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Abstract—Even though pedestrian motion may look chaotic
in most of the cases, recent studies have shown that this motion
is mainly ruled by environment and social aspects. In this paper,
we propose an interacting multiple model pedestrian tracking
framework that incorporates these semantic considerations as
a prior knowledge about intentions and interactions between
targets. We consider 4 cases of motion for pedestrians: going
straight; finding one’s way; walking around and standing still.
Those models are competing within an Interacting Multiple
Model Particle Filter strategy. Targets interactions are handled
with social forces, included as potential functions in the weighting
process of the Particle Filter (PF). We use different social force
models in each motion model to handle high level behaviors
(collision avoidance, flocking. . . ). We evaluate our algorithm
on challenging datasets and demonstrate that such semantic
information improves the tracker performance.

I. INTRODUCTION

Multi-object tracking (MOT) has focused many research
efforts in recent years, and is applicable in many areas, like
robotics, video surveillance, among others. Among most MOT
techniques, stochastic filtering-based approaches infer targets
trajectories from two clearly separated elements. The first one
is a probabilistic target appearance, and the second one is a
probabilistic prior knowledge about the targets motion. Our
work focuses on the latter. Pedestrian motion may look chaotic.
However, studies [1]–[3] have shown that pedestrian behavior
is governed by the pedestrian context, like social forces or
environment constraints. For example in Fig. 1, the couple at
the center is standing in place, while other people are moving
around, in groups or alone, with different velocities. In some
cases, as pedestrians in a group, the motion of social targets
depends on how they interact with the others and on the
intentionality of the interaction. The targets global position
and orientation are sufficient to characterize this behavior
i.e., to encode information such that “pedestrians in the same
group should have similar orientations”, or “two nearby people
talking to each other should have close to opposite orienta-
tions”. Such targets interactions are not explicitly considered
in most of the approaches that rely in more “naive” dynamic
models and independent trackers (i.e., constant velocity [4],
[5]). Our claim is that a tracking system modeling these
interactions with a semantic dynamic model could dramatically
improve the tracking performance. To model these complex
dynamics, we simplify our study to four cases of motions
(with one model per motion), obtained from a recent analysis
of the pedestrians behavior in a mall [2]. Also, we include
target interactions (social forces) by using potential functions.
The motion models are combined into one single framework

Fig. 1. Pedestrians with multiple motion dynamics. The interaction of the
person in the middle of the image with others depends on the region that they
occupy. From proxemic theory, these regions can be divided in four: Intimate
(Red), Personal (Yellow), Social (Blue) and Public (Green) spaces.

with the Interacting Multiple Model (IMM) scheme under a
Particle Filter (PF) methodology [6]. In the work we propose
here, probabilistic motion models are developed with semantic
information from [2], allowing to handle in a more natural
way the human walking in sparsely crowded scenes. Our
tracking framework dedicates one filter to each target and
puts the different motion models in competition. The trackers
share semantic information through a prior knowledge of the
expected social behavior in each motion model. The modeling
considers the body pose of each target (in the vein of [4]) as
a feature to control the interaction. We demonstrate that our
proposal outperforms existing approaches thanks to large scale
comparative evaluations.

The structure of the paper is as follows: Section II discusses
related work. The formulation of IMM-PF is presented in
Section III. The Section IV describes our contribution in the
modeling of the pedestrian behavior (motion and interaction).
Results are presented in Section V. Finally, conclusions are
drawn in Section VI.

II. RELATED WORK

Naive dynamic models are used in most of the MOT
frameworks, i.e., constant velocity model [4], [5], random
walks [3], target detector output [5], among others. Unfor-
tunately, those models are only approximations of the real
dynamic of the targets and they lack semantic information that
could improve tracking performance by identifying common
group walking patterns, for example. [3] proposes a technique
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to model a simple interaction between trackers. They use a
potential function to give more weight to those particles of
a PF that are far from other trackers, helping to keep them
apart. However, this method can not be extended very well to
multiple behaviors since the interaction models can contradict
each other. In [5], the authors present a framework to track
individuals and groups of pedestrians at the same time, using
semantic information about the group formation. However,
no motion prior information is used. On the other hand, [7]
makes use of semantic information to identify groups from
independent trackers. [8] solves the tracklet data association
problem as a directed graph, by weighting edges according to
some social conditions. In [9], the targets interact in such a
way that they choose a collision-free trajectory. To this end,
this work finds the optimal next position of all trackers based
on an energy function that considers the targets future position,
desired speed and final destination.

