
Multiple Kernel Learning Based Multi-view
Spectral Clustering

Dongyan Guo∗†, Jian Zhang†, Xinwang Liu‡, Ying Cui∗†, Chunxia Zhao∗
∗School of Computer Science and Engineering, Nanjing University of Science and Technology, China

†Advanced Analytics Institute & School of Software, University of Technology, Sydney, Australia
‡ School of Computer, National University of Defense Technology, China

Abstract—For a given data set, exploring their multi-view
instances under a clustering framework is a practical way to boost
the clustering performance. This is because that each view might
reflect partial information for the existing data. Furthermore, due
to the noise and other impact factors, exploring these instances
from different views will enhance the mining of the real structure
and feature information within the data set. In this paper, we
propose a multiple kernel spectral clustering algorithm through
the multi-view instances on the given data set. By combining the
kernel matrix learning and the spectral clustering optimization
into one process framework, the algorithm can determine the
kernel weights and cluster the multi-view data simultaneously.
We compare the proposed algorithm with some recent published
methods on real-world datasets to show the efficiency of the
proposed algorithm.

I. INTRODUCTION

Multi-view data is common in wide applications including
image processing, computer vision, internet webpage process-
ing and natural language processing. In video surveillance
applications, an object or a scene can be captured from multi-
views with different angles. For a color image, it can be viewed
from different modalities such as color texture and shape.
In a multimedia application, synchronize human speech and
their lips is a typical multi-view data problem. In proteomics,
protein folding is driven by various factors, such as physico-
chemical properties, geometrical and evolutionary constraints.
Different views form different feature spaces, which have
particular statistical properties, will be possible to enhance the
object classification and feature clustering.

The Multi-view spectral clustering (MVSC) has been paid
great attention in machine learning research because of it-
s effectiveness and reinforcement on single-view clustering
methods. In this paper, we propose a new algorithm in the
space of MVSC through an unsupervised multi-kennel learn-
ing. Specifically, we integrate and formulate the kernel matrix
learning and special clustering into an optimization framework.

Many references on multi-view clustering methods have
been published [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15]. One of their weak points is that,
sometimes, it may lead to performance degradation in the case
where the information on some views is corrupted due to the
noise or irrelevant. This has generated a certain gap between
the motivations on expectation of using the information from
multiple views and the real performance. One typical example
is for multimedia data where the image tags might have rela-
tively accurate information for image objects (e.g. the Sydney
harbour bridge, the New York Time Square and the Great Wall)

while the corresponding image features such as color, texture
and local key interest points are low level which have the
gap to contribute to the semantic level of object information.
Therefore, to efficiently combine the information from these
different views, it involves how to weight these views. Inspired
by the Kernel-based weighted multi-view clustering [14], [15],
we adopt spectral clustering method through a kernel matrix
learning. For each single view, different kernel functions such
as Gaussian and polynomial kernels can be considered to build
a single view kernel matrix. Theoretically, an efficient kernel
matrix would be learned based on the information for each
cluster in the data set if the clusters are available. While the
cluster information could also be obtained through a clustering
process based on the learned kernel matrix if the kernel matrix
are generated. Based on this point of view, the learning and
clustering processes are correlated and depend on each other.
To address such important issue, we propose to combine the
above two processes: learning the kernel matrix and optimizing
the spectral clustering into a common framework. Our ex-
periments have demonstrate that the proposed algorithm has
achieved the best performance of clustering on major public
datasets.

This paper is structured as follows. In section 2, a short
review on related works is provided. In section 3, the proposed
Multiple Kernel Spectral Clustering (MKSC) and the solution
are presented. Experimental results are shown in section 4, and
concludes is in section 5.

II. RELATED WORK

In recent publications, many clustering methods have been
proposed to learn the data from multi-views of the data. In
general, some typical methods can be divided into two major
steps. At the first step a set of combined features from the
multi-views are obtained and then at the second step a popular
clustering method such as k-Means are applied on these fea-
tures. The Canonical Correlation Analysis (CCA) [1], [2] based
approach is a typical example of this approach. Alternatively,
[3] formulats the multiple views of the data as part of the
clustering algorithm. A Co-EM based framework for multi-
view clustering in mixture models is proposed. As the name
of the Co-EM, it computes expected values of hidden variables
in one view with given parameters in the E-step and uses these
hidden values in the M-step (Maximize the likelihood) for
finding the model parameters in the other view , and vice versa.
This process is repeated until a suitable stopping criterion is
met. However, the algorithm cannot guarantee its convergence.

