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Abstract—We propose a new approach that integrates object 
tracking with object segmentation in a closed loop. The EM-like 
algorithm for color-histogram-based object tracking is modified 
to deal with the appearance models of the object and background 
represented by the Gaussian mixture models which are more 
efficient in RGB color space. It provides a rough object spatial 
model to guide segmentation. A five-layer region based graph 
cuts algorithm is developed to extract the accurate object region 
based on the object spatial model. It is effective even in cluttered 
background and runs more than 10 times as fast as GrabCut. 
Then we can establish the appearance models of the object and 
background avoiding introducing errors and update them frame 
by frame without the problem of drift. The refined and adaptive 
models lead to robust tracking in return. Moreover, the motion of 
the object is estimated to produce a predicted object location in 
the new frame for tracking. A real-time robust tracking system is 
built based on the proposed approach and validated on a variety 
of challenging sequences. 

Keywords—tracking; object segmentation; EM-like; graph cuts; 
real-time 

I. INTRODUCTION 
Object tracking is an important subtask in many computer 

vision applications, such as surveillance, video indexing, and 
human computer interaction [1]. A large number of excellent 
algorithms have been presented in the past decades [2, 3, 4, 5, 6, 
7, 8, 9]. Comaniciu et al. [2, 3] adopt the color histogram in an 
ellipse as the object appearance model and use the mean shift 
iterations to find the most probable object position in the new 
frame. Zivkovic et al. [4] present a natural extension of the 
mean shift tracking algorithm, which simultaneously estimates 
the object position and the covariance matrix that describes the 
approximate shape of the object. Although this new algorithm 
can adapt to the changes in shape and scale of the object, the 
problem of model update remains unsolved. In [5] the object 
and background are respectively divided into multiple regions 
and represented by a Gaussian mixture model (GMM) in a joint 
feature-spatial space. The object boundary is tracked by a level 
set method and the appearance model of each region is updated 
using a weighted average of the old values and the new values. 
Kalal et al. [9] propose a novel tracking framework (TLD) that 
combines tracking, learning, and detection. A learning method 
is developed to update the detector in runtime, which avoids 

drifting and reinitializes the tracking when the object reappears 
in the view of camera. In a recent review on the online object 
tracking [10], TLD is considered to be one of the top 10 algori-
thms. Although much progress has been made, object tracking 
in unconstrained videos remains a very challenging problem 
due to numerous factors, such as 

� The object appearance changes sharply during tracking 
due to illumination variation. The methods [2, 3, 4, 5] 
without an effective strategy for model updating could 
easily lose the object. 

� The tracked objects (e.g. hand and pedestrian) undergo 
out-of-plane rotation and significant deformation. The 
methods [6, 9] coarsely representing the object shape by 
a bounding box do not perform well in these scenarios. 

In this paper, we propose a new approach that integrates 
object tracking with object segmentation in a closed loop. The 
tracking module provides a rough object spatial model to guide 
segmentation. The segmentation module extracts the accurate 
object region based on the object spatial model. Then we can 
establish the appearance models of the object and background 
avoiding introducing errors and update them frame by frame 
without the problem of drift. The refined and adaptive models 
lead to robust tracking in return. More specifically, the object 
and background appearance models are represented by the 
GMMs. We adopt the EM-like algorithm for object tracking as 
in [4], but the weight image in our work is computed using the 
GMM instead of the color histogram. Then a five-layer region 
model is established based on the object spatial model from the 
EM-like algorithm. And we develop a five-layer region based 
graph cuts algorithm for object segmentation. Since the EM-
like algorithm estimates the object shape on the weight image 
which is pixel-wise and the segmentation algorithm extracts the 
accurate object region during tracking, the proposed approach 
is able to adapt to scale variation, rotation, and deformation. In 
summary, there are three contributions of this paper: 

� We combine the tracking and segmentation algorithms 
mentioned above to build a real-time robust tracking 
system. Experimental results on a variety of challenging 
sequences demonstrate that this system could not only 
track previously unseen objects in unconstrained videos 
but also obtain the accurate object region. 
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Fig. 1. The block diagram of the proposed approach. 

