
Dynamic Task Decomposition for Probabilistic
Tracking in Complex Scenes

Tao Hu1,2, Stefano Messelodi1, Oswald Lanz1

1Fondazione Bruno Kessler, Trento, Italy 2ICT Doctoral School, University of Trento, Italy

Email: {hutao,messelod,lanz}@fbk.eu

Abstract—The employment of visual sensor networks in
surveillance systems has brought in as many challenges as
advantages. While the integration of multiple cameras into a
network has the potential advantage of fusing complementary
observations from sensors and enlarging visual coverage, it also
increases the complexity of tracking tasks and poses challenges
to system scalability. A key approach to tackling these challenges
is the mapping of the demanding global task onto a distributed
sensing and processing infrastructure. In this paper, we present an
efficient and scalable multi-camera multi-people tracking system
with a three-layer architecture, in which we formulate the overall
task (i.e. tracking all people using all available cameras) as
a vision based state estimation problem and aim to maximize
utility and sharing of available sensing and processing resources.
By exploiting the geometric relations between sensing geometry
and people’s positions, our method is able to dynamically and
adaptively partition the overall task into a number of nearly
independent subtasks, each of which tracks a subset of people
with a subset of cameras. The method hereby reduces task
complexity dramatically and helps to boost parallelization and
maximize the real-time throughput and available resources of
the system while accounting for intrinsic uncertainty induced,
e.g., by visual clutter, occlusion, and illumination changes. We
demonstrate the efficiency of our method by testing it with a
challenging video sequence.

Keywords: multi-camera tracking, object tracking, dis-
tributed tracking, resource allocation, task assignment

I. INTRODUCTION

Visual tracking has been a vigorous research topic in the
computer vision domain, due to its widespread applications in
such fields as ambient assisted living, sports analysis, traffic
control, urban surveillance etc.. Nowadays visual surveillance
often involves monitoring large, open areas (e.g., airports)
with multiple networked cameras. The employment of visual
sensor networks in surveillance systems has brought in as many
challenges as advantages. While the integration of multiple
cameras into a network has the potential advantage of fus-
ing complementary observations from sensors and enlarging
visual coverage, it also increases the complexity of tracking
tasks and poses challenges to system scalability. Traditional
methods of tracking all the targets with a joint likelihood
can easily incur the curse of dimensionality as the number
of targets increases. On the other hand, tracking with totally
independent particle filters often results in the problem of
hijacking [1]. Another issue arises from the enlarged area
to be monitored and the increased number of views to be
processed. Larger area means more computational resources
to be allocated for the detection process and more views
means more data to be processed, hence engendering more
computational overhead. How to curtail the computational load

so as to maintain real-time tracking without losing frames is
then a big issue. Besides, camera networks usually have limited
resources such as communication bandwidth and sensors typ-
ically have limited or even no computational capabilities, the
way of information gathering, sharing and processing among
cameras is then of crucial importance. A possible approach to
tackling these challenges would then be to dynamically map
the demanding global task onto a decentralized or distributed
sensing and processing infrastructure. In this paper, we demon-
strate that the overall tracking task can be split into nearly
independent subtasks corresponding to the tracking of subsets
of people, thereby reducing computational load and saving
communication bandwidth due to branched image transfer. Our
dynamic task decomposition strategy brings out a three-layer
architecture for the tracking system (Fig. 1), in which cameras
constitute the bottom layer and are dynamically grouped into
clusters (or agencies, the middle layer) which track a subset
of targets. The top layer is a supervisor process which takes
care of target detection and release, and task decomposition.
For real-time consideration, we design a simple but effective
cost function which measures the cost of assigning a subset of
targets to an agency, and propose a method for dynamic task
decomposition.

Fig. 1: The three-layer architecture of our tracking system.

The remainder of the paper is structured as follows. Section
2 covers some state-of-the-art work to our interest. Section 3
presents how we formulate the problem. Section 4 details how
we implement dynamic task decomposition. Experimental re-
sults and conclusions are given in Section 5 and 6 respectively.

II. RELATED WORK

In the context of multi-camera multi-object tracking with
overlapping fields of view (FOVs), a number of issues have to
be considered in order to achieve reliable real-time tracking,

2014 22nd International Conference on Pattern Recognition

1051-4651/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPR.2014.708

4134

balance system computational load and data flow, and thus
enhance system scalability.

