
Robust Camera Tracking by Combining Color and
Depth Measurements

Erik Bylow
Lund University

Mathematical Sciences

Carl Olsson
Lund University

Mathematical Sciences

Email: {erikb,calle,fredrik}@maths.lth.se

Fredrik Kahl
Lund University

Mathematical Sciences

Abstract—One of the major research areas in computer vision
is scene reconstruction from image streams. The advent of RGB-D
cameras, such as the Microsoft Kinect, has lead to new possibili-
ties for performing accurate and dense 3D reconstruction. There
are already well-working algorithms to acquire 3D models from
depth sensors, both for large and small scale scenes. However,
these methods often break down when the scene geometry is not so
informative, for example, in the case of planar surfaces. Similarly,
standard image-based methods fail for texture-less scenes. We
combine both color and depth measurements from an RGB-D
sensor to simultaneously reconstruct both the camera motion
and the scene geometry in a robust manner. Experiments on
real data show that we can accurately reconstruct large-scale 3D
scenes despite many planar surfaces. 1

I. INTRODUCTION

The capability to acquire 3D models has been one of the
major challenges in computer vision for a long time and it is
still an active research area. Using a 3D depth sensor together
with a GPU, this can even be done in real-tme. These 3D
models have applications in several areas: robotics, augmented
reality, medical imaging are a few of them. In robotics, for
instance, it is necessary to know the position of the camera to
perform navigation control, and by using the 3D model one can
also do object recognition and path planning. In other areas,
such as refurbishment, one can plan the work better by doing
measurements in the models before the work actually starts.

In computer vision, the process of determining camera
positions and scene structure is known as the structure from
motion problem. Typically one extracts sparse feature points
from a set of images using a keypoint detector such as
SIFT, [5], then these points are matched between the images.
Camera pose and 3D point positions that minimize the re-
projection error are then computed using bundle adjustment
techniques. In a subsequent step, a dense surface representation
can be estimated, see for example, [8] when the cameras are
known. For smaller scenes, it has been shown that dense 3D
reconstruction in real-time is possible by using an ordinary
hand held camera [11, 6].

However, using cheap depth sensors such as the Microsoft
Kinect and the Asus Pro Live sensor opens up new possibilities
for doing 3D reconstruction. The most well-known approach
is perhaps KinectFusion Newcombe et al. [7]. This work
showed that it is possible to obtain a dense 3D model of a

1We gratefully acknowledge funding from the Swedish Foundation for
Strategic Research (Future Research Leaders), the Swedish Research Council
(grants no. 2012-4213 and 2012-4215) and the Crafoord Foundation.

medium sized room in real-time. The geometry is represented
using a Signed Distance Function (SDF) and Iterated Closest
Point (ICP) method is used to estimate the camera motion.
This approach works well for small and medium sized rooms
but it is memory consuming. In Whelan et al. [14], the
approach was extended by using a rolling volume to do large
scale reconstruction. However, the tracking they use is based
on Steinbruecker et al. [9] together with the ICP-based Kinect-
Fusion approach. A disadvantage is that the former is prone
to drift and it is not possible to recover a reconstructed scene
if you return to a previous spot (that is, no automatic loop-
closure). Lately, Steinbruecker et al. [10] resolved the problem
of recovering the scene when returning to a previous location
by using an octree structure to represent the geometry. The
results are clearly impressive and the tracking is accurate, but
they need both loop closure techniques and graph optimization
to get a globally accurate camera trajectory.

In Bylow et al. [1], it was shown how the signed distance
function could be directly used to estimate the camera trajec-
tory for simultaneous real-time 3D reconstruction and camera
tracking. It was experimentally demonstrated that this approach
outperforms the ICP-based KinFu implementation, which is an
open source implementation of KinectFusion. A disadvantage
is that the signed distance function is represented as a uniform
grid which requires a lot of memory. It is purely based on
depth measurements, which makes it sensitive for scenes with
little geometric scene structure.