Capturing the complex behavior of targets like pedestrians
can be really challenging. Mixing multiple motion models
through the IMM methodology is an elegant solution. IMM
weights each model according to its importance in the posterior
distribution [6], [10]. In [10], target tracking is simulated with a
bank of Kalman Filters (KF), where each filter is associated to
a distinct linear motion model, within the IMM methodology
(IMM-KF). However, the KF cannot use non-linear models
and the IMM-KF scheme can not recover when one filter
of the bank fails. [6] proposes an IMM implementation with
Particle Filter (IMM-PF). They associate a fixed number of
particles to each model and weight the models according to
their importance in the PF. This proposal suffers from a waste
of computational resources when processing many particles
with low importance models. In [11], each particle motion
model has the possibility of evolving over time, passing from
a moving to a stopped state. Those changes are modeled with a
transition matrix (TM) with fixed entries. However, this matrix
is a too rough approximation of how the real model changes.
On the other hand, target interactions are common in MOT,
and the orientation is strongly correlated to the behavior type,
i.e., pedestrians from the same group share similar orientations.

Contributions. To overcome the limitations of the common
naive dynamic models ( [3], [12], [13]), we propose a motion
model that introduces semantic information, i.e. some form
of intention by the tracked agents. We model this high level
pedestrian behavior at two levels: motion and interaction. We
emulate the complex pedestrian motion with multiple models,
developed from observation analysis [2]. We expand the work
of Khan [3] to multiple pedestrian tracking and include more
realistic interaction coming from the simulation community,
known as social forces. We demonstrate, in several challenging
video sequences, that such semantic information improves the
tracking performances compared to conventional approaches.

III. PARTICLE FILTER-INTERACTING MULTIPLE MODELS

The tracking problem is formulated as follows. We infer
the state X in the current time t (Xt) given the set of observa-

tions Z1:t
def
= {Z1 . . .Zt}. Under the Markov assumption, the

posterior is estimated recursively by Bayesian inference:{
p(Xt|Z1:t−1) =

∫
p(Xt|Xt−1)p(Xt−1|Z1:t−1)dXt−1,

p(Xt|Z1:t) ∝ p(Zt|Xt)p(Xt|Z1:t−1).
(1)

The Bayes filter of Eq. 1 includes a prediction (first row) and a
correction (second row) step. Following the IMM strategy [6],
our motion model p(Xt|Xt−1) is a mixture of M distributions:

p(Xt|Xt−1) =
M∑
m=1

πmt p
m(Xt|Xt−1), (2)

where the terms πmt weigh each model contribution in the
mixture. Thus, the posterior of Eq. 1 is reformulated as:{

p(Xt|Z1:t−1) =
∫ ∑M

m=1
πmt p

m(Xt|Xt−1)p(Xt−1|Z1:t−1)dXt−1,

p(Xt|Z1:t) ∝ p(Zt|Xt)p(Xt|Z1:t−1).

(3)

Since the contribution term does not depend on the previous
state Xt−1, we move this term out of the integral, leading to

p(Xt|Z1:t) ∝
∑M

m=1
πmt p(Zt|Xt)p

m(Xt|Z1:t−1), (4)

with pm(Xt|Z1:t−1) =
∫
pm(Xt|Xt−1)p(Xt−1|Z1:t−1)dXt−1. The

terms πmt are updated in function of the models respective
likelihoods [6]: πmt = πmt−1

∫
p(Zt|Xt)p

m(Xt|Z1:t−1)dXt. The
PF approximates the posterior in Eq. 4 by a set of N weighted
samples or particles. In addition, we assign one motion model
to each particle, as a label l ∈ {1 . . .M}. Thereby, a particle n
at time t is represented by (X

(n)
t , ω

(n)
t , l(n)), where ω(n) is the

particle weight. Each model m ∈ {1 . . .M} has Nm particles
associated to it, with a total of N =

∑M

m=1
Nm particles. The

posterior is then approximated by considering both particles
weights (ω(n)

t ) and models weights (πmt ):

p(Xt|Z1:t) =
∑M

m=1
πmt

∑
n∈ψm ω

(n)
t δ

X
(n)
t

(Xt),

s.t.
∑M

m=1
πmt = 1 and

∑
n∈ψm ω

(n)
t = 1,

(5)

where ψm
def
= {n ∈ {1 . . . N} : l(n) = m} represents the

indices of the particles that belong to model m.