One of these issues is how to minimize computational cost
and circumvent the curse of dimensionality. A possible strategy
is to reduce observations for evaluation, since observation and
likelihood computation is the most costly part during tracking.
Tessens et al. [9] demonstrate that not all cameras are equally
needed for tracking a given target in a distributed smart camera
network and propose to select a subset of cameras for tracking
each target independently. The selection of the subsets is
done by computing a suitability value which is based on the
Dempster-Shafer (DS) theory of evidence. Song et al. [18]
propose to divide the particle set into two subsets: one with
high-quality particles and the other with low-quality particles.
Observations are only performed for the high-quality subset.
Instead of dividing particles, in [15] cameras are dynamically
divided into three subsets: active, passive and inactive. Active
cameras are used for tracking, while passive cameras are not
actually used for tracking but available for evaluation of states
returned by active cameras, and inactive cameras are either
disabled due to power saving or do not have the targets in
view.

Another issue is how to circumvent the curse of dimen-
sionality. Kembhavi et al. [14] propose to divide targets into
interaction groups according to a similarity score and perform
tracking with a joint filter for each group of targets. Lanz
[25] proposes a hybrid joint-separable filter, an approximate
Bayesian tracker that propagates independent representations
for each target with a joint likelihood to manage occlusions,
which has a computational complexity that grows quadratically
with the number of targets. Our proposed method is similar to
[14], however, we differ in that:(1) our approach is decentral-
ized; (2) we divide targets into groups according to occlusion
constraints; (3) we use an HJS filter [16] to track each group
of targets.

A third issue is how to allocate and manage resources
(e.g., computation load, system bandwidth). This is typically
done by best camera(s) assignment approaches [6, 5, 7], i.e.,
assigning the best camera(s) for each target. Li and Bhanu
[6] propose to use game theory and bargaining mechanisms to
perform camera assignment and hand-off in a VSN. Cameras
act as players and bargain with each other to reach an optimal
solution which maximizes the global utility given a number of
criteria. Similarly, Esterle et al. [3] introduce a market mecha-
nism to address object handover during tracking. The camera
assignment problem can also be formulated as a Constraint
Satisfaction Problem (CSP) [7] or a distributed CSP [4] or even
a Stable Marriage Problem [10]. A comparison of methods for
camera selection and handoff can be found in [8]. Different
efficiency measures have been proposed, such as the camera
utility measures [6], trackability measure [19] and suitability
value [9]. In this paper, we design a simple but effective cost
function which measures the cost of assigning an agency to a
subset of targets. Different from the aforementioned measures
which mainly focus on the FOVs of cameras and the size of the
target in the image plane, our cost function takes into account
occlusions between targets and the computational overhead of
the agency.

Besides the above issues, how to fuse the estimates among
cameras or surveillance clusters is of equal importance. As

the monitored scene gets larger and the number of cameras
increases, the tracking system has to be distributed for the sake
of scalability. In distributed tracking systems, usually cameras
track independently and data fusion can be done by in-network
aggregation [12], weight average [2] or Kalman-consensus
filtering [13]. Although distributed tracking algorithms use
less amount of data at every individual node, decentralized
algorithms can share larger amount of data among view
clusters and transmit estimates among fusion centers through
a centralized processor to validate the estimates in return.
Typically decentralized frameworks form cameras into clusters
[17] or hierarchical Fault Containment Units [11], which are
managed by a base station. For a comparison of distributed
and decentralized trackers, please refer to [21] as a survey.
The authors implement some representative decentralized and
distributed algorithms for tracking with multiple overlapping
cameras and multiple targets. Experimental results show the
overall performance favors decentralized algorithms due to
fewer fusion centers compared to distributed algorithms. In
this paper, we also adopt a decentralized framework.

III. PROBLEM FORMULATION

The application scenario addressed in this paper suggests
the choice of a probabilistic framework, since measurements
may convey intrinsic uncertainty which cannot be eliminated
due to occlusion, target similarity and background clutter. Be-
sides, for efficiency reasons, illumination effects (e.g. shadows)
are neglected and only coarse shape and appearance models
can be used, leading to a noisy measurement process. Estimates
are therefore inherently inaccurate and a deterministic frame-
work (such as Mean-shift [22], graph-matching [23]) would
not adequately account for this.

