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Abstract—With the introduction of low cost depth sensors, 
gesture recognition systems for computer interface control are 
becoming a reality and require accurate recognition in real time.  
In this paper, we introduce a salient feature for gesture 
recognition called active difference signature, obtained by robust 
processing of depth maps and kinematic joint information. This 
feature is classified with variants of semi-supervised Linear 
extension of Graph Embedding and sparse representations to 
demonstrate advanced gesture control using depth cameras.  Our 
active difference signature technique delivers highly accurate 
gesture recognition that is invariant to subject distance to 
camera, subject size, subject location within the camera field of 
view, and speed at which the subject performs the gestures.   

Keywords— gesture recognition; depth maps; sparse 
representation; human computer interaction 

I.  INTRODUCTION 
The introduction of low cost depth cameras along with 

advances in computer vision have spawned an exciting new era 
for Human Computer Interaction (HCI).  Pervasive or ambient 
intelligence is based on the seamless diffusion of sensors into 
the environment, thereby shifting computer interfaces from the 
primarily purposeful foreground (mouse/keyboard) to the 
ambient background.  This new paradigm relies on touchless 
interfaces as a primary input modality.  As such, new gesture 
control algorithms and architectures are of critical importance.   

Depth sensors provide more salient information than RGB 
cameras for gesture recognition, as depth facilitates the 
extraction of objects against complex backgrounds and 
simplifies the tracking of objects.  Shotten et al. [1] have shown 
how Kinect depth images are segmented into body clouds, then 
converted to body parts, and finally to skeletal joints in real 
time.  These depth cameras are capable of video resolution 
frame rates, and have given the gesture recognition community 
a revolutionary leap in controller-less capability [2].   

There has been much research on improving the overall 
HCI experience [3-5].  Lew [5] argues that in order to achieve 
effective human to computer communication, the computer 
needs to interact with the human.  The recognized gestures can 
be used to direct interactive large-scale displays for a satisfying 
user experience [6].     

The ChaLearn [7] challenges have facilitated  algorithm 
benchmarking and expedited algorithm development in the 
gesture recognition community.  Recognizing gestures is often 
accomplished by feeding tracked skeletal joints into Hidden 

Markov Models (HMMs) to accurately model sequences of 
complex gestures [8, 9].  Spatial action representations, such as 
body models [10], body pose estimations [11], kinematic joint 
models [12], and stick figures [13] offer intuitive 
representations but may not adequately capture the human 
body’s high degree of variability.  Spatial parametric image 
features such as contour/silhouette representations [14], optical 
flow [15], and motion history images [16] don’t require body 
part labeling or tracking, but are more computationally 
intensive. 

The notion of Sparse Representations (SRs), or finding 
sparse solutions to underdetermined systems, has found 
applications in a variety of scientific fields.  The resulting 
sparse models are similar in nature to the network of neurons in 
V1, the first layer of the visual cortex in the human, and more 
generally, the mammalian brain [17].  SR systems are 
comprised of an input sample y � RRD along with an 
overcomplete dictionary Φ of m samples, Φ � RDxm.  SR 
solves coefficients a � Rm that satisfy the ℓ1 minimization of 
|a|1 s.t.  �� =Φa.  It has been shown that under typical 
conditions, the minimal solution is the sparsest one [18].  There 
have been several studies combining both ℓ1 minimization and 
the selection of dictionary elements [19]. 

Although designed for reconstruction purposes, the SR 
framework has been successfully adapted for classification 
problems.  Wright et al. [20] passed the a coefficients directly 
into a minimum reconstruction error classifier for facial 
recognition.  In this framework, the dominant signal always 
prevails, but it could produce some unintended effects.  For 
example, when trying to extract facial identity, pose variation 
may contaminate or even dominate the sparse coefficients.  
Ptucha et al. [21] addressed the coefficient contamination 
problem in the context of expression recognition by 
preprocessing the data with supervised manifold learning.   