[4], [5] both propose a spectral clustering framework for

2014 22nd International Conference on Pattern Recognition

1051-4651/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPR.2014.648

3774

the multi-view clustering task. In [4], a graph cut is employed
to achieve the best average cut over the multiple graphs built by
multi-view for the clustering. However, this might not be the
best for each single graph (single-view feature). To overcome
this problem, a random walk based formulation is proposed.
The algorithm allows users to set up weights for each view.
In [5], a bipartite graph from nodes of both views is built
to address the two-view clustering problem. In their method,
the edges of the bipartite graph connect nodes from one view
to those in the other view. A standard spectral clustering
method is applied to this bipartite graph. In [6], a fusion
process known as Linked Matrix Factorization is applied to
fuse the information from those multiple graphs generated
by the multi-views. In [7], a consensus clustering method is
proposed to handle the multi-view clustering. However, such
method does not generally work with original features. Instead,
for a given dataset, they take different clustering results which
come from different views as the input. A reconciliation
process is then applied on the input to find a final clustering.
In [8], a multi-view convex mixture model is proposed that
extends convex mixture models to the multi-view setting. In
[9], two co-regularization schemes are proposed for multi-
view spectral clustering. The method enforces the possibility
of the clustering hypotheses on different views if they can
agree with each other. An objective function based on the
graph Laplacians from all views is proposed. They apply the
regularizations on the eigenvactors of the Laplacians which
results in a possible consistence on the clustering structures.
However, their method cannot determine the view weights
automatically and is inefficient on computation. In [11], a
method takes the views which are independently clustered and
a final partitioning of the data is derived by minimizing an
objective function. Based on all views, the object function
measures how close to the final cluster of each single view
with the help of a mapping function. In a similar approach,
instead of using the mapping functions, [12] adopts a matrix
factorization to reconcile the groups arising from the individual
views.

In [14], it models each view through a convex mixture
distribution and a weighted combination. The weights are
learned through an EM method. The weighted combination
reflects the view‘s importance. They further explore the weight
impacts in [15] by introducing weights to the views which are
automatically learned by minimizing the intra-cluster variance.

Overall, despite the wide variety of multi-view clustering
methods in many references, most of them treat equally with
all views, regardless of the conveyed information (except
[4],[14] and [15]).

In this paper, we propose a systemic approach to automat-
ically select weights for learning the kernel matrix on each
view through an optimization process in spectral clustering.
In our work, the kernel matrix learning is based on the
kernel alignment to measure the similarity between two kernel
matrices. As a starting point, we give a short review on spectral
clustering for a single-view data followed by the discussion of
kernel alignment.

A. Spectral Clustering

Spectral clustering technique is to exploit properties of the
graph in which edges denote the similarities between data

points. The spectrum referred as top K eigenvectors of the
kernel matrix are approximation of the indicator matrix Y that
assigns each node in the graph to one of the K clusters.

Suppose a given dataset X = {x1, x2, . . . , xn} that needs
to be clustered into K subsets.

After mapping the data to a higher dimensional feature
space (Hilbert space) via a nonlinear transformation φ : X →
H , we can minimize the intra-cluster variance εH in the feature
space:

εH =
n∑

i=1

k∑

j=1

δij‖φ(xi)−mj‖2, mj =

∑n
i=1 δijφ(xi)∑n

i=1 δij
. (1)

Where δij is an indicator variable with δij = 1 if xi belongs to
the j-th cluster and 0 otherwise. mj is the j-th cluster center.

According to [16], equation (1) can be equivalently posed
as a trace difference:

εH = tr(K)− tr(Y TKY). (2)

where Y ∈ R
n×k is an indicator matrix with Yij =

δij√∑n
l=1 δlj

,

and K is a kernel matrix with Kij = φ(xi)
Tφ(xj).