A. Sequential Bayesian framework

In this paper, object tracking is interpreted as a state
estimation problem. Basically, the dynamic components of
interest of the monitored environment are described with a
vector x of numbers, the state, which is evolving in continuous
time and observed at discrete times t through a measurement
vector zt. More specifically, in this paper the state is composed
of the target’s 2D position and velocity w.r.t. the floor plane.
The aim is then to estimate its posterior distribution, or belief,
p(xt|z1:t) at t conditioned on a sequence of observations z1:t
obtained up to t. In order to support sequential estimation
imposed by real time applications, signal xt is modeled as a
first order Markov process, and observations z1:t are assumed
to be conditionally independent given a sequence of states
x1:t. This enables us to compute a new estimate p(xt|z1:t)
solely from the actual observation zt and its previous estimate
p(xt−1|z1:t−1) using stochastic propagation and Bayes law

p(xt|z1:t) ∝ p(zt|xt)

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1. (1)

Eq. 1 provides a widespread algorithmic framework called
Sequential Bayes Filter built upon a probabilistic model which
is fully described by an initial distribution p(x0), the dynamical
model p(xt|xt−1) and the observation model p(zt|xt).

4135

B. Distributed estimation via dynamic factorization

The task of monitoring a large open environment may be
formalized as a single, global state estimation problem. A
Bayes filter can then estimate the joint configuration xt of
all targets (i.e. the vector containing one component for each
target) with the set zt of images captured by all the cameras
at the same time (for unsynchronized streams zt may contain
a single image). It is easy to imagine that applying this joint
filter to real time monitoring may be unaffordable. A more
feasible solution would be to instantiate several sub-filters
with reduced, local competence which together may perform
more efficiently in terms of computational complexity, load
balance on a processor web and data flow management. From
a theoretical point of view it is easy to show that such a choice
is certainly justified when dynamical and observation models
are both separable. While assuming independence among the
motion patterns of targets may be acceptable at least for
short predictions (the Bayes filter is first order in time), this
is certainly not true for the observation model when people
arrange in groups causing frequent and persistent occlusions.
Under occlusion, the appearance of one target cannot but be
explained in relation to that of the occluder, which requires
therefore a joint analysis of captured images. On the other
hand, the same scene may be seen occlusion-free from another
viewpoint where indeed the resulting image can be elaborated
independently for locating each target, thus, at lower com-
putational cost and in parallel. This is the key observation
leading to our task decomposition algorithm described in the
next section: given known view geometry and the targets’
estimated positions, we determine camera-target associations
that maximize parallelization while guaranteeing consistent
occlusion handling.

IV. TASK DECOMPOSITION

A key issue in monitoring large open areas is the mapping
of the demanding global task onto a distributed sensing and
processing infrastructure [24]. As mentioned in the previous
section, a principled approach may be derived by exploring
dependency relations among environment dynamics (target
trajectories) and measurements (utilized cameras). While such
dependencies may appear in many different facets (group
behavior, illumination effects such as shadows), the most
essential one arises from occlusions. The approach proposed
next accounts for this, providing a solution derived from
knowledge about camera placement and target positions under
given constraints.

A. Task decomposition: an example

An example is shown in Fig. 2: tracking four targets
with three cameras. Suppose all four targets are visible in
all three cameras, a trivial solution is to instantiate a single
task with all the three cameras tracking all the four targets
jointly. However, if we have two processing units, we can
decompose the task into two subtasks with reduced complexity
and implement them on the two processing units in parallel.
Furthermore, closeness of targets B, C and D suggests that they
should be grouped together, whereas target A might be handled
separately. This can be derived from occlusion reasoning. The
closeness of targets B, C and D indicates potential occlusions
among them in the three views within a certain time interval,

Fig. 2: Tracking four targets with three cameras: how to optimally
assign cameras, targets to independent tracking processes? The red
dashed circles centered around the targets are the predicted supports
which define all possible positions each target can reach within a
short time period Δt.

as can be seen from the intersecting red dashed circles. Due to
the potential occlusions, targets B, C and D should be tracked
together. Suppose we allocate agency A1 to track A and agency
A2 to track (B,C,D), then in the camera views of A1 target
A must not be occluded by (B,C,D), and in the camera views
of A2 (B,C,D) must not be occluded by A. Cam 1 observes
(B,C,D) occluded by A and can therefore not be used to track
(B,C,D) only (i.e., if Cam 1 is used to track (B,C,D), it must
also track A at the same time.). On the other hand, Cam 1
could take care of tracking A alone because (B,C,D) do not
influence the appearance of A in Cam 1 although they are also
visible1. Cam 2 and Cam 3 could all be associated to both
(A) and (B,C,D) as there are no occlusions among them. An
appropriate choice would then be to instantiate two subtasks:

Sub1 =
{
(A), (1, 2, 3)

}
; Sub2 =

{
(B,C,D), (2, 3)

}
.