� The EM-like algorithm for color-histogram-based obj-
ect tracking [4] is modified to deal with the appearance 
models of the object and background represented by the 
GMMs which are more efficient in RGB color space. 

� We develop a five-layer region based graph cuts algorit-
hm to extract the accurate object region during tracking. 
It is effective in cluttered background and runs more 10 
times as fast as GrabCut [11]. 

The rest of this paper is organized as follows. In Section II 
we introduce the proposed approach. In Section III we present 
the qualitative and quantitative experiment results. In Section 
IV we report some conclusions. 

II. APPROACH 
We propose a new approach that integrates object tracking 

with object segmentation in a closed loop. Its block diagram is 
shown in Fig. 1. Based on the object spatial model ST from the 
tracking module, the segmentation module extracts the accurate 
object region M and then computes the corrected object spatial 
model SO. In the new frame, the prediction module estimates 
the motion of the object to produce the predicted object spatial 
model SP for tracking. SP is used as the initial model for the 
EM-like algorithm. Essentially, SP, ST and SO is respectively 
represented by an elliptic region, modeled by its center m and 
covariance matrix C. M is described by a binary image, where 
the object/background pixels have a value of 1/0. In the first 
frame, the object region is selected manually or detected using 
some other algorithms. We obtain ST used to start the loop by 
computing the spatial mean and covariance matrix of the pixels 
in the object region. 

A. Segmentation 
We develop a five-layer region based graph cuts algorithm 

to extract the accurate object region. There is a key difference 
between the widely-used graph cuts based methods [11, 12, 13] 
and our work. The algorithm in this paper does not need some 
seeds or an object rectangle marked by the user. A five-layer 
region model is established based on the object spatial model 
from the tracking module. We obtain the appearance models of 
the object and background used for graph cuts based on the 
five-layer region model. 

The five-layer region model R = {RN, RB, RU, RUO, RO} is 
defined based on the object spatial model ST, as shown in Fig. 2. 
ST is represented by an elliptic region as mentioned above. The 

four elliptic boundaries between the adjacent regions are deter-
mined by Mahalanobis distance, as 

 
(1) 

 
where x is the spatial coordinate of the pixel, m is the center of 
ST, and C is the covariance matrix of ST. The distance thres-
holds corresponding to each boundary are set to 1, 1.5, 2.5, and 
3 respectively. They are kept constant in all of our experiments. 

The region RN is not considered in the following process-
ing. RO and RB are fixed as the object and background region 
respectively. Only the remaining two regions RUO and RU need 
to be segmented by graph cuts. We use the GMMs in RGB 
color space as the appearance models of the object and back-
ground. The GMM for the object is established based on the 
pixels in RO and RUO. Similarly, the GMM for the background 
is established based on the pixels in RB. Since the majority of 
the pixels in RUO belong to the object, this region is also used to 
establish the object GMM. In our experiments, this detail helps 
a lot to extract a more complete object region especially when 
the shape of the object is irregular. From now on, the steps of 
constructing the graph and computing the min-cut are similar 
to [11]. However, the algorithm in this paper needs no iteration. 
The object region M is obtained as a result, described by a 
binary image as mentioned above. And some morphological 
processing, e.g., opening, extraction of connected component, 
and hole filling, are used to refine the segmentation result. In 
the end, we compute the spatial mean and covariance matrix of 
the pixels in the object region to construct the corrected object 
spatial model SO. 

The comparison of GrabCut [11] and our work in a hand 
image is shown in Fig. 3. From the results we can see that there 
are three key benefits of our work: 

� It is more effective than GrabCut when the background 
near the object has the similar color as the object since 
the appearance models of the object and background 
established based on the five-layer region model are 
more precise than those in [11]. 

 

 

 

 

Fig. 2. The five-layer region model. 