Distinct advantages afforded by SR architectures include: 
1) The class and numeric value of each non-zero coefficient a 
� Rm can be used as salient input to a classifier; 2) Sparse 
systems accommodate both large and small training 
dictionaries; 3) The addition of new training samples does not 
require retraining, as required by many popular classification 
methods.   

In this paper, we introduce active difference signatures as 
means to select temporal regions of interest based on both the 
depth map and the estimated kinematic joint positions [1].  The 
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skeletal joints are normalized to make the method invariant to 
body size, distance from camera, and location within the frame.  
The difference between the normalized joints and a canonical 
representation forms an active difference signature, a salient 
feature descriptor across the video sequence. This descriptor is 
dynamically warped to a fixed temporal duration.  Semi-
supervised Linear extension of Graph Embedding (LGE) 
manifold learning is used to convert active difference 
signatures to a low dimensional object.   This low dimensional 
space is more computationally efficient and discriminative.  
Sparse coefficients, obtained by ℓ1 minimization of this low 
dimensional object, are fed into a minimum reconstruction 
error engine to achieve state-of-the-art gesture recognition 
results.  We contrast our technique to other popular techniques 
on the Microsoft Action 3D (MSR3D) Dataset [22]. 

The rest of this paper is organized as follows. After the 
introduction, Section 2 overviews manifold learning, sparse 
representation, and temporal technologies used in our model. 
Section 3 introduces our temporally invariant difference 
signature framework. Section 4 presents the experimental 
results, and Section 5 contains concluding remarks. 

II. BACKGROUND 

A. Manifold Learning 
Manifold learning techniques reduce the dimensionality of 

input data by identifying a non-linear lower dimensional space 
where the data resides [23].  In order to support the extension 
of the manifold model to new examples, LGE linearized 
techniques, solve a linear approximation of the non-linear 
object [24]. 

The input feature space contains n samples, x1, x2, …, xn, 
with xi � RRD.  These n samples are projected onto a lower 
dimensional space, yielding y1, y2, …, yn, with yi � Rd.  LGE 
solves a d×D projection matrix �, such that �� = ��� , and 
� ≪ 	.  LGE creates an adjacency mapping of the top k 
neighbors for each feature point xi by weighting each neighbor 
by distance to form a n×n adjacency matrix W with entries wij.  
W is defined similarly for X and Y, such that if neighbors xi and 
xj are close, yi and yj are also close to each other.  LGE 
computes eigenvectors of the generalized eigenvector problem: 

              
�
�� = 

	
��                                      (1) 

where D is a diagonal matrix of the column sums of W, L is the 
Laplacian matrix, L=D-W, and U is the projection matrix.  

There are several strategies to set connection weights wij of 
W.  Different choices of W yield a multitude of dimensionality 
reduction techniques.  Locality Preserving Projections (LPP) 
[25] uses Gaussian kernel weighting.  If nodes i and j are 
connected, LPP sets: 

                       ��� = ��
�������

�

�                                            (2) 

When supervised labels are available, a discriminative 
embedding can be achieved via a supervised kernel.  Formally, 
W is initialized to all zeros, and then wij entries corresponding 
to the same classes are set to 1/k, where k is the number of 
samples per class.   

To achieve a discriminative embedding while maintaining 
the input topology, we utilize a convex combination of the 
Gaussian and supervised kernels:  

� = �������!�"�# + (1 − �)�$%�""�%& ,    0 ≤ � ≤1     (3) 

B. Sparse Representation Classification 
Motivated by evidence of sparsity in the human brain and 

the success of SRs in recognition problems [20], we utilize a 
Sparse Representation Classification (SRC) engine to process 
our dimensionality reduced data.  In the SRs framework, a test 
sample is represented as a sparse linear combination of 
exemplars from a training dictionary, Φ.  Let the input signal 
be y � Rd and the dictionary be Φ � Rdxn.  Finding the sparsest 
solution ŷ = Φa in the presence of noise is called Basis Pursuit 
Denoising (BPDN):  

