
Incremental Learning with Support Vector Data
Description

Weiyi Xie, Stefan Uhlmann, Serkan Kiranyaz, and Moncef Gabbouj
Signal Processing Department

Tampere University of Technology
Tampere, Finland

{weiyi.xie, stefan.uhlmann, serkan.kiranyaz, moncef.gabbouj} @tut.fi

Abstract— Due to the simplicity and firm mathematical
foundation, Support Vector Machines (SVMs) have been
intensively used to solve classification problems. However,
training SVMs on real world large-scale databases is
computationally costly and sometimes infeasible when the dataset
size is massive and non-stationary. In this paper, we propose an
incremental learning approach that greatly reduces the time
consumption and memory usage for training SVMs. The
proposed method is fully dynamic, which stores only a small
fraction of previous training examples whereas the rest can be
discarded. It can further handle unseen labels in new training
batches. The classification experiments show that the proposed
method achieves the same level of classification accuracy as batch
learning while the computational cost is significantly reduced,
and it can outperform other incremental SVM approaches for
the new class problem.

Keywords—Support Vector Machines; Large-scale;
Incremental Learning; Classification

I. INTRODUCTION

Support Vector Machine (SVM) [1] has attracted a great
deal of research attention due to its firm mathematical
foundation and simplicity. In the most basic terms, SVM
training is to construct an optimal hyper plane to separate two
classes with maximal margin, resulting in solving a convex
quadratic optimization problem (QP) in the size of the training
set. Solving such QP thus can be intractable for a massive
dataset. Researchers have attempted to solve this problem with
incremental learning methods where a large dataset is divided
into small trunks. Then these trunks are learned in incremental
steps. Incremental learning can also handle the case when
meaningful examples cannot be gathered before the learning
process e.g. stream data. So far, existing SVM incremental
learning approaches still remain problematic when a new batch
of training examples contains unseen class labels and capability
of discarding previous learned examples is required.

According to [2], an incremental learning method can be
categorized into example-incremental, class-incremental, and
attributes-incremental. At early stages of example-incremental
learning studies with SVMs, [3] reserves only Support Vectors
from previous training steps and discards the rest. When new
training data is available, reserved Support Vectors are simply
fused with the new training data. This method is referred to as
SV-incremental learning in the literature [5], which is based on
the fact that training a SVM over Support Vectors results in the
same decision plane as training it over the entire training set.

SV-incremental learning compares well to batch learning in
terms of time consumption and classification accuracy [3],
while it may cause large deviations from constructing the �nal
true classi�er if distribution properties of training examples
vary dramatically during incremental learning , known as so
called “concept drift” [4]. The issue becomes more evident in
class-incremental learning scenario where new training data
contains unseen labels. In this case, the problem of SV-
incremental learning is that the Support Vectors suffice to
describe the decision plane but not to describe the distribution
of the underlying training examples [5] appropriately.
Therefore, in essence, the problem is how to find a sufficient
representation for the original training data.

Clustering based methods are firstly introduced to address
this problem. CB-SVM [6] recursively forms a hierarchical
clustering tree and then selects the centroids of the clusters as
the representatives. Tseng and Chen [7] assumed that the
examples residing on the boundaries of the clusters are critical
data, thus only these examples are used for training. Support
Cluster Machine (SCM) [8] shows that after clustering the
original training set clusters can be trained as examples based
on a the probability product kernel. However, clustering
models can be also problematic, due to their parameter
dependency or their convergence highly depends on data
distribution and dimensionality. Besides clustering, Core
Vector Machine (CVM) [11] forms a core set by solving the
Minimal Enclosing Ball (MEB) problem. As an extension, the
authors further developed a simplified version of CVM, which
solves the MEB problem with a given radius [12]. After finding
a core set for SVM training, QP can be directly solved using
that core set instead of using the entire training data set.
However, this method has the same drawback as SV-
incremental learning as the core set in CVM is sufficient to find
an approximate solution of the SVM QP problem but it does
not suffice to represent the whole training set.