A. State definition and proposal distribution

The target state is defined as a Bounding Box (BB)
including the target position in the image plane (x, y), its
shoulders absolute orientation θ (the angle with respect to the
image horizontal line), and its linear and angular velocities
(vl, vθ). Hence, the state X stands as (x, y, θ, vl, vθ)

T . The BB
dimensions (h,w) around the pedestrians are fixed according
to the average size of an adult person, given the camera
projection matrix, at the specified image location. Under
the PF scheme, we use an importance proposal distribution
q(·), that approximates p(Xt|Xt−1,Z1:t), from which we can
draw samples. In the multiple motion model case, we have
M proposals, such as: Xm

t ∼ qm(Xt|Xt−1,Z1:t). Here, we
sample a new state for each particle from the motion model
corresponding to its label l(n). This model is supposed to be
the superposition of a deterministic function of the previous
state plus a noise sampled from a Gaussian distribution,

i.e., X
(n)
t ∼ N(Xt; trl(n)(X

(n)
t−1),Σl(n)), where trl(n)(·) is

the deterministic form of the motion model. The index l(n)

indicates the model the particle n follows.

B. Observation model and correction step

We implement a probabilistic observation model p(Zt|Xt)
based on the proposals presented in [12] and [4]. [12] relies
on HSV-space color and motion histograms. We define a
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reference histogram href anytime we create a new tracker.

Both likelihoods (based on color pc(Zt|X(n)
t ) and motion

pm(Zt|X(n)
t ), respectively) are evaluated with the Bhattacharya

distance between the reference href and the current histogram

h(n) (corresponding to X
(n)
t ). We include spatial information

with the color observation by using two vertical histograms per
target, one for the top part and another for the bottom part.

Following [4], we also include observations related to the
target orientation, discretized into eight directions. The body
pose angle likelihood is evaluated with a set of multi-level
Histogram of Oriented Gradients (HoG) features f (n) extracted
from the image, inside each X

(n)
t . The idea is to decompose

the observed features f (n) as a positive linear combination of
a set of training samples for which the orientation has been
manually labelled. Then, the orientation likelihood pθ(Zt|X(n)

t )
is calculated as the normalized sum of the weights of the
training samples in the determined linear decomposition that

share the same (discretized) orientation θ
(n)
t as the particle n.

Assuming model independence, the observation model is es-
timated as p(Zt|X(n)

t ) = pc(Zt|X(n)
t )pm(Zt|X(n)

t )pθ(Zt|X(n)
t ),

where pc(·|·) and pm(·|·) are the color and motion cues
proposed in [12] and pθ(·|·) is the orientation cue described
above [4]. Following the PF scheme, the particles weights are
updated by the following expressions:

ω
(n)
t =

ω̃
(n)
t∑

i∈ψm
ω̃
(i)
t

,

ω̃
(n)
t =

ω
(n)
t−1

p(Zt|X(n)
t

)pl
(n)

(X
(n)
t
|X(n)
t−1

)

ql
(n)

(X
(n)
t
|X(n)
t−1

,Z1:t)
.

(6)

Assuming that the proposal and motion prior distribution are
the same, we have:

ω̃
(n)
t = ω

(n)
t−1 · p(Zt|X(n)

t ), (7)

πmt =
πmt−1ω̃

m
t∑M

i=1
πi
t−1

ω̃it
, ω̃mt =

∑
j∈ψm ω̃

(j)
t . (8)

Note that Eqs. 6 and 8 ensure that the normalization con-
straints on Eq. 5 are always satisfied.

C. Resampling

We implement the resampling process as in [14]. It acts in
one of two ways:

1.- A sampling done over all particles, following a common
Cumulative Distribution Function built with the weights of
particles ω

(n)
t and models πmt . The best particles from the best

models are sampled more often, leaving more particles with
models fitting better the target motion.