*� = argmin‖*‖.     /. 3.  ‖� − Φ*‖5 ≤ 6         (4) 

Often (4) is approximated by loosening the error constraints 
and reconfigured to specifically include a regularization term, � 
which encourages sparseness by incurring a penalty on the 
resulting coefficients: 

*� = argmin{‖� − Φ*‖5
5 + 
‖*‖.}              (5) 

Given the sparse representation coefficients â of a test 
sample, a minimum reconstruction error estimates the class c* 
of our test sample by comparing the error between all 
coefficients â with the coefficients ac corresponding to each 
class c, one class at a time: 

7∗ = argmin‖� − *9‖5    7 ∈ 1 … ;            (6) 

C. Temporal Representations 
Gestures can occur at any point in time and are variable in 

length.  For streaming video, we define sliding temporal 
windows �<

> of duration �, where � is the number of frames in 
a gesture sequence, and l is a window identifier.  Each of these 
temporal windows can be used as input to a gesture classifier. 

Motion History Images (MHI) were initially introduced as 
descriptors for human movement recognition [16].  MHI 
describes the motion over each sliding temporal window �<

> 
into a single frame called a MHI template.  MHI evaluates the 
movement between all possible frames f and f+1 in �<

>, where 
f =1,…,��-1.  For each pair of frames {f, f+1} in �<

>, we first 
calculate motion energy at the pixel level in a binary fashion:  

�? = @1 AB |C(�, �, B) − C(�, �, B + 1)| > E
0 F3ℎ�H�A/�         (7) 

where g(x,y,f) is a Gaussian filtered version of frame f and � is 
a noise threshold.  These energy difference frames are 
morphologically filtered with an opening operation to remove 
isolated noise.  Each sliding window produces a single IJK<

>  
template such that more recent movements are assigned higher 
weights:  

IJK<
> = .

>�. max?LB�?(�, �) ,    0 ≤ B ≤ M − 1N      (8)  
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III. ACTIVE DIFFERENCE SIGNATURES 
Gesture recognition is a challenging problem due to the 

wide variation in performing gestures both in terms of manner 
and time duration.  The automatic detection of gesture onset 
and offset is valuable but can be difficult. The active difference 
framework is developed to effectively deal with variations in 
gestures performed by the same person or across individuals.  

Fig. 1 outlines the gesture extraction framework used in this 
work.  The depth map is processed to find gesture start and end 
boundaries; skeleton joints for all frames within each gesture 
region are normalized; difference signatures are formed by 
comparing normalized skeletal joints to reference skeleton 
joints; the difference signature is dynamically time warped; and 
manifold learning along with Sparse Representation 
Classification (SRC) are used for gesture classification. 

 
Fig. 1. Overview of the active difference signature framework. 

Gesture boundary detection finds frames which indicate the 
onset and offset of a gesture.  For example, Fig. 2 shows a time 
sequence of a user executing four gestures in a single video 
from the ChaLearn Gesture Challenge dataset [7].  Motion 
detection along with a measure of the difference between each 
frame and the resting position are good markers for gesture 
boundaries.   

 
Fig. 2. Multi-gesture video sequence with four active gesture areas separated 
by five non-gesture regions indicated in gray areas.  The solid blue curve is a 
frame to frame difference signature; the black dotted line is a frame-canonical 
depth image signature.  The images at top show the depth frame at the center 
of the non-gesture and gesture regions. 

The solid blue line in Fig. 2 is an indicator of frame to 
frame motion.  The dashed black line records the difference of 
the current frame to a resting frame.  The gray regions 
pictorially illustrate the non-gesture regions, or the resting 
regions.  The white regions are active regions where a gesture 
is being performed.  The formation of the blue motion and 

black difference curves is done via a variation of MHI.  
Specifically, depth frames are first resampled down to 60×80 
pixels, and then converted to a difference frame using (7).  The 
motion depth image signature (blue line in Fig. 2) is: 

OP = ∑ �?(�, �)                                      (9) 

Higher values of �m indicate more motion from one frame 
to the next. Each time �m crosses �×max(�m), 0<�	
, this 
indicates the possible beginning or end of a gesture. 