In this paper, instead of finding MEB as in [11], we aim at
finding the boundary of the training dataset in the SVM kernel
space. The training examples lying on the boundary can be then
considered as a sufficient representation of training dataset as
training linear classifiers such as SVM largely relies on the
boundary training examples. Geometrical methods for finding
exact boundaries such as Convex-hull [9] or Concaved-Hull
[10] are not efficient for high-dimensional data. In an extreme
case, some kernel functions such as Radial Basis Function
Kernel (RBF) map input features into an infinite-dimensional

2014 22nd International Conference on Pattern Recognition

1051-4651/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPR.2014.669

3904

space, where extracting exact boundaries via geometrical
methods becomes infeasible. Therefore, instead of finding the
exact boundary, this paper proposes a method that finds a
sufficient representation of it. Firstly, we partition training
examples into subsets and each corresponds to one class label.
Then we use the Support Vector Data Description [13, 14] to
find the Minimal Enclosing Ball (MEB) for each subset. The
examples lying on the found MEB, called the marginal vectors
in this paper generate a preliminary representation of boundary
geometry of the subset. Meanwhile, the proposed method trains
binary SVM classifiers on subset pairs in One-Versus-One
manner, and the generated support vectors are accumulated
according to its class label. The accumulated support vectors
achieve a dynamically-updating description of boundary
geometry of the training subset along with more and more new
classes involved in incremental process. Thus, we combine the
accumulated support vectors with the marginal vectors to be
the representation of training data boundary and this
combination is further used to present previous training data in
proposed incremental learning approach. The experiments
carried out on benchmark data sets con�rm the e�ectiveness of
proposed approach on handling both example-incremental and
class-incremental learning cases in terms of training memory,
time consumption, and classification accuracy.

The rest of the paper is organized as follows: Section II
details the existing techniques corresponding to the proposed
method. Section III presents the proposed incremental learning
approach for multi-class SVMs. In Section IV, we present our
test results on real world databases. Section V concludes the
paper and suggests topics for future research.

II. RELATED TECHNIQUES

A. Support Vector Machine basics
Training SVM is to �nd a hyper plane that separates the

labeled training examples with maximum margin. Given
labelled training examples {xi,yi}, i = 1,…,n, yi � {-1,1}, x� Rd,
SVM training is formulated as solving a quadratic optimization
problem:

�
�

�
n

i
ibw

Cw
i 1

2

,,
||||

2
1min �

�
(1)

0,1)(. ����	 iiii bxwyts �� , (2)
where �i is the slack variable and C controls the trade-o�
between the slack variable penalty and the margin size. w is
the normal vector to the hyper plane and the offset of the
hyper plane from the origin is determined by b/||w||. Examples,
which turn the inequality (2) to equality, are called Support
Vectors (SVs). This method can be extended to a nonlinear
case by transforming the input features into a high-
dimensional space
: xi �
 (xi) via nonlinear kernel mapping:

)()(),(2121 xxxxK T

 	� .
The primal problem (1) can be transformed into a dual
problem by introducing Lagrange multipliers �i, which can be
written in kernel form:

),(
2
1max

,1
jijij

ji
i

n

i
ia

xxKyy��� �� �
�

(3)

0,,0..
1

�� �
�

i

n

i
ii yiCts �� (4)

The optimal solution of SVM primal problem is presented in
the form of a weighted sum of SVs �

�

�
SVsx

iii
i

xyw)(
� .

B. Multiclass Support Vector Machine
SVM is inherently designed to solve binary classification

problems. For multiclass problems, the most commonly used
technique is “divide and conquer” in which a single multiclass
problem is divided into binary pairs and then a SVM is trained
for each pair. Such techniques are One-versus-One and One-
versus-Rest. One-versus-One constructs one classifier per pair
of classes, resulting in N (N-1)/2 binary classifiers where N is
the number of classes. One-versus-Rest fits one classifier per
class (N binary classifiers to be trained) and for each classifier
the class is fitted against all the other classes. There are
comparative studies [15, 16], performing comparative
evaluations between One-versus-One and One-versus-Rest.
They demonstrated that the performance of these two methods
is highly dependent on the database used and, therefore, it is
hard to say which one outperforms the other in general.
Henceforth, in this paper, we use One-versus-One considering
it is usually faster than One-versus-Rest when the number of
classes is high.