However, the discrete nature of Y results in a hard opti-
mization problem on Eq (2). One solution is to relax Y to
be an arbitrary orthonormal matrix (i.e. UTU = I). Based
on linear algebra, the optimal Y can be composed of the top
k eigenvectors of the kernel matrix K. Hence, the Eq. (2) is
relaxed to solve the following optimization problem:

max
U∈Rn×k

tr(UTKU), s.t.UTU = I. (3)

The rows of matrix U are the embeddings of the data points
that can be given to the k-means algorithm to obtain the final
cluster memberships.

B. Optimizing Kernel Alignment

To approximate a kernel matrix with an ideal target matrix
Y TY , where Y is an indicator matrix in (2), we need to
consider how to measure the similarity of two matrices. In
this paper, we adopt kernel alignment [17] which measures
the similarity between two kernel matrices K1 and K2:

M(K1,K2) =
< K1,K2 >F√

< K1,K1 >F< K2,K2 >F
. (4)

Where < Ki,Kj >F= tr(KiK
T
j) and tr(A) is the trace of

matrix A.

Therefore, based on Eq (4), the similarity measure between
kernel 1 (K1) and the ideal target kernel 2 (K2 = Y TY) is
defined as follows:

M(K1,K2) =
< K1, Y Y T >F√

< K1,K1 >F< Y Y T , Y Y T >F

. (5)

3775

III. MULTIPLE KERNEL SPECTRAL CLUSTERING

ALGORITHM

In our work, we represent multi-view data with multiple
kernel matrices. The key contribution of this paper is to find a
set of optimized weights for these multiple kernels to form
a better multi-kernel combination (a linear combination in
our work) in the purpose of well representing those multi-
view features. We apply spectral clustering on the combined
kernels . By employing the kernel alignment, we construct
our objective functions which can efficiently formulate the
kernel matrix learning and spectral clustering into a unified
framework. An alternating optimization method is applied to
solve the objective function. In the following we will describe
our algorithms in details.

A. Model Description

Due to the different scales on different kernel matrices, we
need to normalize them first and then combine them linearly.
That is, our kernel function has the following form:

Kμ =
m∑

p=1

μpD
−1/2
p KpD

−1/2
p , μ ∈ �. (6)

Where � = {‖μ‖1 = 1, μ � 0} and D is a diagonal matrix
with Dii =

∑
j Kij .

To obtain an optimize kernel matrix function in Eq (6), we
can get μ by maximizing the alignment between the Kμ and
Y Y T where Y is an indicator matrix as discussed in section
II:

max
μ∈�

< Kμ, Y Y T >F

‖Kμ‖F ‖Y Y T ‖F . (7)

Note that, in Eq (7), if we set v = kμ, k > 0,then:

< KV , Y Y T >F

‖KV ‖F ‖Y Y T ‖F =
< kKμ, Y Y T >F

‖kKμ‖F ‖Y Y T ‖F =
< Kμ, Y Y T >F

‖Kμ‖F ‖Y Y T ‖F .

So, Eq (7) can be transformed into the following optimization
function:

max
v�0

< Kv, Y Y T >F

‖Kv‖F ‖Y Y T ‖F . (8)

and get μ by μ = v/‖v‖1
Since there is no label data in the process of clustering

algorithms, we can use the orthonormal matrix U to approxi-
mate indicator matrix Y (see Eq. (3)). Hence, by replacing Y
with U , Eq. (8) can be re-written as Eq. (9):

max
v�0

tr(KvUUT)

‖Kv‖F ‖UUT ‖F . (9)

According to the invariance of the trace under cyclic
permutations, we have:

‖UUT ‖F =
√
tr(UUTUUT) =

√
tr(U(UTU)UT) =√

tr(UUT) =
√

tr(UTU) =
√
tr(I) =

√
k.