A canonical depth image, or canonical resting frame cd, is 
formulated by averaging all start and end frames of a video 
sequence in which no motion is detected.  Using cd, a 
difference indicator is calculated using (7), replacing 
C(�, �, B + 1) with 7#: 

���? = @1 AB |C(�, �, B) − 7#| > E 
0 F3ℎ�H�A/�                  (10) 

The black dashed frame-canonical depth image signature in 
Fig. 2 is calculated as: 

O��? = ∑ ���?(�, �)                                   (11) 

Higher values of �ref indicate more difference from the 
canonical resting frame. Each time �ref crosses �×max(�ref), 
0<�	
� it indicates the possible beginning or end of a gesture.  
Given �m and �ref , active regions where gestures are being 
performed are defined by �m > �max(�m) OR �ref  > �max(�ref).  
Similarly, resting regions, or inter-gesture regions are defined 
by �m < �max(�m) AND �ref  < �max(�ref).   

The 20 XYZ skeletal joint coordinates in each frame of 
each active region are normalized akin to a Procrustes analysis 
in preparation for subsequent processing.  This normalization 
makes the technique invariant to subject distance from the 
camera, subject size, and subject location within the frame.  
Setting s equal to a vector of  the frame’s XYZ skeleton joints, 
c equal to a vector of XYZ canonical skeleton joints (see Fig. 
1), and n equal to the number of frames in the active region: 

/R = / − .
& ∑ /�                A ∈ 1 … 20              (12) 

/RR = /R T "�U�(9)
"�U�("V)W                             (13) 

/RRR = /RR + .
& (∑ 7�� − ∑ /�

RR
� )    A ∈ [3,4,7,20]      (14) 

Equation (12) shifts the skeleton joints such that the 
centroid is at the origin.  The size of a skeleton is the joint-to-
joint geodesic distance (i.e. the 3D length of segments 
connecting the joints in Fig. 1).  After scaling in (13), the 
skeleton is shifted to the canonical skeleton location using a 
centroid calculation of only the head and spine joints (joints 
numbed 3, 4, 7, and 20).  Omitting arm and leg joints enables 
the body mass to remain stationary even if a subject’s arm or 
leg is fully extended. 

After joint normalization, the active difference signature 
attribute is formed by differencing the 20 normalized skeleton 
joints s’’’ of each frame with the 20 canonical skeleton joint 
locations.  Each frame in the active region yields a 20×3 
feature x � RR60. All frames between gesture boundaries are 
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dynamically time warped to form a standard window of 25 
frames.  This is done separately for the X, Y, and Z directions 
by forming an image of size ��×20, where ��
�� is the number 
of frames in the active region and 20 is the number of skeletal 
joints.  This procedure yields 25 frames with 20 skeletal joints 
per gesture, where the combination of the X, Y, and Z 
resampled images form our temporal joint attribute feature x � 
RR1500.   

Not only does the dynamic time warping convert each 
active sequence to a fixed number of dimensions in preparation 
for classification, but it also removes high frequency noise 
between frames.  Fig. 3 shows a sample video from the MSR 
[22] dataset with the corresponding difference signature in the 
middle and an active difference signature on the bottom.  Each 
of the 20 lines represents the temporal movement of each of the 
20 skeletal joints across the dynamically warped 25 frame 
timeline.  The gesture in Fig. 3 did not start until after frame 
10, and thus the middle signature does not generalize well with 
different start and end times.  The dynamically warped active 
difference signatures at the bottom of Fig. 3 are invariant to the 
speed at which the subject is performing gestures.   