 

 

 

 

 

 

Fig. 3. The comparison of GrabCut and our work in a hand image. (a) Result 
of GrabCut. (b) Results of our work given various object spatial models. 
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� It runs more than 10 times as fast as GrabCut since only 
a small number of pixels in RUO and RU are segmented 
by non-iterative graph cuts in our work. It takes about 
0.019s to extract the hand in Fig. 3, however GrabCut 
requires 0.221s. 

� It is not sensitive to the object spatial model from the 
tracking module. The shift, scale variation, and rotation 
of the model have little impact on the performance, as 
show in Fig. 3b. It just needs to make sure that the real 
object contour is located in RUO or RU. 

B. Prediction  
The prediction module estimates the motion of the object to 

produce a predicted object spatial model which is used as the 
initial model for tracking. It is important especially when the 
motion of the object between two frames is large. First, it could 
reduce the number of iterations in the EM-like algorithm and 
thus improve the efficiency. Second, the EM-like algorithm is 
unable to track the fast moving object without prediction since 
this algorithm searches for a local maximum mode. For each 
new frame, the motion of the object is estimated using optical 
flow [14, 15] as follows. 

We compute the optical flow velocities at each pixel in M 
using the Farnebäck algorithm [15]. This algorithm is found to 
be a good compromise between accuracy and speed. M is the 
accurate object region in the previous frame, provided by the 
segmentation module as mentioned above. If the proportion of 
the optical flow velocities which have a value of 0 is more than 
50%, the object is considered to be motionless. Otherwise, we 
construct a histogram of the optical flow velocities which are 
nonzero. These velocities are respectively distributed into 16 
orientation bins in 0°�360°. Each bin has a width of 45° and 
there is an overlap of 22.5° between the adjacent bins. The 
optical flow velocities voting into the maximum peak of the 
histogram are considered to be the reliable ones and thus the 
displacement of the object is estimated using an average of 
them. We add this displacement to the center of SO and obtain 
the predicted object spatial model SP in the new frame. 

The optical flow velocities in the object region computed 
based on the Farnebäck algorithm are depicted as short lines, as 
shown in Fig. 4a. It does not perform well in this scenario since 
the object region is blurred due to the lighting condition and the 
object motion. We can see that there are a lot of outliers in the 
results. The reliable ones picked out by our work are shown in 
Fig. 4b. They are much closer to the real displacement of the 
object. 

 

 

 

 

 

 

Fig. 4. (a) The optical flow velocities computed by the Farnebäck algorithm. 
(b) The reliable ones picked out by our work. 

C. Tracking 
For each new frame, the prediction module estimates the 

displacement of the object to obtain a predicted object spatial 
model before tracking. In some scenarios, the predicted object 
spatial model might already match the object region well. We 
could remove the tracking module and use SP instead of ST in 
(1). However in most cases, the predicted object spatial model 
is not precise enough to ensure the effectiveness of segmenta-
tion. First, the prediction module does not consider the changes 
in shape and scale of the object. Second, there are errors in the 
computation of optical flow especially when the object is non-
rigid. Therefore we need to introduce an additional tracking 
module. The EM-like algorithm for color-histogram-based ob-
ject tracking [4] is modified to deal with the appearance models 
of the object and background represented by the GMMs since it 
is difficult to construct adequate color space histograms with a 
balance between accuracy and efficiency in practice. 

The appearance models of the object and background are 
established based on the accurate object region M from the 
segmentation module in the previous frame. First, we compute 
the upright minimum bounding rectangle enclosing the object 
region and then a concentric rectangle region expanded by � 
pixels in width and height is defined as the search range. � is 
set to 60 in all of our experiments. Second, the GMM for the 
object FO is established based on the pixels in the object region 
and the GMM for the background FB is established based on 
the pixels in the background region within the search range. 

The weight image, indicating the probability of each pixel 
belonging to the object, is computed using the log ratio as 

 
(2) 

 
where y is the RGB value at the pixel x in the new frame. p(·) is 
the Gaussian mixture distribution as 

 
(3) 

 
where k is the number of the components, �i is the weighting 
coefficient of the ith component, �i is the mean, and �i is the 
covariance matrix. The pixel with a larger value in the weight 
image is more likely to belong to the object. 