The main contribution of this paper is that we show how the
camera trajectory and the 3D scene geometry can be robustly
estimated by extending the tracking algorithm from Bylow
et al. [1] by combining color and depth measurements. That
is, we used the colourized 3D model represented as a textured
signed distance function to do global frame-to-model tracking
directly. This has the advantage, compared to ICP, that we can
extract information for all 3D points and use it for tracking,
where ICP needs to do data association and find corresponding
point-pairs which gives less points to extract information from.
Additionally, we also show how a more memory efficient
representation of the signed distance function makes it possible
to perform larger scale reconstructions. In contrast to most
other well-known tracking methods, which are sensitive to
either lack of geometric structure (for instance, ICP-methods
like KinectFusion), or lack of texture and visual features
(standard feature based methods), we show how this extension
can handle both scenes with no structure as well as scenes with
no texture.

2014 22nd International Conference on Pattern Recognition

1051-4651/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPR.2014.692

4038

II. RELATED WORK

KinectFusion [7] was one of the first methods to show the
potential of consumer depth sensors. Similar to our approach,
they use a truncated signed distance function to represent the
surface geometry in a uniform voxel grid. However, to track
the camera they use the standard ICP method, and they do
not use any color information in the tracking. Recently, Chen
et al. [2] showed how KinectFusion can be extended for larger
scenes through a more memory efficient representation, but
the tracking is still based on the standard ICP method which
is sensitive to scenes with little scene structure.

There are several previous attempts that include photomet-
ric information in the tracking algorithm. Most algorithms are
either feature based like Endres et al. [4] or based on photo
consistency as in Steinbruecker et al. [9]. For example, Whelan
et al. [14] uses Steinbruecker et al. [9] together with the
KinectFusion approach to track the camera in large scale
scenes in order to make it robust for scenes with either little
texture or little structure. However, the use the model to track
with respect to structure and frame-to-frame for tracking with
respect to photo consistency. Even though they estimate a
colourized 3D model, they do not use any color information
from the model in the tracking. Moreover, by extracting the
distance and color information directly, rather than doing ray
tracing to extract another depth image as in KinectFusion,
we gain more information since we do not have to do any
data association to find corresponding point-pairs, which was
already shown in [1] for structure based tracking. To efficiently
represent the geometry, they use a rolling volume. This has the
drawback that when leaving a part of the room, and that part
is saved to the hard drive, it is not possible recover it when
returning to the same place later.

Very recently, Steinbruecker et al. [10] showed that octrees
can be used to represent the 3D model to achieve a memory
efficient and global representation. The tracking approach is
based on Steinbruecker et al. [9] but they extend it by including
the depth images in their framework, i.e. geometry is also
taken into account. However, they do tracking between current
frame and a key-frame to reduce drift together with global
graph optimization and loop closure to get a globally consistent
trajectory. Without loop closure and the graph optimization,
the drift would be significant over a large scale. In contrast
we show, how structure information and color information can
be combined by using the global 3D model directly.

The same holds for Endres et al. [4] which finds cor-
responding points between consecutive images and performs
ICP between sparse 3D points. To reduce drift, global graph
optimization is carried out and the geometry is represented
using an occupancy grid in an octree. Unlike our method,
Endres et al. [4] will fail in scenes with structure but without
visual features.

In [13], a combination of ICP and photometric error
minimization is applied where corresponding points in two
consecutive images are detected. The methods then minimizes
both the depth distance and the photometric error between
these corresponding points. This is done in a frame-to-frame
manner and only the tracking problem is addressed.

In contrast to all previous work, we show how a textured
surface represented as a signed distance function be can used

to do global tracking for large-scale scenes and we show that
it is robust in scenes where there is either no structure or no
visual feature information. We also do a quantitative evaluation
of how the color integration affects the tracking using different
datasets from [12].

III. THEORY

Here we present our approach to represent the scene
geometry and how the camera tracking problem is solved. It
works by iteratively updating the pose of the camera and the
scene geometry for every new RGB-D image acquired.

A. Notation and Preliminaries

In this paper we use the pinhole camera model. We assume
that the focal lengths fx and fy and principal point (cx, cy) are
known. Given a pixel coordinate (u, v) and a corresponding
depth z = z(u, v), its 3D point x ∈ R

3 can be computed by

ρ(u, v) =

(
(u− cx)z

fx
,
(v − cy)z

fy
, z

)
. (1)

Conversely, given a 3D point x = (x, y, z) its projection can
be computed from

π(x) =
(
xfx
z

+ cx,
yfy
z

+ cy

)
. (2)

At each time step t we receive a color image Itc ⊂ R
2 and

a depth image Itd ⊂ R
2. We model these using the functions

Itc → [0, 1]3 and Itd → R. (3)

Furthermore, the rotation and translation of the camera is
denoted by R ∈ SO(3) and t ∈ R

3.