2.- A sampling done on a per model basis. Each model has
always a minimum of γ = 0.1 ∗ N particles to preserve
diversity. If the model has less particles than a threshold
(Nm < γ), we draw new samples from a Gaussian distribution:
N(X̄t−1,St−1), where X̄t−1 and St−1 are the weighted mean
and covariance of all particles of the previous distribution.
We take less samples from the model with more particles to
leave the number of particles N unchanged. This resampling
manages the model transition implicitly, so no prior transition
information is required.

IV. PEDESTRIAN SEMANTIC BEHAVIOR

This section describes our contribution with more details.
We propose a motion model for pedestrian tracking that
incorporates semantic information about the dynamics of the
targets, with a set of expected behavioral rules relying on the
concept of interpersonal space between targets (see Fig. 1). In
some way, we encode the motion intentions in the filter.

A. Priors on pedestrian dynamics

According to [2] there are four pedestrian motion behaviors
in a shopping mall:

Going straight. The pedestrians walk directly to their goal, as
fast as possible, with small variations in the trajectory.
Finding one’s way. The pedestrians have an approximate idea
of their destination (i.e., an address over a route). They walk
at a regular speed, with more variations in their trajectories.
Walking around. The pedestrians don’t have a specific goal.
They walk at slow speed and tend to change their trajectories
more often.
Stand still. The pedestrians remain at the same position,
changing their body orientation. They may be interacting with
other persons.

We build 4 motion models to emulate those behaviors. The
first three cases (k = 1, 2, 3) are associated to the following
transition model:

trk(X) =

⎡
⎢⎢⎢⎣

x+ vl ∗ cos(θ)
y + vl ∗ sin(θ)

θ + vθ

μk

vθ

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

N(0, σx)

N(0, σy)

N(0, α(vl) ∗ σθ)
N(0, σvl,k )

N(0, α(vl) ∗ σvθ,k )

⎤
⎥⎥⎥⎦ ,

where σx, σy and σθ are constant values. The new position is
updated as a constant velocity non-holonomic motion model
(known as the unicycle model in the robotics literature).
Normally, a pedestrian who walks fast has a rather constant ori-
entation. Following this idea, we calculate the new orientation
and angular velocity considering a change in the level of noise,
controlled by α(v) = exp(−v

2

σα
). Hence, the higher the linear

velocity vl, the smaller will be the additive Gaussian noise. The
μk and σ·,k values depend on the model to be used, allowing to
control the behavior of the aforementioned categories 1, 2 and
3. In our case, these values are fixed empirically. The stand
still case is modeled more simply by:

tr4(Xt) =

[
I3×3 03×2

02×3 02×2

]
Xt + ν4. (9)

where ν4 is a Gaussian noise. Pedestrians are also influenced
by a set of external rules known as social forces (SF) [1].
Those SF depend on the dynamics of the people. The next
section describes them in detail.

B. Social behaviors for trackers interaction
The social forces (SF) model makes possible to model the

interaction between trackers, and the handling of intention-
aware motion models as described before allows us to modu-
late the interactions based on each target supposed intention.
We associate a set of SF to each motion model according
to the expected behavior in each case. These behaviors are
selected from the proxemics theory [15] and depend on the
space occupied by the interacting trackers. In Fig. 1, we depict
an example, where the central pedestrian (labeled 2) interacts
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with the others according to their relative position (circles of
colors). The state Xt is projected into the world plane to
control the effect of each force in real coordinates. We use
two SF: (1) A repulsion force, keeping the trackers apart from
each other, and preventing identity switching or collisions; (2)
An attraction force, keeping the targets close to each other, and
modeling social groups. By setting both forces with different
values according to each target motion model, we can cope
with many kinds of behaviors. Interactions are modeled with
pairwise potential functions [3]. We define one such potential,
for each of the M models, SFm(Xi,Xj) which can be easily
included in the prior motion model of Eq. 2:

p(Xt,i|Xt−1,i) =

M∑
m=1

π
m
t p

m
(Xt,i|Xt−1,i)

∏
j∈ϕi

SFm(Xt,i,Xt,j),

where ϕi = {j ∈ {1 . . . N} : i �= j}. As in Eq. 3, the interaction
term SFm(·) does not depend on the previous state Xt−1, so,
this term is moved out of the integral with πmt . Thus, the
posterior of Eq. 4 for a target i is reformulated as:

p(Xt,i|Z1:t) ∝
∑M

m=1
πmt p(Zt|Xt,i)·∏

j∈ϕi SFm(Xt,i,Xt,j)p
m(Xt,i|Z1:t−1).