C. SVL-incremental learning
In this section, we describe SVL-incremental learning

proposed by Stefan Rüping in [5] as a special case of SV-
incremental learning method. This method emphasizes the
importance of previous obtained Support Vectors as new
training examples might drive the decision plane to their own
distribution. To achieve this goal, a weighting factor L can be
applied on the cost factor of previous Support Vectors in SVM
optimization problem so as to make them more “costly”. We
shall call this approach as the SVL in the remainder of the
paper, which can be formulated by adjusting Eq. (1) as,

)(||||
2
1min 2

,, � �
� �

��
NB SVs

iibw
i i

i

LCw
� �

�
�� , (5)

where NB indicates a set of new batch training examples and L
is the weight given to cost factor of previous Support Vectors.
Generally, L can be assigned as the ratio between the number
of Support Vectors and number of training examples.

D. Support Vector Data Description
Support Vector Data Description (SVDD) is to find an

optimal radius R for a hyper sphere S(c,R) containing all n
training examples (i.e., the MEB problem) where c is the
sphere center. Given a kernel K with corresponding feature
map
, SVDD is to solve:

�
�

�
n

i
icR

CR
i 1

2

,,
:min �

�
(6)

ii Rcxts �
 �� 22)(. . (7)
The corresponding dual form:

3905

��
��

�
n

ji
jijii

n

i
iia

xxKxxK
1,1

),(),(max ��� (8)

Cayats ii

n

i
i ��

�

0,0.
1

. (9)

The optimal solution of this QP programing can be written as:

����� KKdiagRxc i

n

i
i ����� �

�

)(),(
1

where ����i������n�� is a vector of the Lagrange multipliers and
K is the kernel matrix [K(xi,xj)]. Training examples with
corresponding ����� shall be called Marginal Vectors (MVs).

III.PROPOSED SVM INCREMENTAL LEARNING

In this section, we firstly present the overview of our
incremental learning approach as shown in Fig.1. It consists of
two major modules: Training block and Fusion, both of which
are further described within the following subsections.

Fig.1 Overview of the proposed incremental learning.

A. Training block
There are two parallel sub-processes in this block. The

sub-process, Train SVMs is designed to train binary SVM
classifiers, from which we intend to find most informative
examples to represent the boundaries of the previous data.
Each binary classifier provides an optimal decision plane that
separates two classes and a set of Support Vectors (SVs) for
each class. Due to their intrinsic property, the SVs from each
class of a binary problem actually define the boundary
between this class and the other class examples with a
maximum margin. This boundary can also be used to describe
the boundary of the training examples. Meanwhile, based on
the decision plane, we find the farthest examples from
decision plane for each class as they can also be considered
lying on the boundary of training examples. Searching for
boundary examples are organized class wise so as to generate
a set of Accumulated Support Vectors (ASVs) for each class.
The detailed process to form sets of ASVs is described in
Table 1. The second process in the Training block is Train
SVDD, which solves the SVDD problem and further creates a
Marginal Vectors (MVs) set per class. SVDD is trained with
the same SVM parameters as used for training SVMs. The
output of the Training block is a unique set that merges MVs
with ASVs while removing duplicated examples. The unique
set which we call the Core set in the remainder of this paper, is
merged with the previous Core set, whenever exists, to ensure
that examples in previous Core set are not discarded during the
incremental learning.

B. Fusion for the Incremental Learning
The Fusion is to provide an input training set for Training

block by simply fusing previous Core set, if exists, with new
batch of training data. To improve training efficiency, The
Training block will firstly examine the training examples in
fused dataset if training is need according to their class labels.
Training a binary SVM classifier p(i,j) is not required when
the new training batch does not contain the examples with
class labels i or j. In this scenario, the Support Vectors
obtained from training p(i,j) at previous step are directly
merged into new Core set. Similarly, training SVDD on a
class that cannot be found in new batch is also unnecessary
and previously obtained marginal vectors are merged into new
Core set.

Besides training efficiency, The Training block shall
manage to avoid the learning imbalance, e.g. if the size of the
previous Core set is relatively small comparing to the size of
the new batch training data, after fusing, SVMs and SVDD
would learn mostly on the new batch. The main reason is both
models are robust against outliers while in this case, the
examples from previous Core set are seen as outliers. To
overcome this issue, we shall give the previous examples
higher impact than new batch of examples on training. This
can be done in a similar way as for the SVL by adjusting
weights for the cost factor. In detail, for training SVMs, we
slightly modify Eq.(5) into:

)(||||
2
1min 2

, � �
� �

��
NBi CoreSeti

iibw
LCw �� . (10)

For training SVDD, we reformulate the primal problem of
SVDD in Eq.(6) to:

)(:min 2

, ��
��

��
Coreseti

i
NBi

icR
LCR �� (11)

The weighting factor L can be calculated similarly to the
weighted SVM approach, for instance as the percentage of the
number of examples from the previous Core Set in previous
training data set.