This solution does not consider constraints about resources.
In practice, we may have requirements about (1) the minimum
number of cameras in an agency to ensure tracking quality; (2)
maximum number of cameras in an agency for computational
overhead consideration; (3) maximum number of agencies
(which must not be larger than the number of targets) to ensure
there are enough available processing units for every subtask
to be mapped into. Besides, this solution is only the snapshot
decomposition in Fig. 2. Task decomposition should not be
carried out with a frequency comparable to the observation
rate. A lower rate may be employed while accounting for
potential occlusions within a given time interval. To sum up,
a task decomposition algorithm must be able to: (1) detect
potential interactions (i.e. occlusions) among targets , and (2)
reason about efficiency (or cost) and suitability of a possible
decomposition, which will be detailed in the next sections.

B. Occlusion reasoning

As outlined in Sec. III-B, the allocation of a set of subtasks
remains sustainable as long as the measurement model remains
separable over the support of estimated beliefs. Verifying this
at full resolution is not required: we may limit ourselves to

1We extract color information of the target by projecting a 3D shape model
to the image plane as in [16]. The color information can be extracted for
likelihood evaluation as long as the target is not occluded in the camera view.

4136

detect potential occlusions while reasoning on a horizontal
reference plane, with a discrete loss function which takes
value 1 where a potential occlusion is detected and value 0
elsewhere.

To further reduce complexity, the prior belief utilized
is taken uniform on a circular support centered around the
estimated target position (an MAP estimate over the belief, or
simply its expectation). Its predicted support is then obtained
as the envelope of all the positions that can be reached within
a time span at a predefined maximal velocity. This corresponds
to drawing a circle around the current position with a radius
R equal to the product of the maximum velocity and a time
span (the red dashed circles in Fig. 2):

R = V (ΔT + τ). (2)

where V is the predefined velocity, ΔT is a fixed short
time interval, and τ is the estimated time needed for task
decomposition. While V and ΔT can be defined a priori, τ
can be computed as the average time for task decomposition
for different number of targets in the scene. To detect potential
occlusion in each view, we draw a circle around the camera
viewpoint and project the support outline of each target to
the circle. If the projection of outlines have intersection, then
occlusion is detected (Fig. 3).

Fig. 3: Potential occlusion detection.
�

A0A1 and
�

B0B1 are the
projections of the support outlines of targets A and B to the circle
centered at the viewpoint of the camera. (a) No occlusion between A

and B when
�

A0A1 and
�

B0B1 have no intersection. (b) Occlusion is

detected when
�

A0A1 and
�

B0B1 have intersection.

C. Cost measure for task decomposition

Since in most cases there are many feasible solutions for
task decomposition even given a number of constraints, we
need to quantify the cost for each decomposition. The optimal
solution is the one with the lowest cost.

Efficient task decomposition relies on the choice of an
appropriate function to quantify the cost. It should account
for computational load as well as for sensing and networking
issues. When splitting a joint filter into agencies with compe-
tence on a subset of Ki targets, the computational complexity
reduces from e

∑
κi to

∑
eKi (in case of the more efficient

HJS filter [16] from (
∑

Ki)
2 to

∑
K2

i). Another factor that
influences performance is the number and spatial distribution
of attached sensors. A higher number guarantees better visual
coverage, but at the cost of higher observation overhead, power

Fig. 4: The coverage rate of a target.

consumption (camera cannot be switched off) and networking
load (image transfer). To measure agency utility, we compute
the overall coverage rate of the support outlines of all the
targets in the agency. Fig. 4 shows an example how the
coverage rate is computed. In the example, the coverage of
target T is Cov(T) = L �

ACBD
/C, where L �

ACBD
is the length

of the arc
�

ACBD and C is the circumference of the support
outline. Although simple, the coverage rate is able to reflect the
common sense that the utility depends on the relative positions
of the cameras. Here we do not design a very sophisticated and
impeccable utility measure because it is not worth the efforts
and the computational cost is a major concern. With all these
factors considered, a suitable cost function to be minimized is∑

i

n2
t (Ai) + α

∑
j

(1− Cov(Tj)) (3)

where nt counts the number of targets of agency Ai, and
parameter α modulates the importance of agency utility. Al-
though simple, Eq. 3 already considers the most important
aspects of task distribution over a complex infrastructure. With
this cost measure, we can dynamically partition the cameras
and targets and select the best subtask configuration that results
in the least cost.

