12], [15], [8], [9]) assessed their
recognition method using the same protocol First vs All and

report performances ranging from 92% [8] to 98% [15]. To
try to reach similar scores, we can proceed in different ways:
persevere in the search of other descriptive iconic points, for
example by using edge and corner detectors, to completely
exploit the 2D information of the face, or integrate the iconic
points with 3D points. 3D feature points extraction is more de-
manding than its 2D counterpart but it would not be necessary
to perform it for all faces; in fact it is clear from the results
that the search of additional 3D key-points could be restricted
to the small set of faces from which SIFT and SURF cannot
extract enough iconic features.
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