Since the optimization objective function (9) is not less
than zero, it is equivalent to the following equation:

max
v�0

tr2(UTKvU)

‖Kv‖2F
. (10)

In (10), for a given value v, ‖Kv‖2F is constant. It can be
seen that Eq (3) and Eq (10) are the same form of function
expression but for different goals of optimization on U and v
respectively. By combining the optimization problems of (3)
and (10), we can finally derive our objective function as (11),
which integrates the kernel matrix learning and kernel based
spectral clustering into one function form:

max
U∈Rn×k,v�0

tr2(UTKvU)

‖Kv‖2F
− λ‖v‖22, s.t.UTU = I. (11)

In the above formula, we add regularization term λ‖v‖22 to
prevent over-fitting U caused by v. To facilitate the calculation,
we add the regularization term in the denominator to get a
revised objective function Eq (12).

max
U∈Rn×k,v�0

tr2(UTKvU)

‖Kv‖2F + λ‖v‖22
, s.t.UTU = I. (12)

At this stage, we cannot point out yet whether there is any
different consequence for the results due to the variations on
regulation terms in (11) and (12). However, it is demonstrated
in our experiments that the regulation term in (12) can greatly
improve the accuracy of data clustering.

B. Alternating Optimization

The optimization problem in Eq (12) is a nonlinearly
constrained nonconvex optimization problem. To the best of
our knowledge, it is complex and difficult to find its global
optimal solution in a direct way.

To solve the problem, we set an initial value for v, for
example v = [1/m, · · · , 1/m]T and get U by optimization
(3). We then updata v by optimizing (12) with the result U .
Note that (3) is only to drive the eigenvectors while problem
(12) is not that easy.

By plugging equation (6) into (12) with a given U , it
transforms into:

max
v�0

vTaaT v

vT (M + λI)v
. (13)

where Mij = tr(D
−1/2
i KiD

−1/2
i D

−1/2
j KT

j D
−1/2
j)) and a =

[tr(UTD
−1/2
1 K1D

−1/2
1 U), · · · , tr(UTD

−1/2
m KmD

−1/2
m U)]T .

Cortes [20] has proved that problem (13) can be trans-
formed into the following Quadratic Program:

min
v�0

vT (M + λI)v − 2vT a. (14)

Note that, Eq (14) is equivalent to the following question:

min
v�0

vTMv − 2vTa+ λ‖v‖22. (15)

The term λ‖v‖22 is the same form in Ridge Regression [21] to
prevent overfitting. Further to refer [18], when optimizing the
kernel alignment, kandola et al. did adopt this method as well.
Therefore, it is a strong evidence to explain the rationality of
constraining v in (12).

Based on the descriptions, an alternating optimization
procedure is formed as shown in Algorithm 1, namely MKSC
to obtain an optimal solution on (12) locally.

3776

It is hard to prove the convergence of our MKSC algo-
rithm. However, it can be seen that the objective function
tr2(UTKvU)
‖Kv‖2F+λ‖v‖22 increases with the increasing of the iteration

numbers. In particular, with a fixed v, the optimal U will
increase the value of the objective function; verse vice with
a fixed U , the optimal v will also increase the value of the
objective function as well.

Algorithm 1 MKSC Algorithm

Input:
Multiple Kernels for different views: K1,K2, · · · ,Km,
The clustering number k, and regularization parameter λ.

Output:
Clustering label for samples.

1: Initialization: K̂p = D
−1/2
p KpD

−1/2
p p = 1, 2, · · · ,m;

v = [1/m, · · · , 1/m]T ; Mij = tr(K̂iK̂
T
j).

2: Repeat
3: K̂v =

m∑
p=1

vpK̂p.

4: U = max
U∈Rn×k

tr(UT K̂vU) s.t.UTU = I .

5: for given U , get v by solving Quadratic Program (14).
6: v = v/‖v‖1
7: Until convergence
8: Form the matrix V by normalize each row of U (Vij =

Uij/(
∑

j U
2
ij)

1/2).
9: Cluster each row of V into k clusters via K-means algo-

rithm.
10: Assign data xi to cluster c if and only if the row i of the

matrix V was assigned to cluster c.