B. Pose Estimation

In this section present a method for computing the pose of
a new camera given the current estimate of the scene surfaces.
The surface geometry is represented in a voxel grid Ω ⊂ R

3

using a (truncated) signed distance function (SDF)

ψ : Ω→ R. (4)

The SDF gives for an arbitrary point x ∈ Ω the signed distance
to surface and the actual surface is obtained by computing the
zero level-set. To represent the texture of the surface we use
the function

ψRGB : Ω→ R
3, (5)

which gives the RGB intensities at position x ∈ Ω.

Given a new pair of color and depth images Itc and Itd,
the goal is to find the pose of the new camera. To do this
we attempt to find a global rotation R and translation t of the
camera such that

(i) the difference between the current surface estimate
and the surface obtained from the depth image Itd is
minimized (see Figure 1) and at the same time,

(ii) the difference between the estimated surface texture
and the color image Itc is minimized (see Figure 2).

4039

Fig. 1. The goal is to find a global rotation and translation of the camera
so that the observed surface is consistent with the current depth. The dotted
line is the the surface seen from the camera and that should fit as good as
possible to the filled line which is the estimated surface.

Fig. 2. To the right we have the textured surface, by using the depth
information we can reconstruct the seen surface and see how well the
backprojected texture fits with the observed texture on the surface. In this
example the backprojected star should coincide with the star on the surface if
the rotation and translation was right.

Since we use both geometric and photometric information, this
results in an objective function that is robust for situations
when the geometric scene structure may be ambigous or when
the RGB image is not informative enough.

We define the photometric error for a voxel x as

φ(x) = ‖Σ(ψRGB(x)− Itc(π(x)))‖. (6)

Like [14] we use the grayscale and accordingly weight the
errors in the different channels with

Σ =

⎛
⎝
√
0.299 0 0
0

√
0.587 0

0 0
√
0.114

⎞
⎠ . (7)

Assuming that the photometric and geometric errors are inde-
pendent, it is natural to define the total error as

E(R, t) =
∑
i,j

(
ψ(Rxij + t)2 + αφ(Rxij + t)2

)
, (8)

where α is a positive weighting factor. Here the sum is taken
over all pixels (i, j) in the image, which have corresponding
3D points xij = ρ(i, j), cf. (1).

To minimize this objective function, we switch notation
and use the Lie-algebra representation of the camera pose
instead. In the Lie-algebra representation, a rigid body motion
is represented as a 6-dimensional vector

ξ = (rx, ry, rz, tx, ty, tz). (9)

Fig. 3. To use the memory more efficient, we allocate only a small dense
grid close to the surface, as illustrated in the figure.

With this representation, the residual vector can be written

rij(ξ) =
[
ψ(Rxij + t),

√
αφ(Rxij + t)

]T
, (10)

and we can rewrite the error function as

E(ξ) =
∑
i,j

rij(ξ)
T rij(ξ). (11)

which we minimize using the standard Gauss-Newton method.

C. Representation of the Geometry and Estimation of the SDF
and Colors

In this section we show how we represent the signed
distance function as a sparse voxel grid and how we estimate
the colors and the signed distance for each voxel.

1) Representation of the voxel grid: The pose estimation
relies on that we already have an estimation of ψ and ψRGB ,
i.e. we have an estimation of the already seen textured surface.
Thus we need a method of estimating the texture and distance
and a way of integrating these measurements into the grid.

Our approach relies heavily on the the work by Curless
and Levoy [3], where a simple and fast algorithm to fuse
several depth images into a distance function is presented.
They do however use a uniform voxel grid. This requires a lot
of memory, and most of this memory is used to represent free
space. We try to overcome this by using a sparse representation
instead of a uniform grid. Recently, [2] presented a similar way
of representing the voxel grid in a more memory efficient way.

The basic idea is that the SDF only needs to be densly
sampled in the vicinity of the surface. We therefore allocate a
very sparse voxel grid, which can cover a large volume without
requiring to much memory. Then we can detect in which one
of these sparse cells the surface is present and make a denser
allocation in that particular cell and its neighbours. The goal
is to not waste memory to represent free space, but only have
dense representation close to the surface, which is illustrated
in Figure 3.