C. Interpretation of Marginal Vectors and Accumulated
Support Vectors
SVDD aims to find a sphere-shaped decision boundary that

separates training examples from one class from other class
examples. Training SVDD generates the Marginal Vectors

TABLE 1 ACCUMULATING SUPPORT VECTORS

Algorithm: Accumulating Support Vectors
For every class i in training dataset ,let ASVsi = �

For every class j �i in training dataset, DO:
I. Train binary SVM classifier P(i,j). SVi,j is a

set of Support Vectors obtained after
training P(i,j).

II. Add samples in SVi,j belonging to class i into
ASVsi

III. According to decision plane of P(i,j), find
the farthest examples belonging to class i
from decision plane. Add them into ASVsi

3906

(MVs) that are the examples “supporting” the sphere-shaped
boundary. In this sense, MVs will be able to describe the
boundaries of a given training set if training set forms a
convex shape in the kernel space. Otherwise, MVs might be
disadvantageous to represent the real boundaries. We illustrate
this drawback of MVs in Fig.2, over a 2D toy example
containing two classes, and the positive class does not form a
convex set. Its MVs lose the boundaries on the concave part
while binary SVMs decision hyper plane describe it
significantly better. As a result, the Support Vectors (SVs) of
positive class are located on the concave boundary. Thus,
accumulating SVs could detect the inner sphere boundaries,
which otherwise cannot be found by SVDD. We assume that
with constantly new labels involving in incremental learning
process, Accumulated Support Vectors alone in the end shall
be able to describe the boundaries for a given class if the
training examples with different labels could cover all regions
surrounding that class in the projected space.

IV. EXPERIMENTAL RESULTS

A. Test Setups
We perform our incremental learning experiments on a PC

with 3.0 GHz Intel Pentium CPU with 2GB RAM employing
the software package LIBSVM (v3.10.) [17]. Three well-
known multiclass benchmark databases mnist, pendigits, and
letter are chosen to evaluate the classification performance of
proposed incremental learning approach. For brevity, we select
the RBF kernel function for training SVMs and SVDD. The
SVM parameters C and ��� are set to the one that produces the
highest cross-validation (10-fold) classification accuracy from
a uniform grid search. Table 2 shows database attributes and
the chosen SVM parameters. Before presenting the
experimental results, we introduce two important
measurements: shrinking rate (SR) indicates the ratio of the
number of examples stored after training to size of entire
training dataset. Classification error (CE) denotes the
classification error calculated on the test set. As a comparative

baseline, batch learning results are presented in Table 3. The
SR in batch learning results shows that SVs usually compose
only a fraction of the entire training dataset. We can now
compare the proposed method against the SVL-incremental
learning in terms of classification accuracy, training time and
memory consumption; and we shall further investigate the
effect of presenting previous training data with its Marginal
Vectors (MVs) set in the incremental learning. We shall call it
MVL-incremental learning, where MVs are preserved to
represent the data from the previous steps and previous MVs
have a higher impact on forming decision hyper plane than new
training data in further steps. To evaluate the performance of
proposed method, we consider two test scenarios: example-
incremental learning and class-incremental learning.

B. Example-incremental learning experiments
In this section, we investigate the case when the new batch

of training examples only contains the known class labels. For
justifying generalization capability of the proposed method,
databases are partitioned in three different ways: the number of
training examples per class is increasing gradually, the number
of training examples per class is decreasing gradually, and the
size of training set per class stays constant during the
incremental learning. To achieve this, we apply three test
settings such as “40%-30%-20%-10%”, ”10%-20%-30%-
40%”, “20%-20%-20%-20%-20%” where the percentages
present the fraction of the training examples per step for each
class. These settings are notated as dec, inc, and even in the test
results, respectively. Results from this test are shown in Table
4 based on the average of 5 trials. Note that the statistics of the
classification error (CE) are presented in the form of the mean
+ standard deviation.