 
Fig. 3. Comparison of an difference signature (middle) vs. active difference 
signature (bottom) for the waving gesture from sample 1 of the MSR3D 
dataset (top).  Each of the colored lines in the two figures shows the temporal 
displacement of one of the 20 skeletal joints from the canonical skeletal 
frame.  Kinematic joints 11 and 13 (yellow and cyan repsectively) showed the 
most displacement from the canonical skeleton. 

Another approach to representing the canonical resting 
frame is to consider a family of reference frames. After joint 
normalization, a family of active difference signature attributes 
are formed by differencing the 20 normalized skeleton joints 
s’’’ of each frame with the 20 skeleton joint locations of each 
reference frame.  To select reference frames, K-SVD [26] 
dictionary learning can learn the top k dictionaries or k-means 
clustering with k set to the number of reference frames is 
repeated many times on the dataset using random initialization.  

The k-means class centers, or reference frames are chosen with 
the minimum cost: 

\ = .
& ∑ ‖�� − ^7�‖5&

�_.                          (15) 

where �ci is the cluster centroid to which sample xi has been 
assigned.   

Classification can be done using methods such as k-NN, 
artificial neural nets, or support vector machines (SVM).   LGE 
manifold learning in conjunction with sparse representations 
offers the highest accuracy and provides moderate robustness 
to outliers and partial occlusions.  In particular, we use 
equation (3) to solve for W, and LPP to generate 
dimensionality reduction matrix U using (1), to solve for the 
low dimensional sample,  y = Ux.  Sparse Representation 
techniques convert  y  into a gesture estimate by solving the ℓ1 
minimization of low dimensional sample y, using (5), and 
making a class estimate on sparse coefficients a using a 
minimum reconstruction error (6). 

IV. RESULTS 

A. Dataset 
The Microsoft Action 3D (MSR3D) dataset proposed by Li 

et al. [22] contains both depth maps and corresponding skeletal 
joint locations.  It consists of depth map sequences with a 
resolution of 320×240 pixels recorded with a depth sensor at 15 
FPS. There are ten subjects performing twenty actions two to 
three times for a total of 567 depth map sequences.  The dataset 
actions are: high arm wave, horizontal arm wave, hammer, 
catch, tennis swing, forward punch, high throw, draw X, draw 
tick, tennis serve, draw circle, hand clap, two hand wave, side 
boxing, golf swing, side boxing bend, forward kick, side kick, 
jogging, and pick up and throw. No corresponding RGB 
information is available, however 3D kinematic joint positions 
are provided for each frame. 

B. Experimental Methodologies 
A leave-one-subject out cross-validation methodology was 

used to separate the MSR3D dataset into separate training and 
testing sets.  Each test subject is validated against the 
remaining nine subjects and the process is repeated until all 
subjects have been used for training and testing. The results 
from each subject are averaged to give a final performance 
result. The dimensionality reduction techniques capture 99% of 
the data variance.  The LPP method uses �=0.5 in creation of 
W using (3).  Sparse coefficients from test samples are 
generated using (5), setting �=0.15.  The low dimensional 
projection of all training samples in the cross-validation 
training split forms the training dictionary in the SR 
techniques.  The corresponding sparse coefficients of test 
samples use (6) to make a final classification estimate. 

C. Experimental Results 
Table I shows the classification results of our method 

against other state-of-the-art gesture recognition techniques.  
The first three techniques are existing temporal techniques 
adopted for gesture recognition.  Techniques ‘4’ and ‘5’ were 
published results on the MSR3D dataset, and technique ‘6’ is 
the active difference signatures method proposed in this paper.   
SIFT flow [27] is an image alignment algorithm introduced to 
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register two similar images. Optical Flow of Skeletal Joints 
tracks the skeletal joints frame by frame, forming the 
difference between each joint coordinate and a canonical 
skeletal coordinate.  Bag of Features [22] uses action graphs to 
model the dynamics of the actions and a bag of features to 
encode the action.  Spatio-Temporal Joint Descriptor [28] 
encodes the difference between each skeletal joint and the 
centroid of the skeleton, and then uses dynamic time warping 
to generate gesture attributes. 