As we get more information and see new parts of the scene,
the grid is recomputed for each new image, i.e. if we detect
surface in a cell that has not densely allocated before, we do
it now.

The reason to why we need to also allocate the neighbours
to the cell in which the surface is detected is that our tracking
relies on that we can extract information in the voxel grid. If

4040

Fig. 4. The idea behind the projected point-to-point metric is to measure the
projected distance between the observed surface and the voxel.

only the cell which the surface is detected in was allocated,
then it might be that the surface is close to the edge of the
cell, and there will be little information around the surface
if the neighbouring voxels does not contain any information.
By also allocating these, we can guarantee that the surface
representation will contain enough information for the pose
estimation.

2) Estimation the SDF and the Colors: When the voxel
grid has been allocated, we need to estimate the distance
between the voxels and the surface. Ideally, one would want
that each voxel is assigned the smallest distance to the surface,
however, this is very time consuming. Instead, we follow the
idea by Curless and Levoy [3] of using the projected distance.
That is, the distance between the 3D point and the surface
along the viewing ray.

To estimate the projected distance, assuming the global
rotation and translation is known, we transform the global
coordinates xG for each voxel to the camera frame of view
by xL = RT (xG − t). When xL is known, it is projected
onto the image plane where we get the pixel (u, v) = π(xL).
Taking the z-coordinate zL for the voxel in the camera frame
and reading the depth z = Itd(u, v) to the surface along the
optical axis, the projected distance d is estimated as

d = zL − z, (12)

which is illustrated in Figure 4.

Since the projected distance is a rough approximation
which can get arbitrary wrong, we follow the standard ap-
proach to reduce the impact of bad measurements by truncating
the measured distance if |d| > δ for some threshold δ, i.e.

dtrunc =

{ −δ if d < δ
d if |d| ≤ δ.
δ if d > δ

However, this is not enough to decrease the impact of bad
measurements. We do also have a higher uncertainty when the
voxel lies behind the surface. To handle this, we weight the
measurements using the following weight function

w(d) =

⎧⎨
⎩

1 if d ≤ ε

e−σ(d−ε)2 if ε < d < δ.
0 if d ≥ δ

(13)

By using the weight and the truncated distance we can
update the distance information in the voxel grid by computing

Fig. 5. By projecting each voxel onto the image plane we can extract the
rgb vector in the color image and estimate the color for each voxel. The angle
θ is used to weight the measurement.

the weighted average

Dt+1 =
W tDt + wt+1dt+1

trunc

W t + wt+1
(14)

W t+1 =W t + wt+1, (15)

where Dt and W t are the estimated distance and weight after
the t first images and dt+1

trunc and wt+1 are the estimated
distance and weight for image t + 1. By doing this for all
voxels in the grid, we can fuse all the depth images into
one representation only. The different thresholds δ and ε are
evaluated in [1] and set to δ = 0.3m and ε = 0.025.

We also need to estimate the color for each voxel in order
to get a colourized 3D-model. The idea is to store an rgb vector
which contains the color intensities in each voxel. To estimate
the rgb vector for a voxel, we use that the pixels in the depth
image and color image are in one-to-one correspondence. So
when projecting the voxel onto the image plane, we get also
the corresponding pixel coordinates for the color image Ic and
we can extract the rgb vector

(r, g, b) = Ic(u, v), (16)

as illustrated in Figure 5.

To fuse all the measurements the weighted average is
computed, just like the distance measurements are fused.

As weight we choose the product

wc = cos(θ)w(d) (17)

where θ is the angle between the optical axis and the projected
line between the surface point and the camera center, see
Figure 5. This is so the parts which are looked more straight
onto are getting a higher weight. Since we are measuring the
colors for voxels which are not close to the surface, we also
use the distance to the surface to weight the measurement by
using the weight obtained from (13).

Thus for each new image and each voxel we estimate the
rgb vector as

R =
RtW t

c + rt+1wt+1
c

W t
c + wt+1

c

(18)

G =
GtW t

c + gt+1wt+1
c

W t
c + wt+1

c

(19)

B =
BtW t

c + bt+1wt+1
c

W t
c + wt+1

c

(20)

4041

Fig. 6. A long corridor reconstructed, the scene is approximately 40 m long and the tracking need to be good over time to get a descent result. Note that the
chairs looks good even though they are halfway in the scene, which indicates a consistent tracking. The camera path is plotted in the 3D model as well (red,
green and blue lines indicates the x- y- and z-axis of the local camera frame), which shows no indication of loosing track.

where wc is the weight of the certainty of the color measure-
ment, Rt, Gt and Bt are the estimated colors for the first t
images and W t is the total weight after t images.