C. Time-Complexity Analysis

There are three parts form the time complexity of MKSC.
The first is the initialization part (line 1). The time complexity
of this part is O(n×m)2 where n is the number of samples and
m is the number of kernel matrices as mentioned in section
III. The second part (line 2 - line 7) is for the alternating
optimization. The update of U has the time complexity of the
eigenvalue decomposition of an n×n matrix. It is O(n3). The
update of v has the time complexity of O(mc + (m + k) ×
n2) where c is constant and k is the clustering number. The
third part (line 8 - line 10) is k−means clustering. The time
complexity of this part is O(nk2). Therefore, the entire time
complexity of MKSC is O((mc+n3+(m+k)×n2)×T+(n×
m)2 + nk2), where T is the number of training iterations and
T is around five (always less than eight) in all experiments.
Note that the kernel matrix number m and clustering number
k are far less than samples number n. So the computation cost
focus on the eigenvalue decomposition in the second part (line
4). When there are many kernel matrices, calculate matrix M
in the first part (line 1) will also need more computation cost.

IV. EXPERIMENT

We have compared our multiple kernel spectral clustering
algorithm with a number of baseline methods. In particular,
they are:

• Single View: As mentioned in [10], we apply the
spectral clustering on every view of the data. The most

informative view can be achieved by the best spectral
clustering performance.

• Feature Concatenation: As mentioned in [10], we
concatenate the features from each view, and then
apply the spectral clustering on all these features
using the graph Laplacian derived from the join view
representation (View1, View2,) of the data.

• Kernel Addition: As mentioned in [10], we combine
different kernels by adding them and apply spectral
clustering on the combined kernel. Cortes [19] report-
ed that this looks to be a very simple method, but
it can often achieve very good or near optimal clus-
tering results, even better than many other complex
algorithms. [10] indicated that when using a linear
kernel, under normal circumstances, kernel addition
in Reproducing Kernel Hilbert Space and the feature
concatenation are equivalent.

• Kernel Product (element-wise): As mentioned in
[10], we apply the dot operation on all corresponding
elements of the kernel matrices and then apply the
standard spectral clustering on the resultant Laplacian.
As a special case where all the kernel matrices are
constructed by the Gaussian kernel with the same
width σ, the kernel product and feature concatenation
will have the same kernel element-wise product. How-
ever, if there are different σ parameters for different
views, the kernel product and feature concatenation
results are different.

We also compared with some state-of-the-art algorithm-
s, such as: Co-trained spectral[10], Co-regularized[9] and
MVSpec[15]. In the next, we will give a detailed description on
the real-world datasets, experiment setting and results analysis.

A. Real-world datasets

The experimental results are reported on three real-world
datasets. A brief description of each dataset is given as follows:

• Protein Fold Prediction data: Our first dataset [22]
is a multi-kernel learning set on protein fold pre-
diction. This dataset contains 694 labeled instances
with 27 classes. Each instance is described with 12
different feature representations. Referring to [23], we
construct second order polynomial kernels for feature
sets 1 to 10 and inner product kernels for sets 11 and
12.

• Pendigits data: Our second real-world dataset [24] is
from pen-based digit (0-9) recognition [25] from the
UCI machine learning repository. This dataset con-
tains four different feature representations. We con-
struct gaussian kernel, ploynomial kernel and ployplus
kernel for each feature representation. The experiment
was done on all the constructed kernels.

• YouTube Multiview Video Games data: Our last
dataset [26] is also taken from UCI machine learn-
ing repository [27]. This dataset contains feature
values and Corresponded labels for about 120K
videos(instances). Each instance has 13 feature types
from 3 different high level feature families: textual,

3777

TABLE I. CLUSTER PERFORMANCE ON PROTEIN FOLD PREDICTION DATA. NUMBERS IN PARENTHESES ARE THE STD. DEVIATIONS.

Method F-score Precision Recall NMI Adj-RI Entropy

Best Single View 0.2322 (0.0336) 0.2480 (0.0142) 0.2213 (0.1084) 0.5172 (0.0308) 0.1962 (0.0252) 2.3045 (0.0601)

Kernel Addition 0.1934 (0.0173) 0.2236 (0.0195) 0.1708 (0.0156) 0.4898 (0.0136) 0.1579 (0.0180) 2.4277 (0.0484)

Kernel Product 0.0777 (0.0102) 0.0526 (0.0065) 0.2854 (0.2074) 0.2294 (0.0423) 0.0043 (0.0077) 3.7300 (0.2403)