The predicted object spatial model SP is used as the initial 
model. We run the EM-like iterations on the weight image to 
estimate the center and shape of the object in the new frame 
which determine the object spatial model ST, as 

 
(4) 

 

(5) 

 
where xi is the spatial coordinate of the pixel within the search 
range, m is the center of the model, C is the covariance matrix 
of the model, �(·) is the Gaussian probability distribution, and � 
is set to 1.5 in all of our experiments. 
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Fig. 5. The test sequences: Carscale, Boy, David, Woman, Bolt, Basketball, and Hand. The contour of the tracked object region in each frame obtained by our 
approach is drawn on the image. There are three runners being tracked in Sequence Bolt and there two players being tracked in Sequence Basketball. 
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III. EXPERIMENTS 
The proposed approach was implemented in Visual C++ 

and validated on a variety of challenging sequences. Due to 
space limitations, experimental results on seven representative 
sequences are presented in this section. No parameters were 
changed from one experiment to the next. The GMM for the 
object has three components and the GMM for the background 
has five components. The other parameters were also set and 
kept constant as mentioned in Section II. A small number of 
frames from each sequence are shown in Fig. 5. The first six 
sequences are already available on the Internet and commonly 
used to evaluate the tracking algorithms. The last one was cap-
tured by a moving camera viewing a hand in our laboratory. 
Note that there are three runners being tracked in sequence Bolt 
and two players being tracked in sequence Basketball. Table 1 
illustrates the main challenges in each sequence. 

In all of our experiments, we adopt the following protocol 
for initialization. In the first frame of each sequence, the object 
region should be selected manually. As mentioned in Section II, 
we obtain ST used to start the loop by computing the spatial 
mean and covariance matrix of the pixels in the object region. 
A tracker is initialized in the first frame and tracks the object 
up to the end except for sequence Basketball. At the beginning 
of this sequence, the tracked player in green is fully occluded. 
Therefore we initialize the tracker in the 25th frame. 

An almost saturated performance is achieved by our appro-
ach on all of these sequences. The contour of the tracked object 
region in each frame is drawn on the image, as show in Fig. 5. 
We compared our approach with two relevant algorithms. One 
is the EM-like tracking algorithm based on the color histogram 
[4] and the other is the TLD algorithm [9]. Their source codes 
are available on the Internet and the default parameters were 
used in our experiments. We have tried to adjust the parameters 
of the two algorithms to achieve a better performance, but there 
was no significant improvement. To evaluate the performance 
of each algorithm, we count the number of successfully tracked 
frames where the overlap score is larger than 50%. Given the 
tracked object region and the ground truth object region, the 
overlap score is defined as in [10]: the ratio of the number of 
pixels in the intersection to the number of pixels in the union. 
Table 2 illustrates the comparative results of the two algorithms 
and our approach. As there are multiple objects being tracked 
in sequence Bolt and Basketball, the number of their frames is 
respectively multiplied by the number of the object as shown in 
the second column of Table 2. From the results we can see that 
our approach achieved the best performance on all of these seq-
uences, outperforming the two relevant algorithms obviously. 

In sequence CarScale, we track the black car running on a 
country road which undergoes significant scale variation. The 
algorithm in [4] succeeded in locating the object through the 
entire sequence, but it failed to exactly estimate the scale of the 
object in a number of frames. TLD lost the object when it was 
partially occluded by a tree. This experiment demonstrates that 
our approach can adapt to scale variation and partial occlusion. 
And the weight image for the EM-like iterations computed by 
our approach is more precise than that in [4]. 

In sequence Boy, we track the face of an energetic boy who 
is moving quickly and abruptly. The algorithm in [4] is unable 

Table 1. The main challenges in each sequence. 

 

 

 

 

 
MC: moving camera, SV: scale variation, R: rotation, D: deformation, IV: illumination 
variation, BC: background clutters, FM: fast motion, PO: partial occlusion. 