Since the interaction term is out of the predictive part, we can
treat it as an additional factor in the importance weight. Thus,
we weight the samples of Eq. 7 according to:

ω̃
(n)
t,i = ω

(n)
t−1,i · p(Zt|X(n)

t,i )
∏
j∈ϕi

SF
l
(n)
i

(X̂
(n)
t,i , X̂t,j),

where X
(n)
t,i

is the particle n state of tracker i and X̂t,j =[
x̂, ŷ, θ̂, v̂l, v̂θ

]T
t

is the weighted mean of all the particles state
of tracker j, projected on ground plane (the image-to-scene ho-
mography being known), r̂ = [x̂, ŷ]T is the position. SF

l
(n)
i

(·, ·)
is the social force model the particle n is associated to.
Our social forces terms are based on the distance between
two trackers. We evaluate them through the L2 norm as
d̂i,j = ‖r̂i,t− r̂j,t‖. All the distance considerations in this paper
come from the study of nonverbal communication known as
proxemics and try to emulate the space depicted in Fig. 1 [15].
We define the social forces for each motion model as follows.

Going straight. The pedestrians who walk straight and fast
are aware of the obstacles present in their public space (green
circle in Fig. 1) and take decisions with enough anticipation for
their direction to ensure a comfortable collision-free path. In
that case, we use a repulsion function applying on the tracker
from any other tracker under a public distance (green circle in
Fig. 1, PD = 3.5m): d̂ij < PD (considering a variance of
σf1 = 2m). The social force for case 1 (sec. IV-A) is:

SF1(X̂
(n)
t,i , X̂t,ϕi) =

∏
j∈ϕi

GS(X̂
(n)
t,i , X̂t,j) (10)

GS(Xi, Xj) =

{
1− exp

(
−
d2i,j

σ2
f1

)
if d̂i,j < 3.5m

1 otherwise.

Finding one’s way. The pedestrian walks at middle/high
speed, moving alone, inside a group or merges/splits from
a group. At this speed, groups are not too close, preserving
a social distance SD = 2.5m (blue circle in Fig. 1). We
consider that two targets with d̂i,j < SD, ‖v̂l,i − v̂l,j‖ < εv,

and orientation ‖θ̂i − θ̂j‖ < εθ belong to a same group. We
model this as:

FW attr(Xi, Xj) = exp

(
− (d̂i,j − SD)2

σ2
f2

)
. (11)

where σ2
f2

= 20cm is the variance over the distance.
Otherwise, the target i will tend to evade targets j:

FW rep(Xi, Xj) = 1− exp

(
−d2i,j
σ2
f3

)
, (12)

with σf3 = 1m. Thus, the social force for case 2 is:

SF2(X̂
(n)
t,i , X̂t,ϕi) =

∏
j∈ϕi

FW (X̂
(n)
t,i , X̂t,j) (13)

FW (Xi, Xj) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

FW attr(Xi, Xj) if d̂i,j < PD

‖v̂l,i − v̂l,j‖ < εv

‖θ̂i − θ̂j‖ < εθ

FW rep(Xi, Xj) if d̂i,j < PD

1 otherwise

Walking around. Pedestrians tend to walk at comfortable
speed, in groups. Targets belong to the same group if d̂i,j <
SD (the yellow region in Fig. 1), keeping a personal distance
of QD = 1.5m, a similar velocity ‖v̂l,i− v̂l,j‖ < εv and almost
the same orientation ‖θ̂i − θ̂j‖ < εθ. This flock behavior is
modeled as:

WAattr(Xi, Xj) = exp

(
− (d̂i,j −QD)2

σ2
f2

)
. (14)

Otherwise it avoids the obstacles:

WArep(Xi, Xj) = 1− exp

(
−d2i,j
σ2
f4

)
, (15)

with σf4 = 1m. The SF influence over a particle is:

SF3(X̂
(n)
t,i , X̂t,ϕi) =

∏
j∈ϕi

WA(X̂
(n)
t,i , X̂t,j) (16)

WA(Xi, Xj) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

WAattr(Xi, Xj) if d̂i,j < SD

‖v̂l,i − v̂l,j‖ < εv

‖θ̂i − θ̂j‖ < εθ

WArep(Xi, Xj) if d̂i,j < SD

1 otherwise

Stand still. The persons stand still, maybe interacting with
other people, i.e., talking, with an interpersonal distance of
ID = 1m, this is the case in the Fig. 1 where the target 7
speaks with target 8. We model this behavior with an attraction
function between two close trackers (d̂i,j < QD) with opposite

orientations (θ̂i,j = ‖θ̂i − θ̂j‖ < 60◦):

CPattr(X̂i, X̂j) = exp

(
− (d̂i,j − ID)2

σ2
f2

)
. (17)

A static pedestrian can move apart, letting others to pass. This
behavior is model with a repulsion effect:

CPrep(Xi, Xj) = 1− exp

(
−d2i,j
σ2
f1

)
, (18)
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Fig. 2. Example of tracking. The top and bottom rows depict the results of
our proposal without and with social forces, respectively. We use the view 1
of PETS09 S2-L1 scenario. The rectangles at the left of each bounding box
represent the weight of each model. Red for Stand still, green for Going
straight, blue for Finding one’s way and yellow for Walking around.

with σf2 = 1m. Note that a particle can be in both situations
at the same time. Only one social force is applied at a time.
The SF for this motion model is:

SF4(X̂
(n)
t,i , X̂t,ϕi) =

∏
j∈ϕi

CP(X̂
(n)
t,i , X̂t,j) (19)

CP(X̂i, X̂j) =

⎧⎪⎨
⎪⎩

CPattr (X̂i, X̂j) if d̂i,j < QD

θ̂i,j < 60◦

CPrep(X̂i, X̂j) if d̂i,j < QD

1 otherwise

V. EXPERIMENTS

A few more precisions about the tracker implementation
need to be detailed: Creating and destroying trackers is done
automatically from the binary image resulting from a fore-
ground detector algorithm. New trackers are generated from
the detected foreground blobs (regions with motion), only
if they have the expected dimensions of an adult (deduced
from the projection matrix). The tracker is destroyed when
its likelihood stays below a threshold for 10 frames. We
evaluated our proposal, both qualitatively and quantitatively,
on 3 realistic video sequences, and compare it against other
state-of-the-art tracking systems. These videos come from two
datasets: PETS09 [16] and PETS06 [17]. Both are challenging
benchmark datasets designed explicitly to test and evaluate the
performance of pedestrian tracking algorithms. The PETS09
dataset consists of a set of 8 camera video sequences of an
outdoor scene. Here, we apply our tracking methodology on
two views of the S2-L1 sparse crowd scenario (795 frames
each). The PETS06 dataset has a set of 4 camera video
sequences of an indoor scene. We use the S6 scenario (2800
frames). Those scenes present challenging situations of pedes-
trian tracking: occlusions, social interactions, pedestrians with
similar appearance. . .

We generated a ground-truth dataset for these three videos
and labeled each pedestrian in the scene over all frames of
views 1 and 2 of the PETS09 S2-L1 scenario and view 4
of PETS06 S6 scenario. We evaluate the tracking performance
with five classical evaluation metrics [18]: (1) Sequence Frame
Detection Accuracy (SFDA), sensitive to missed detections

Sequence Method SFDA ATA N-MODP MOTP MODA

CV 0.67 0.36 0.75 0.73 0.80
PETS09 IMM-PF 0.63 0.50 0.77 0.63 0.60
View 1 IMM-PF SF 0.69 0.60 0.78 0.68 0.78

CV 0.51 0.40 0.57 0.56 0.60
PETS09 IMM-PF 0.62 0.51 0.85 0.67 0.54
View 2 IMM-PF SF 0.65 0.59 0.85 0.67 0.61

CV 0.33 0.48 0.58 0.50 0.33
PETS06 IMM-PF 0.33 0.53 0.66 0.54 0.29
View 4 IMM-PF SF 0.35 0.58 0.68 0.58 0.32

TABLE I. RESULTS FOR THE S2.L1 SEQUENCE, VIEW 1. MEDIAN

OVER 30 EXPERIMENTS, WITH VARIANCE INFERIOR TO 0.001 IN ALL

CASES. THE BEST APPROACH IS IN RED.