D. Dynamic task decomposition

Decomposing the overall task is basically to find the
optimal configuration of subtasks under given constraints.
Let’s denote the number of cameras by Nc, the number
of targets by Nt, the maximum number of agencies by
MAXa, the minimum and maximum number of cameras
each agency can have by MINc and MAXc, the max-
imum number of agencies each camera can be assigned
to by Mi. The idea is first to partition the camera set
{C11...C1M1 , ..., Ci1...CiMi , ..., CNc1...CNcMNc

} to produce
agencies (subsets of cameras), and partition the target set
{T1, T2...TNt} to produce groups of targets, where Ci1...CiMi

are multiple copies of camera Ci and Mi is the maximum
number of agencies camera Ci can be assigned to (we in-
troduce multiple copies to allow each camera to be assigned
to more than one agency). Camera partitions that do not
meet the constraints of MAXa, MINc and MAXc should
be precluded. In this way, we get a camera partition set Sc

and a target partition set St. Each camera partition contains
a set of agencies and each target partition contains a set
of target groups. Then for each camera partition and each
target partition we enumerate all the possible configurations
of subtasks (combinations of agencies and target groups) and
check whether they meet our required occlusion constraint (i.e.,

4137

the targets tracked in one agency must not be occluded by
targets tracked in another agency). If so, compute the cost
according to Eq. 3. Finally the configuration with the least cost
is selected. In practice, the partitions of cameras and targets
as well as the combinations of agencies and target groups can
be computed offline and stored in a lookup table. A piece of
pseudo code is shown in Algorithm.1.

Algorithm 1 Dynamic task decomposition

compute camera partition set SC ;
compute target partition set ST ;
costmin = MAX DOUBLE; configbest; //configbest is the
best configuration
for each camera partition PCi ∈ SC do

for each target partition PTj ∈ ST do
if PCi.size == PTj .size then

generate all possible configurations (Sconfig) of subtasks
(combinations of camera subsets and target subsets)
(SubCk, SubTl); where SubCk ∈ PCi, SubTl ∈ PTj ;
for each configuration confm ∈ Sconfig do

if Occlusion constraint is met then
compute the cost costm;
if costm < costmin then

costmin = costm;
configbest = confm;

end if
end if

end for
end if

end for
end for

V. EXPERIMENTS AND RESULTS

We tested our algorithm with a challenging sequence
taken in our lab, where four cameras are installed at the
corners. The sequence is about 3.5 minutes long captured at
15 Hz with a resolution of 640×480 pixels . Through the
sequence, people enter, walk around, sit down and exit the
room randomly, causing frequent occlusions. The maximum
number of people in the scene at the same time is 7 and
the ground truth was done by manual labeling. The sequence
together with ground truth and calibration files are available
at: http://tev.fbk.eu/databases/lab.html.

In the experiment, we imposed the following constraints:
MAXa = 3;MINc = 2;MAXc = 3;Mi = 2, 1 ≤ i ≤ 4
(this enforces that each camera can be assigned to maximum
2 agencies). We set V to 1.5m/s and ΔT to 0.2s in Eq. 2. The
time used for task decomposition depends on the nummber of
cameras and the number of targets. In the case of 4 cameras
and 7 targets, it is negligible. So R ≈ 1.5 ∗ 0.2 = 0.3m. The
choice of R influences the performance. A larger R makes the
task less decomposable (e.g., when R becomes infinity, the
task cannot be decomposed because of potential occlusions
among all targets so the tracker turns out to be centralized),
and a smaller R means more frequent decomposition which
may compromise the performance since target handover takes
time. The initialization of the tracker was the same as in [20].
We verified the efficiency of our approach by measuring the
MOTA/MOTP (Multiple Object Tracking Accuracy/Precision)
metrics as proposed in [26], which provides a systematic evalu-
ation to compare the performance of different trackers in terms

TABLE I: Evaluation of the centralized HJS tracker.