Table 2. Our approach in comparison to two relevant algorithms 
in [4] and [9] using the number of successfully tracked frames. 

 

 

 

 

 
No: the tracked object disappears from the view of camera. 

to track the fast moving object since the EM-like iteration only 
searches for a local maximum mode. We introduce a prediction 
module to estimate the displacement of the object and provide 
a predicted object spatial model for tracking. It could not only 
reduce the number of iterations but also overcome the problem 
of fast motion. 

In sequence David, the appearance of the tracked object 
changes dramatically due to illumination variation. In [4] the 
object appearance model is established in the first frame and 
never updated in runtime. Therefore it easily lost the object. In 
our approach, the segmentation module extracts the accurate 
object region during tracking. We can establish the object and 
background appearance models avoiding introducing errors and 
update them frame by frame to handle the changes. Without the 
segmentation module, updating the object appearance model 
based on the tracking result soon causes drift. This experiment 
demonstrates that our approach is able to adapt to illumination 
variation. And object tracking combined with segmentation can 
significantly enhance its performance. 

In sequence Woman, Bolt, and Basketball, we track several 
people respectively walking on the street, running the race, or 
playing basketball. The rotation and deformation of the object 
occur frequently in these scenarios. TLD does not perform well 
when the object undergoes out-of-plane rotation or significant 
deformation. In our approach, the EM-like algorithm estimates 
the object shape on the weight image which is pixel-wise and 
the segmentation module extracts the accurate object region 
during tracking. Therefore it is able to handle these difficult 
scenarios as well. However at the end of sequence Woman, our 
approach lost the object due to the zoom-in and shake of the 
camera. The camera shake caused a large displacement of the 
object. Unfortunately, the prediction module failed to produce 
an appropriate result. 

In sequence Hand, the background near the object (e.g. face 
and yellow bookcase) has the similar color as the hand being 
tracked. As the object and background appearance models used 
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for graph cuts are established based on the five-layer region 
model, they are more precise than those in [11]. Therefore the 
proposed segmentation algorithm can extract the object region 
exactly even in cluttered background. A detailed comparison of 
this algorithm and GrabCut [11] is presented in Section II. 

Experimental results demonstrate that our approach is able 
to track previously unseen objects in unconstrained videos cap-
tured by a possibly moving camera. It runs at about 14 frames 
per second on a PC with Inter Core2 CPU (2.66GHz) without 
optimization. Moreover, the accurate object region is extracted 
by the segmentation module during tracking. In a large number 
of applications (e.g. gesture recognition), the accurate object 
region rather than a bounding box is crucial for the following 
processing. 

IV. CONCLUSION 
In this paper, we proposed a new approach that integrates 

object tracking with object segmentation in a closed loop. And 
we demonstrated that it could not only track previously unseen 
objects in unconstrained videos captured by a possibly moving 
camera but also extract the accurate object region during track-
ing. The appearance models of the object and background are 
represented by the GMMs. In the tracking module, a weight 
image indicating the probability of each pixel belonging to the 
object is computed based on the GMMs. We run the EM-like 
iterations on the weight image to estimate the object position 
and shape in the new frame which determine the object spatial 
model. In the segmentation module, a five-layer region model 
is established based on the object spatial model from tracking. 
We obtain the object and background GMMs used for graph 
cuts based on the five-layer region model. Since the models 
established in this way are precise, the segmentation algorithm 
is effective even in cluttered background. The accurate object 
region is extracted by the segmentation module. Then we can 
establish the appearance models of the object and background 
avoiding introducing errors and update them frame by frame 
without the problem of drift. The refined and adaptive models 
lead to robust tracking in return. The proposed approach is also 
able to adapt to scale variation, rotation, and deformation since 
the EM-like iteration estimates the object shape on the weight 
image which is pixel-wise and the segmentation module ext-
racts the accurate object region during tracking. Moreover, the 
motion of the object is estimated to produce a predicted object 
spatial model for tracking. The EM-like iteration only searches 
for a local maximum mode. Therefore it is unable to track the 
fast moving object without the prediction module. 
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