TABLE I.  CLASSIFICATION ACCURACY ON THE MSR3D DATASET FOR 
VARIOUS GESTURE RECOGNITION TECHNIQUES.    

Method Classifier % Accuracy 
MHI [29] SRC 62.1 

SIFT flow [27] SRC 40.8 
Optical Flow of Skeletal Joints SVM 40.9 

Bag of Features [22] NERF 74.7 
Spatio-Temporal Joint Desc. [28] SRC 73.3 

Active Difference Signatures SRC 82.5 
 

The results in Table I show the significant advantage of 
active difference signatures on final classification rates.  In 
particular, by concentrating only on active regions, the 
attributes passed into the classifier are more discriminative.  
For example, the last two methods in Table I both used sparse 
representation classifiers, but only the latter used active 
regions.  The MHI, SIFT flow, and Bag of Features methods 
used depth pixels as the primary feature, while the Optical 
Flow, Joint Descriptor, and Active Difference Signature 
methods used the 3D skeletal joint coordinates as the primary 
feature.  It should be noted that the results for the Bag of 
Features method used half the subjects for training, the other 
half for testing, which is not directly comparable to the leave-
one-subject-out cross validation used by all other methods.  
Nonetheless, we include this method as it introduced the 
MSR3D dataset.  Under the classifier column, SRC is the 
Sparse Representation Classifier (6), and NERF is a fuzzy 
spectral clustering method that classified the test sample 
according to the training sample with the minimum Hausdorff 
distance. 

To examine the value of using a family of reference frames: 
1) K-SVD was used for dictionary selection and the top 12 
dictionary elements were used as reference frames; 2) k-means 
clustering with k=12 was repeated 100 times to pick the class 
centers that minimized (15) (depicted in Fig. 4); and 3) To 
select the optimal 12 reference frames, we manually inspected 
all 8,136 frames of the MSR dataset and selected 12 salient 
body positions (e.g.: arms straight up, left arm straight out, 
etc.).  For each salient body position, ten exemplars from 
different subjects were averaged to form each of the 12 
reference frames.   

Table II compares the active difference signature method 
using a single resting reference frame vs. a family of reference 
frames, and across standard SVM classification vs. sparse 
representation classification (SRC).   

 
Fig. 4. Tweleve cluster centers as selected by k-means. 

TABLE II.  CLASSIFICATION ACCURACY ON THE MSR3D DATASET FOR 
VARIOUS GESTURE RECOGNITION TECHNIQUES 

Method SVM SRC 
Single Canonical Resting Frame 79.3 82.5 

Family of Reference Frames-KSVD 79.1 81.4 
Family of Reference Frames: k-means 79.8 82.7 
Family of Reference Frames: manual 79.1 82.9 

 
SRC always outperforms SVM, and the addition of a 

family of resting frames does not necessarily increase 
classification accuracy over a single resting frame.  The manual 
selection of the 12 salient body positions is quite an arduous 
task, and was only marginally better than the other methods. 

V. CONCLUSIONS 
This paper presents a new gesture recognition method 

which introduces active difference signatures, a novel salient 
descriptor for gesture control.  The active difference signature 
attribute is dynamically time warped and converted to a gesture 
estimate using manifold based sparse representations to 
achieve state-of-the-art gesture estimation for HCI systems.  
We utilize information from depth maps to segment out active 
regions from video.  The kinematic body joints for each frame 
within the active regions are normalized and then differenced 
from a canonical skeletal representation to obtain a difference 
signature.  When these difference signatures are dynamically 
time warped across the active region, an active difference 
signature is formed.  These signatures are invariant to subject 
speed of performing gestures, subject distance from the 
camera, subject size, and subject location within the frame.  By 
utilizing semi-supervised LGE dimensionality reduction before 
sparse representation dictionary learning, we reduce compute 
overhead and make our gesture recognition system more robust 
to diverse test environments. 
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