Run MOTP miss fp mismatches MOTA

1 61mm 17.4% 2.3% 6 80.3%

2 70mm 21.4% 13.2% 7 65.4%

3 59mm 20.1% 2.1% 12 77.7%

4 59mm 24.4% 8.9% 8 66.6%

5 67mm 17.3% 3.5% 6 79.2%

Average 63.2 20.12% 6.0% 7.8 73.84%

TABLE II: Evaluation of the proposed decentralized tracker.

Run MOTP miss fp mismatches MOTA

1 85mm 8.9% 2.1% 4 88.9%

2 84mm 10.0% 3.3% 5 86.7%

3 83mm 8.7% 3.6% 2 87.7%

4 93mm 12.8% 2.8% 16 84.3%

5 89mm 9.1% 3.5% 5 87.4%

Average 86.8 9.9% 3.06% 6.4 87.0%

of tracking accuracy and consistent labeling. We compared
the proposed approach with a joint HJS tracker proposed in
[16]. Table 1 and 2 show the evaluation results with 5 runs.
As can be seen, the average MOTA score of the proposed
approach has over 10% gain compared to the centralized
approach. This is because the centralized tracker lost more
frames during tracking. As the number of targets increases, the
centralized tracker may not be able to handle the computational
burden and has to lose frames, thus producing unreliable
tracking results (the MOTA score is very low sometimes as
can be seen in the table). However, the proposed approach
is able to decompose the task into a number of subtasks
(maximum 3) and implement them on different processors
in parallel. Therefore, the evaluation scores are very stable.
The centralized tracker has a better MOTP score because it
uses 4 cameras for each target, while the decentralized one
use at most 3 cameras for each target. Fig. 5 shows a map
of the environment and a screen shot of the tracker. At the
specific instant, there are 7 targets in the scene (T1 ∼ T7,
the supports of which are denoted by the circles in the map).
The tracker instantiates 3 agencies: A1 ={Cam 1, Cam 2},
A2 ={Cam 2, Cam 3}, A3 ={Cam 1, Cam 3, Cam 4}, which
tracks the target groups G1 ={1}, G2 ={2, 3, 4, 5}, G3 ={6,
7} respectively. We can see this decomposition is reasonable
from the geometric relations of the cameras and the estimated
positions of the targets on the map.

VI. CONCLUSION

Visual tracking is challenging in large complex scenes
where there are many people occluding each other. A major
issue is how to maintain reliable real-time tracking, balance
system computational load and data flow, and thus enhance
system scalability. In this paper, we proposed a decentralized
multi-target multi-object tracking system, which has a three-
layer architecture. With the proposed cost measure, the ap-
proach is able to dynamically decompose the overall task into
a number of nearly independent subtasks, each of which tracks
a subset of targets with an agency. The association of agencies
and groups of people is based on sensing geometry and the
estimated target positions. Experimental results demonstrate
that the method is able to reduce task complexity and helps to

4138

Fig. 5: A screenshot of the tracker. The left is the map. On the right there are 8 camera views, with the second row being a copy of the first
row (i.e., C12 and C11 both refer to Cam 1.). The lines connecting a target to cameras indicate the target is tracked by the corresponding
cameras. The dots around the targets are particles (hypotheses).

improve real-time tracking performance. Future work will be
focused on how to dynamically decompose the task in a more
efficient way.

REFERENCES

[1] Z. Khan, T. Balch, and F. Dellaert: An MCMC-based particle
filter for tracking multiple interacting targets. In ECCV, 2004.

[2] F. Rezaei and B. H. Khalaj: Distibuted human tracking in smart
camera networks by adaptive particle filtering and data fusion.
ICDSC 2012.

[3] L. Esterle, P. Lewis, M. Bogdanski, B. Rinner, and X. Yao: A
socio-economic approach to online vision graph generation and
handover in distributed smart camera networks. ICDSC 2011.

[4] M. Bramberger, B. Rinner, H. Schwabach: A method for dynamic
allocation of tasks in clusters of embedded smart cameras. IEEE
International Conference on Systems, Man and Cybernetics,
vol.3, pp.2595-2600 2005’

[5] Y. Li and B. Bhanu: Task-oriented camera assignment in a video
network. ICIP 2009.

[6] Y. Li and B. Bhanu: Utility-based dynamic camera assignment
and hand-off in a video network. ICDSC 2008.