Co-trained 0.2467 (0.0177) 0.2787 (0.0193) 0.2221 (0.0163) 0.5340 (0.0149) 0.2127 (0.0189) 2.2578 (0.0629)
Co-regularized 0.2019 (0.0192) 0.2334 (0.0228) 0.1780 (0.0167) 0.4992 (0.0146) 0.1668 (0.0201) 2.3965 (0.0528)

MVSpec 0.2175 (0.0174) 0.2424 (0.0189) 0.1995 (0.0165) 0.5200 (0.0147) 0.1816 (0.0181) 2.2919 (0.0600)

MKSC 0.2375 (0.0152) 0.2548 (0.0185) 0.2259 (0.0140) 0.5348 (0.0131) 0.2010 (0.0160) 2.2513 (0.0705)

TABLE II. CLUSTER PERFORMANCE ON PENDIGITS DATA. NUMBERS IN PARENTHESES ARE THE STD. DEVIATIONS.

Method F-score Precision Recall NMI Adj-RI Entropy

Best Single View 0.6359 (0.0130) 0.6254 (0.0139) 0.6489 (0.0153) 0.7190 (0.0087) 0.5947 (0.0145) 1.1263 (0.0368)

Feature Concatenation 0.5774 (0.0326) 0.5700 (0.0350) 0.5867 (0.0302) 0.6253 (0.0241) 0.5296 (0.0366) 1.4641 (0.0799)

Kernel Addition 0.7125 (0.0254) 0.7034 (0.0256) 0.7243 (0.0228) 0.7756 (0.0176) 0.6801 (0.0283) 1.1461 (0.0731)

Kernel Product 0.5237 (0.0310) 0.4766 (0.0382) 0.5968 (0.0243) 0.5947 (0.0247) 0.4646 (0.0361) 2.7886 (0.0811)

Co-trained 0.6820 (0.0204) 0.6734 (0.0210) 0.7021 (0.0204) 0.7308 (0.0154) 0.6440 (0.0228) 1.2427 (0.0424)

Co-regularized 0.6822 (0.0341) 0.6699 (0.0362) 0.6990 (0.0307) 0.7451 (0.0225) 0.6461 (0.0381) 1.2291 (0.1052)

MVSpec 0.7190 (0.0226) 0.7032 (0.0230) 0.7404 (0.0254) 0.7852 (0.0184) 0.6870 (0.0251) 1.0630 (0.0597)
MKSC 0.7346 (0.0312) 0.7061 (0.0400) 0.7750 (0.0202) 0.8079 (0.0188) 0.7036 (0.0353) 1.0410 (0.0616)

TABLE III. CLUSTER PERFORMANCE ON YOUTUBE MULTIVIEW VIDEO GAMES DATA. NUMBERS IN PARENTHESES ARE THE STD. DEVIATIONS.

Method F-score Precision Recall NMI Adj-RI Entropy

Best Single View 0.2769 (0.0294) 0.4060 (0.0373) 0.2191 (0.0331) 0.6834 (0.0188) 0.2315 (0.0324) 1.4528 (0.0857)
Feature Concatenation 0.1540 (0.0178) 0.1036 (0.0148) 0.3543 (0.00644) 0.3006 (0.0295) 0.0242 (0.0171) 3.4494 (0.1426)

Kernel Addition 0.0987 (0.0094) 0.1764 (0.0167) 0.0687 (0.0075) 0.4306 (0.0158) 0.0542 (0.0105) 2.5196 (0.0761)

Kernel Product 0.1123 (0.0333) 0.0997 (0.0097) 0.1917 (0.1694) 0.2778 (0.0369) 0.0184 (0.0086) 3.3461 (0.2362)

Co-trained 0.1647 (0.0204) 0.2790 (0.0316) 0.1179 (0.0161) 0.5335 (0.0245) 0.1209 (0.0224) 2.1265 (0.1125)

Co-regularized 0.1174 (0.0138) 0.2002 (0.0213) 0.0840 (0.0112) 0.4624 (0.0240) 0.0713 (0.0156) 2.3884 (0.0901)

MVSpec 0.1895 (0.0283) 0.2807 (0.0375) 0.1477 (0.0239) 0.5591 (0.0333) 0.1397 (0.0321) 2.0154 (0.1303)

MKSC 0.2548 (0.0350) 0.3780 (0.0477) 0.2006 (0.0312) 0.6510 (0.0371) 0.2086 (0.0396) 1.6618 (0.1578)

visual, and auditory features. There are 31 class
labels. The first 30 labels correspond to different video
games. Class 31 is not specific, and means none of
the 30. We randomly selected 100 samples from each
class. Like in Pendigits data, we also construct gaus-
sian kernel, ploynomial kernel and ployplus kernel for
each feature of the samples. The experiments were run
on all the constructed kernels.