Fig. 3. Tracker trajectories. The lines represent the trajectory of the tracker
in the last 70 frames. The color indicates the model that contributes most to
the state estimation. Red for Stand still, green for Going straight, blue for
Finding one’s way and yellow for Walking around. Both figures depict the
resulting trajectories in two different instants of view 2 of PETS09 S2-L1
scenario.

and false positive; (2) Average Tracking Accuracy (ATA),
that favors longer trajectories; (3) Multiple Object Tracking
Precision (MOTP) and (4) Multiple Object Detection Precision
(MODP), measuring the tracks spatio-temporal and spatial pre-
cisions, respectively; (5) Multiple Object Detection Accuracy,
sensitive to the accuracy, missed detections and false positives.
Their scores vary between 0 (worst) and 1 (perfect). First,
the Figs. 2 and 3 illustrate qualitative results. The bounding
boxes depict the filter output. In Fig. 2, the top and bottom
rows show the tracking results with our IMM-PF proposal
without and with social forces, respectively. Observe that the
three targets have similar appearance, hence the trackers on
the top collapse on the same target, meanwhile on the bottom,
the trackers keep their respective targets. The Fig. 3 depicts
the trajectories of the tracker at foot level of the last 70
frames. The color represents the model that contributes more
to the posterior at each frame. One can note that the winning
model switches when there is a change in the trajectory. The
Table I presents quantitative results over the PETS2009 S2-
L1 sequence (views 1 and 2) and PETS06 S6 sequence (view
4). We evaluated 3 models: A classic constant velocity model
(CV), our proposal alone (IMM-PF) and our proposal includ-
ing the social forces (IMM-PF SF). Excepting the motion
model, the rest of the implementation is exactly the same. The
SFDA, MODP and MOTP metrics, that evaluate the detection
precision, are not significantly different for sequences PETS09
View 1 and PETS06 View 4, indicating that our tracking
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Fig. 4. Evaluation in view 1 of PETS09 S2-L1 sequence. The last diagram shows the performance of our best approach, IMM PF SF. The others results come
from [14], [18]. The results labeled Conte, Breitenstein and Shama are monocular tracking system, meanwhile Yang, BerclazKSP and Horesh are multi-view.

system is robust enough to detect the targets most of the time,
under different techniques. On the other hand, we observe
an improvement on the PETS09 View 2 sequence, because
of the presence of multiple occlusions between pedestrians.
The MODA fairness shows that we can handle correctly the
initialization and termination of the trackers. The ATA metric,
measuring the tracking performance, is significantly improved
with our proposal, which means that our algorithm can track
a given target during longer sequences. Finally, in Fig. 4,
we compare our IMM-PF SF proposal (last diagram) against
other approaches from the literature, and whose quantitative
results on these sequences are available [14], [18]. Once again,
the ATA of our proposal stands out. As a consequence, our
Social Forces-based proposal can track the same target longer
than other techniques, that may fail in preserving the identity
of targets with similar appearance. The two methods closest
to ours are the ones of Yang and Horesh, but please notice
that these approaches perform multi-camera tracking, while
our system is monocular. The SFDA measure (blue column)
for Horesh and ours are similar, meaning that both are good
enough to detect the pedestrian, and reduce the false positives
and missed detections rates. Horesh relies on a target detector
employed each frame and we, on the other hand, initialize the
tracker by a simple blob detector.

VI. CONCLUSIONS

We have presented a multiple motion model that includes
semantic information of pedestrian behavior for monocular
multiple target visual tracking. The IMM-PF allows to handle
models with different social content, such as grouping or
reactive motion for collision avoidance. The social forces are
a simple and at the same time efficient way to include target
interaction. The combination of multiple interaction allows our
proposal to model high-level behaviors in low-density scenes.
The experiments depict how our approach manages efficiently
challenging situations that could generate identity switching or
target loss.
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