The results show that both SVL-incremental learning and
the proposed method achieve a similar classification
performance level in general. This is expected since SVL has
shown to perform well in such setup and the proposed method
provides additional information on top of SVs. Note further
that they also achieve equal classification accuracies on the
batch learning presented in Table 3 with much lower
computational cost, i.e., training time and memory cost. The
proposed method theoretically requires more computational
time and memory than SVL for the obvious reason that training

TABLE 2 DATABASES ATTRIBUTES AND CORRESPONDING SVM
PARAMETERS

of
Class

of data
(train/test)

of
features

training
parameter

mnist 10 60000 /
10000 778 � = 0.031

C =64

pendigits 10 7494 /
3498 16 �=1

C=16

letter 26 15000 /
5000 16 �=0.125

C=16

TABLE 3 TEST RESULTS OF BATCH LEARNING

CE training
time(s)

SR

mnist 0.0143 1748.69 0.2753
pendigits 0.0214 4.503 0.2141

letter 0.0636 11.815 0.433

Fig.2 an example where Support Vectors compensate the
deficiency of Marginal Vectors for describing boundaries.

3907

both SVDD and SVMs would be more costly than training only
SVMs. however, by training SVDD and SVMs in parallel. The
training time consumption of the proposed method is
drastically reduced to be a similar level with SVL and MVL.
The larger memory requirement of the proposed method is still
needed as it intends to find a proper presentation of previous
training set while the others are not designed for it. For MVL
incremental learning, as we showed in Chapter III section D,
Marginal Vectors alone might fail to present the real
boundaries of a given training dataset which is not convex,
resulting in the degraded accuracy of MVL on the dataset,
letter.

C. Class-incremental learning experiments
For class-incremental learning, databases are partitioned

according to their different class labels beforehand. In this
setup, the new batch of training data at each step contains
examples from only unknown classes. Similar to example-
incremental learning, we conduct the following three different
test cases to add new classes at each step: the growing number
of new classes (inc), the decreasing number of new classes
(dec), and the number of new classes in new batch stay the
same (even). In detail, for 10 classes datasets mnist and
pendigits, the three test cases are: inc(2,3,5), dec(5,3,2), and
even(2,1,1,1,1,1,1,1,1) where the number in parentheses
denotes the number of new classes at each step. For database

TABLE 4 CLASSIFICATION PERFORMANCE OF EXAMPLE-INCREMENTAL LEARNING AMONG PROPOSED METHOD, SVL AND MVL. SHRINK RATE
(SR) INDICATES THE RATIO OF THE NUMBER OF EXAMPLES STORED AFTER TRAINING TO SIZE OF ENTIRE TRAINING DATASET. CLASSIFICATION

ERROR (CE) DENOTES THE CLASSIFICATION ERROR CALCULATED ON THE TEST SET. BEST CES ARE HIGHLIGHTED WITH BOLD FIGURE.

inc dec even
CE Time(s) SR CE Time(s) SR CE Time(s) SR

mnist

Proposed 0.0142
+00013 1286.92 0.4322 0.0138

+0.0014 1252.32 0.4573 0.0142
+0.0017 1227.5 0.4892

SVL 0.0158
+0.0021 1142.9 0.2457 0.0200

+0.0012 1117.7 0.2491 0.0152
+0.0036 1116.2 0.2506

MVL 0.0257
+0.0033 1262.12 0.322 0.0290

+0.0102 1294.7 0.313 0.0233
+0.0033 1345.7 0.3313

pendigit

Proposed 0.0214
+0.0004 4.1420 0.4555 0.0214

+0.0009 6.0000 0.4415 0.0214
+0.0011 5.8280 0.4239

SVL 0.0215
+0.0002 4.8440 0.2064 0.0215

+0.0002 4.8440 0.2064 0.0211
+0.0002 4.7180 0.2057

MVL 0.0215
+0.0002 4.0000 0.4426 0.0228

+0.0005 5.8900 0.4279 0.0214
+0.0007 5.5150 0.4089

letter

Proposed 0.0594
+0.0004 9.5170 0.6064 0.0562

+0.0004 9.8730 0.6068 0.0574
+0.0012 9.8950 0.5839

SVL 0.0584
+0.0005 8.3750 0.4036 0.0562

+0.0008 9.5100 0.3734 0.0578
+0.0006 9.9200 0.3835

MVL 0.0770
+0.0015 9.5930 0.3940 0.0770

+0.0021 9.5930 0.3940 0.0734
+0.0025 8.4230 0.3528

TABLE 5 CLASSIFICATION PERFORMANCE OF CLASS-INCREMENTAL LEARNING AMONG PROPOSED METHOD, SVL AND MVL.