[7] F.Z. Qureshi, D.Terzopoulos: Multi-camera Control through Con-
straint Satisfaction for Persistent Surveillance. IEEE Fifth In-
ternational Conference on Advanced Video and Signal Based
Surveillance, pp.211,218, 1-3 Sept. 2008.

[8] Y. Li and B. Bhanu: A comparison of techniques for camera
selection and handoff in a video network. Third ACM/IEEE
International Conference on Distributed Smart Cameras, 2009.

[9] L. Tessens, M. Morbee, H. Aghajan, W. Philips: Camera Se-
lection for Tracking in Distributed Smart Camera Networks. In
ACM Transactions on Sensor Networks, vol. 10, no. 2, 2014.

[10] Cenedese, A.; Cerruti, F.; Fabbro, M.; Masiero, C.; Schenato,
L.: Decentralized task assignment in camera networks. 2010 49th
IEEE Conference on Decision and Control, pp.126,131, 15-17
Dec. 2010

[11] D.R. Karuppiah, R.A. Grupen, z. Zhu, and A.R. Hanson:
Automatic resource allocation in a distributed camera network.
Machine Vision and Applications, vol. 21, pp. 517-528, 2010

[12] Manish Kushwaha, Xenofon D. Koutsoukos. 3D target tracking
in distributed smart camera networks with in-network aggrega-
tion. Fourth ACM/IEEE International Conference on Distributed
Smart Cameras, 2010. P. 25-32.

[13] C. Soto, B. Song, A.K. Roy-Chowhury: Distributed multi-target

tracking in a self-configuring camera network. IE Conference on
Computer Vision and Pattern Recognition, 2009.

[14] A. Kembhavi, W. Schwartz, and L. Davis: Resource allocation
for tracking multiple targets using particle filters. Eight Interna-
tional Workshop on Visual Surveillance (VS2008), 2008.

[15] S. Spurlock, R. Souvenir: Dynamic subset selection for multi-
camera tracking. ACM-SE ’12 Proceedings of the 50th Annual
Southeast Regional Conference.

[16] O. Lanz: Approximate Bayesian multi-body tracking. In IEEE
Trans. Pattern Analysis and Machine Intelligence,2006.

[17] H. Medeiros, J. Park, and A. KaK: Distributed object tracking
using a cluster-based kalman filter in wireless camera networks.
IEEE Journal of Selected Topics in Signal Processing, 2(4):448-
463, Aug. 2008.

[18] C. Song, J. Son, S. Kwak and B. Han: Dynamic resource allo-
cation by ranking SVM for particle filter tracking. Proceedings
of the British Machine Vision Conference, PP. 103.1-103.11.
September 2011.

[19] C.H. Chen, Y. Yao, D. Page, B. Abidi, A. Koschan, and M.
Abidi: Camera handoff with adaptive resource management for
multi-camera multi-object tracking. Image Vision Comput. 28, 6
(June 2010), 851-864.

[20] Lanz, O.; Messelodi, S.: A Sampling Algorithm for Occlusion
Robust Multi Target Detection. Sixth IEEE International Confer-
ence on Advanced Video and Signal Based Surveillance, 346–
351, 2-4 (Sept.2009)

[21] M. Taj and A. Cavallaro: Distributed and decentralized multi-
camera tracking. IEEE Signal Processing Mag., vol. 28, no. 3,
pp. 4658, May 2011.

[22] D. Cornaniciu, V Ramesh and P.Mcer, 2003. Kernel-based ob-
ject tracking. IEEE Transaction on PaRern Analysis and Machine
Intelligence, vol. 25, no. 5, pp. 564-577, 2003

[23] C. Gomila; F. Meyer. Graph-based object tracking. Proceedings.
2003 International Conference on Image Processing, vol.2, no.,
pp.II,41-4 vol.3, 14-17 Sept. 2003

[24] M. Rosencrantz, G. Gordon and S. Thrun. Decentralized sensor
fusion with distributed particle filters. In Uncertainty in Artifi-
cial Intelligence (UAI-03). Morgan Kaufmann Publishers, 2003,
pp.493-500.

[25] O. Lanz, R. Manduchi. Hybrid joint-separable multibody track-
ing. CVPR 2005. vol.1, pp. 413,420 vol. 1.

[26] K. Bernardin, R. Stiefelhagen. Evaluating multiple object track-
ing performance: the CLEAR MOT metrics. J. Image Video
Process. 2008(3), 2008.

4139