IV. EXPERIMENTS

In this section we evaluate how well the proposed method
works for different scenes. In particular we will show how
it can handle scenes with no structure and also larger scenes
where there is little structure.

A. Qualitative Results

In this part we show 3D models acquired from our pro-
posed algorithm, in particular we show the difference between
the pure structure based algorithm from [1] and our new
extension for a dataset with pure planar surfaces. All images
are captured by using the Asus Xtion Pro Live sensor.

To test our method and see how well it works we do
experiments by recording data from different environments.
Our main hypothesis is that the tracking shall remain stable
with no structure if there is enough texture in the scene. To
test this we started with recording a small dataset with the
camera only facing a floor with a regular pattern of blue
squares. With pure planar structure, there is no unique minima
for the error function which only takes structure into account.
However, with our proposed error function (8), there should
be a unique minimum. Comparing Figure 7 b) and Figure 7
a), we see that the estimated trajectory for the structure based
method is a roughly stationary camera, but the trajectory for
the combined structure- and color based method gives a clearly
better estimation. In particular the pattern on the floor is easy
to distinguish. Note that the edges on the squares are sharp,
which indicates a good estimation of the camera pose.

Clearly, this shows that our proposed method is able to
handle situations where there is no structure but there is
texture. In Table I, it is also shown that our new method also
can handle scenes with no texture but with structure as well.
The extreme case which it cannot handle is scenes with no
structure or texture.

By representing the signed distance function more effec-
tively, we can also do larger scale reconstruction. In Figure 6 a
reconstruction of a corridor is seen. This is quite a challenging
scene because typically a corridor contains scenes with little

(a) (b)

Fig. 7. Difference between tracking which uses both structure and color
(a) and tracking which uses only structure (b). Even though completely flat
structure, the color based tracking works very good but the pure structure
based does not. The red and green lines indicates the x- and y-axis of the
camera frame. The z-axis is in blue and is facing the floor.

Fig. 8. Zoomming in on the scene we can clearly see that the pattern on the
curtains are clearly distinguishable, which indicates a consistent tracking.

structure as well as scenes with little texture, such as white
walls. Moreover, the recorded scene is about 40 - 50 m long
and together with the challenging scenes with plenty of planar
surfaces, the tracking needs to be accurate and robust to not
drift away.

The resulting reconstruction is showed in Figure 6. The
estimated pose is quite a straight path and there are no big
jumps in the pose estimation. All this indicates that the tracking
works well for larger scenes as well. In particular, if we
look at Figure 8, we see that quality of the reconstructed
chairs are good and that the pattern on the curtains are clearly
distinguishable. If we look at Figure 6 again, we see that the
chairs comes halfway in the scene, which indicates that the
drift is small even after about 20 m.

4042

TABLE I. THE ROOT-MEAN SQUARE ABSOLUTE TRAJECTORY ERROR (M) FOR DIFFERENT VALUES OF THE WEIGHT α IN (8).

Dataset Weight α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Steinbruecker et al. [10]

fr1 teddy 0.083 0.0803 0.079 0.080 0.082 0.088 0.089 0.098 0.105 0.102 0.099 0.036

fr3 structure no texture 0.040 0.040 0.040 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.038 2-
fr3 no structure texture 1.36 0.038 0.035 0.037 0.039 0.040 0.042 0.043 0.044 0.045 0.047 -
fr3 no structure no texture 0.756 0.796 0.754 0.700 0.657 0.609 0.584 0.568 0.532 0.538 0.532 -
fr1 floor 0.677 0.374 0.417 0.528 0.584 0.657 0.658 0.715 0.719 0.715 0.716 -
fr1 room 0.177 0.171 0.326 0.260 0.300 0.397 0.493 0.652 0.679 0.691 0.684 0.054
fr1 desk 0.037 0.033 0.032 0.032 0.031 0.031 0.030 0.030 0.030 0.031 0.031 0.021
fr1 desk2 0.063 0.062 0.066 0.067 0.073 0.084 0.083 0.084 0.096 0.115 0.127 0.027
fr1 360 0.117 0.114 0.115 0.120 0.136 0.138 0.150 0.163 0.168 0.177 0.314 0.073
fr1 long office househould 0.087 0.062 0.057 0.054 0.054 0.052 0.051 0.051 0.052 0.051 0.053 0.030