B. Experiment setting.

In our experiments, three different kernel functions (Gaus-
sian kernel, polynomial kernel and ployplus kernel) were used
to construct kernel matrix. The standard deviation σ of kernel
is assigned equal to the average of the Euclidean distances
based on all paired data points[10]. ploynomial kernel and
ployplus kernel function are set to be (x′∗y)2 and (x′∗y+1)2.

To obtain comprehensive experimental results, we ran 30
times on each dataset by randomly selecting 2/3 of the
experimental data. We took the mean and standard deviation
as the final results.

We used different measures to evaluate the performance
of all the methods, including F-score, precision, recall, nor-
malized mutual information (NMI), adjusted rand index and
average entropy. By following [10], the higher value indicates
better clustering quality, except for average cluster entropy
where the lower value signifies better clustering quality. For
a comprehensive evaluation, the measures penalize or favor
different properties in the clustering. Table I, II, III shows the
results on these diverse measures. For each measure, the first
two best results are show in bold.

In our experiments, we observed that there is a correlation
between the λ and tr(M). Hence, we set up empirical value
for λ in different datasets. We set λ = 2 × tr(M) for all of
the three data sets.

C. Results analysis.

Table I refers to the results of Protein fold prediction data
. Since this dataset contains string features which dimensions
are variablewe did not run the experiments on Feature concate-
nation comparison. It can be seen that our algorithm (MKSC)
outperforms all the baselines by a significant advantage except

3778

the co-train method. The result of co-train method is close to
our MKSC algorithm. Note that the computation cost of co-
train method is much more expensive than ours.

Table II shows the results on Pendigits dataset. On this
dataset, Our algorithm has achieved the best performance. The
kernel addition and MVSpec method are close to our MKSC
approach. Note that these three methods are all linear model
method to form the target kernel matrix.

As shown in Table IIIDue to the database feature, the
text features identifies the most accurate information while the
video and audio features contain more noise. For this database,
the best single view generated the best result. Nevertheless,
even such phenomenon that imbalanced noise nature of the
multi-view data, the results of our algorithm compared to
others, the advance is still obvious.

V. CONCLUSION

In this paper, we propose a multiple kernel learning based
algorithm for multi-view data clustering. In our algorithm,
each view is represented by one or more kernel matrices.
To efficiently make use of the information from each view,
we use a linear model to combine all the kernel matrices
to form the target kernel matrix. By combining the kernel
matrix learning and the spectral clustering optimization into
one process framework, our algorithm determine the kernel
weights and cluster the multi-view data simultaneously. The
experimental results on 3 different real-world datasets have
shown the effectiveness of our algorithm.

ACKNOWLEDGMENT

This work is supported in part by the NSFC under Grant
61101197, 61272220, in part by the NSF of Jiangsu Province
under Grant BK2012399.

REFERENCES

[1] M.B. Blaschko and C.H. Lampert, Correlational spectral clustering. In
Computer Vision and Pattern Recognition,IEEE Conference on (pp. 1-8).
IEEE, 2008.

[2] K. Chaudhuri, S.M. Kakade, K. Livescu and K. Sridharan, (2009, June).
Multi-view clustering via canonical correlation analysis. In Proceedings
of the 26th annual international conference on machine learning (pp.
129-136). ACM.

[3] S. Bickel and T.Scheffer, Multi-View Clustering. In ICDM (Vol. 4, pp.
19-26), 2004(November)

[4] D. Zhou and C.J. Burges, Spectral clustering and transductive learning
with multiple views. In Proceedings of the 24th international conference
on Machine learning (pp. 1159-1166), ACM, 2007.