inc dec even
CE Time(s) SR CE Time(s) SR CE Time(s) SR

mnist

Proposed 0.0146
+00163 932.03 0.5126 0.0142

+0.005 1041.2 0.5314 0.0148
+0.0002 1183.5 0.5124

SVL 0.0234
+0.0021 823.00 0.2457 0.0155

+0.0012 956.53 0.249 0.0297
+0.0036 1021.6 0.2506

MVL 0.0157
+0.0033 916.87 0.5126 0.0153

+0.0102 1029.9 0.5314 0.0167
+0.0002 1175.9 0.3313

pendigits

Proposed 0.0211
+0.0003 2.6924 0.5196 0.0210

+0.0000 3.0108 0.5204 0.0212
+0.0012 3.2406 0.5178

SVL 0.0228
+0.0002 2.7960 0.1948 0.0231

+0.0002 2.5630 0.1978 0.0231
+0.0002 2.0000 0.1860

MVL 0.0214
+0.0002 2.5770 0.5138 0.0214

+0.0005 2.8440 0.5138 0.0214
+0.0007 2.4680 0.5138

letter

Proposed 0.0684
+0.0004 3.8404 0.6315 0.0633

+0.0014 4.2823 0.6426 0.0692
+0.0013 5.1560 0.61147

SVL 0.1352
+0.0005 3.6090 0.3332 0.0710

+0.0018 3.1560 0.3581 0.1688
+0.0018 3.6890 0.2949

MVL 0.0816
+0.0011 3.8460 0.5000 0.0810

+0.0021 4.0630 0.5000 0.0904
+0.0012 4.3440 0.5000

3908

letter containing 26 classes, we apply three cases as: inc
(9,6,5,4,2) , dec (2,4,5,6,9), and even (2,1,1,…,1). All these
classes are selected randomly into training process. Table 5
presents the mean and standard deviation of the CE on the test
set, training time, and shrinking rate (SR) based on 5 trials.

The results show that in pendigits and mnist, three methods
perform on the same level of the batch learning. However, they
all require significantly less computational complexity in terms
of training time and memory than batch learning. SVL method
even has a slightly lower shrinking rate for pendigits, which
means that at each step only fewer than 20% of entire training
examples are involved in training. However, the significant
accuracy drop of SVL on letter reveals that, using reserved
previous SVs is not enough for incrementally learning new
labels. The reason is that the large numbers of examples are
discarded in each step of SVL learning, as they are redundant
to update the decision planes. However, the discarded
examples might indeed be very informative to describe the
current distribution of the training data, which may be the
potential SVs for training a classifier between the existing and
new classes. Furthermore, there is a large deviation among the
results of SVL incremental learning over three test cases. In the
dec case, the large amount of classes involved at the beginning
increases the chance to collect more informative examples as
SVs, which may maintain the accuracy. On the contrary, in the
inc case, fewer SVs are accumulated for the classes during the
initial step, and this presents limited information in terms of
distribution of their previous training set. Yet they are used as a
substitute of the previous training set to train unknown classes,
resulting in a noticeable accuracy drop. The root cause of the
problem in the SVL methods is the lack of proper
representation regarding the previous training set, while the
proposed method and MVL aim to overcome this problem; and
thus they both present similar classification accuracies among
the different test cases. Comparing with each other, the
proposed method outperforms MVL showing that the
accumulated SVs are providing valuable information for
overcoming the deficiency of presenting the real boundaries
when the dataset is not convex in the kernel-projected space. In
terms of memory consumption and training time, due to the
parallelization, the proposed method achieves comparable
performance to the other two, even twice faster than batch
learning on mnist, while it spends more memory than SVL but
evidently the extra memory consumption is necessary for a
proper representation of the previous training data.