B. Quantitative Results

In Table I our proposed algorithm is evaluated using the
benchmarks from [12]. To measure the impact of the color
information, each dataset is evaluated ten times with different
values for the weighting parameter α in (8). α = 0 corre-
sponds to the pure structure based method in [1] and α = 1
gives the color error the same weight as the distance error.
In particular, we evaluated our method on the benchmarks
fr3 structure no texture and fr3 no structure texture, which
corresponds to the two extreme cases for which we claim
our algorithm is robust. The results shows clearly that for
α = 0, the tracking fails for fr3 no structure texture, but when
color information is included the tracking works very well.
Also the results for fr3 structure no texture are convincing,
which shows our proposed method is capable of handling both
extreme scenarios. We also include the results we can find from
the just published work by Steinbruecker et al. [10] to show
what the state-of-art can achieve. They do clearly better on the
benchmarks for which we have results, however, they use both
graph optimization and loop-closure in their machinery.

V. CONCLUSION AND FUTURE WORK

The main contribution with this paper is that we can include
both color and structure information from the global 3D-
model represented as SDF. Experiments shows that this gives
robustness for scenes with no structure but texture, as well as
scenes with structure but lack of texture.

Evaluation on benchmarks confirms that we can handle
both extreme scenarios. However, Steinbruecker et al. [10]
clearly performs better on the benchmarks, it would be in-
teresting to see how our method would perform if graph
optimization was included in our method as well.

REFERENCES

[1] E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers.
Real-time camera tracking and 3d reconstruction using
signed distance functions. In RSS, 2013.

[2] Jiawen Chen, Dennis Bautembach, and Shahram Izadi.
Scalable real-time volumetric surface reconstruction.
2013.

[3] B. Curless and M. Levoy. A volumetric method for build-
ing complex models from range images. In SIGGRAPH,
1996.

2No results available

[4] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers,
and W. Burgard. An evaluation of the RGB-D SLAM
system. In ICRA, May 2012.

[5] D. G. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer
Vision, 60:91–110, 2004.

[6] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison.
Dtam: Dense tracking and mapping in real-time. In
Proceedings of the 2011 International Conference on
Computer Vision, ICCV ’11, 2011.

[7] R.A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,
D. Kim, A.J. Davison, P. Kohli, J. Shotton, S. Hodges,
and A.W. Fitzgibbon. KinectFusion: Real-time dense
surface mapping and tracking.

[8] C. Olsson, J. Ulén, and Y. Boykov. In defense of 3d-label
stereo. In CVPR, 2013.

[9] F. Steinbruecker, J. Sturm, and D. Cremers. Real-time
visual odometry from dense rgb-d images. In Workshop
on Live Dense Reconstruction with Moving Cameras at
the Intl. Conf. on Computer Vision (ICCV), 2011.

[10] F. Steinbruecker, C. Kerl, J. Sturm, and D. Cremers.
Large-scale multi-resolution surface reconstruction from
rgb-d sequences. In IEEE International Conference on
Computer Vision (ICCV), Sydney, Australia, 2013.

[11] J. Stühmer, S. Gumhold, and D. Cremers. Real-time
dense geometry from a handheld camera. In Pattern
Recognition (Proc. DAGM), Darmstadt, Germany, 2010.

[12] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and
D. Cremers. A benchmark for the evaluation of RGB-D
SLAM systems. In IROS, 2012.

[13] T.M. Tykkälä, C. Audras, and A.I Comport. Direct
iterative closest point for real-time visual odometry. In
Workshop on Computer Vision in Vehicle Technology at
ICCV, 2011.

[14] T. Whelan, H. Johannsson, M. Kaess, J.J. Leonard, and
J.B. McDonald. Robust real-time visual odometry for
dense RGB-D mapping. In IEEE Intl. Conf. on Robotics
and Automation, ICRA, Karlsruhe, Germany, May 2013.

4043