[5] V.R. de Sa, Spectral clustering with two views. In ICML workshop on
learning with multiple views, 2005(October).

[6] W. Tang, Z. Lu and I.S.Dhillon, Clustering with multiple graphs. In Data
Mining, 2009. ICDM’09. Ninth IEEE International Conference on (pp.
1016-1021). IEEE, 2009(December).

[7] A. Strehl and J. Ghosh, Cluster ensembles—a knowledge reuse frame-
work for combining multiple partitions. The Journal of Machine Learning
Research, 3, 583-617, 2003.

[8] G. Tzortzis and A. Likas, Convex mixture models for multi-view
clustering. In Artificial Neural Networks, Springer Berlin Heidelberg (pp.
205-214), 2009.

[9] A. Kumar, P. Rai and H.D. Iii, Co-regularized multi-view spectral
clustering. In Advances in Neural Information Processing Systems (pp.
1413-1421), 2011.

[10] A. Kumar and H.D. Iii, A co-training approach for multi-view spectral
clustering. In Proceedings of the 28th International Conference on
Machine Learning (ICML-11) (pp. 393-400), 2011.

[11] B. Long, S.Y. Philip and Zhongfei (Mark) Zhang, A General Model for
Multiple View Unsupervised Learning. In SDM (pp. 822-833), 2008.

[12] D. Greene and P. Cunningham, A matrix factorization approach for
integrating multiple data views. In Machine Learning and Knowledge
Discovery in Databases (pp. 423-438). Springer Berlin Heidelberg, 2009.

[13] T. Xia, D. Tao, T. Mei and Y. Zhang, Multiview spectral embedding.
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions
on, 40(6), 1438-1446. 2010

[14] G.F. Tzortzis and C.L. Likas,. Multiple view clustering using a weighted
combination of exemplar-based mixture models. Neural Networks, IEEE
Transactions on, 21(12), 1925-1938, 2010.

[15] G. Tzortzis and A. Likas, (2012, December). Kernel-based Weighted
Multi-view Clustering. In Data Mining (ICDM), 2012 IEEE 12th Inter-
national Conference on (pp. 675-684). IEEE.

[16] I.S. Dhillon, Y. Guan and B. Kulis, Weighted graph cuts without eigen-
vectors a multilevel approach. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 29(11), 1944-1957, 2007

[17] N. Shawe-Taylor and A. Kandola, On kernel target alignment. Advances
in neural information processing systems, 14, 367, 2002

[18] J. Kandola, J. Shawe-Taylor and N. Cristianini, Optimizing kernel
alignment over combinations of kernel, 2002.

[19] C. Cortes, M. Mohri and A. Rostamizadeh, Learning non-linear com-
binations of kernels. In Advances in Neural Information Processing
Systems (pp. 396-404), 2009.

[20] C. Cortes, M. Mohri and A. Rostamizadeh, Algorithms for learning
kernels based on centered alignment. The Journal of Machine Learning
Research, 13, 795-828, 2012

[21] A.E. Hoerl and R.W. Kennard, Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12(1), 55-67, 1970.

[22] The UCSD Multiple Kernel Learning Repository: Protein Fold Predic-
tion dataset. (http://mkl.ucsd.edu/dataset/protein-fold-prediction)

[23] T. Damoulas and M.A. Girolami, Probabilistic multi-class multi-kernel
learning: On protein fold recognition and remote homology detec-
tion.Bioinformatics, 24(10), 1264-1270, 2008.

[24] The UCSD Multiple Kernel Learning Repository: Pendigits dataset.
(http://mkl.ucsd.edu/dataset/pendigits).

[25] F. Alimoglu and E. Alpaydin, Combining multiple representations
and classifiers for pen-based handwritten digit recognition. InDocument
Analysis and Recognition, Proceedings of the Fourth International Con-
ference on (Vol. 2, pp. 637-640). IEEE, 1997(August).

[26] Machine Learning Repository: YouTube Multiview Video Games.
(http://archive.ics.uci.edu/ml/machine-learning-databases/00269/).

[27] O. Madani, M. Georg and D. Ross, On using nearly-independent feature
families for high precision and confidence. Machine Learning, 1-21,
2012.

3779