V. CONCLUSIONS

In this paper, we propose an incremental SVM learning
method to deal with large real world databases. The
experimental results approve that the proposed method can
efficiently adapt to both example-incremental learning and
class-incremental learning cases. The results further show that
the proposed method is able to reduce time and memory
consumption of SVM by around 50% than batch learning
without a noticeable degradation on the classification accuracy.
In contrast to SVL-incremental learning, the proposed method
overcomes the inadequacy and instability of SVL method on

class-incremental learning cases, and we have further shown
that Accumulated Support Vectors (ASVs) and Marginal
Vectors (MVs) put together can form a fine representation of
the previous training data. The inferior classification
performance of MVL confirms that MVs might generate
incomplete boundaries when the dataset in projected space is
not convex, which is solved by introducing ASVs into the
proposed method. Moreover, The proposed approach may
improve classification accuracy comparing corresponding
results with the batch learning since weighting on previous
data might help to alleviate the influence of outliers on new
training batch. We shall pursue further investigations to find
an even better representation of previous training data with
lower cost. This will be the topic of our future research.

REFERENCES

[1] V.N. Vapnik, The Nature of Statistical Learning Theory. Springer-
Verlag, 1995.

[2] Z.H. Zhou and Z.Q. Chen, “Hybrid Decision Tree,” Knowledge-Based
Systems, pp. 515-528, 2002.

[3] N. A. Syed, H. Liu, and K. K. Sung, “Incremental Learning with
Support Vector Machines” in Proc. the Int.Joint.Conf.Artijicial
Intelligence(IJCAI), 1999.

[4] R. Klinkenberg and T. Joachims, “Detecting concept drift with
supportvector machines, ” in Proc. 17th Int.Conf on Machine
Learning(ICML), pp 487–494, 2000 .

[5] S. Ruping, “Incremental Learning with Support Vector Machines,” in
Proc. IEEE Int Conf. On Data Mining (ICDM), pp. 641-642, 2001.

[6] H. Yu, J. Yang and J. Han. “Classifying Large Data Sets Using SVMs
with Hierarchical Clusters” in Proc, 9th ACM SIGKDD international
Conference on Knowledge discovery and data mining,pp.306–315, 2003.

[7] S. Sun, C. Tseng, Y. Chen, S. Chuang and H. Fu. “Cluster-based
Support Vector Machines in Text-Independent Speaker identification” in
Proc. the Int’l Joint Conf.on Neural Network(IJCNN), 2004.

[8] B. Li, M. Chi, J. Fan, and X. Xue, “Support cluster machine,”in Proc.
24th Int. Conf on Maching Learning(ICML).,pp. 505–512, 2007.

[9] B. Valentina, “Survey of algorithms for the convex hull problem,”
Department of Computer Science, Oregon State University, 1999.

[10] A. Moreira and M.Y. Santos, “Concave hull:a k-nearest neighbors
approach for the computation of the region occupied by a set of points,”
in Int Conf on Computer Graphics Theory and Applications(GRAPP),
pp. 61–68, 2007.

[11] I. W. Tsang, J. T. Kwok, and P.-M. Cheung, “Core vector machines:Fast
SVM training on very large data sets,” In Journal of Machine Learning
Research, pp. 363-392. 2005.

[12] I. W. Tsang, A. Kocsor, and J. T. Kwok, “Simpler core vector machines
with enclosing balls,” in Proc. 24th Int Conf on Machine
Learning(ICML), pp. 911–918, 2007.

[13] D. M. Tax and R. P. Duin, “Support vector domain description,” Pattern
Recognition Letter, vol. 20, nos. 11–13, pp. 1191–1199, 1999.

[14] D. M. J. Tax and R. P. W. Duin, “Support vector data description,”
Machine Learning, pp. 45–66, 2004.

[15] E. Allwein, R.E. Schapire, and Y. Singer, “Reducing Multiclass to
Binary: A Unifying Approach for Margin Classifiers,” Journal of
Machine Learning Research, pp. 113–141, 2000.

[16] C.W. Hsu and C.J. Lin, “A Comparison of Methods for MultiClass
Support Vector Machines,” IEEE Trans. Neural Networks, pp. 415-425,
2002.

[17] C.C. Chang and C.J. Lin, “LIBSVM : A library for support vector
machines”, ACM Transactions on Intelligent Systems and Technology,
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm,2011

3909

