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Abstract—Automated assessment of hepatic fat fraction is
clinically important. A robust and precise segmentation would
enable accurate, objective and consistent measurement of liver
fat fraction for disease quantification, therapy monitoring and
drug development. However, segmenting the liver in clinical trials
is a challenging task due to the variability of liver anatomy as
well as the diverse sources the images were acquired from. In
this paper, we propose an automated and robust framework for
liver segmentation and assessment. It uses single statistical atlas
registration to initialize a robust deformable model to get fine
segmentation. Fat fraction map is computed by using chemical
shift based method in the delineated region of liver. This proposed
method is validated on 14 abdominal magnetic resonance (MR)
volumetric scans. The qualitative and quantitative comparisons
show that our proposed method can achieve better segmentation
accuracy with less variance comparing with an automatic graph
cut method. Experimental results demonstrate the promises of
our assessment framework.
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I. INTRODUCTION

Fatty liver, also known as hepatic steatosis, is a world-
wide common condition characterized by fat accumulation
in liver cells. It is associated with alcoholic liver disease,
non-alcoholic fatty liver disease (NAFLD), drug toxicity and
human immunodeficiency virus (HIV) [1]. The fatty liver is
a reversible condition that may progress to more severe liver
diseases. Therefore, the clinical diagnosis of fatty liver disease
is important. This procedure often requires imaging studies,
such as ultrasonography, X-ray computed tomography (CT),
magnetic resonance imaging (MRI) and magnetic resonance
spectroscopy (MRS). Previous studies have shown that the
liver fat quantifications with MRI and MRS [2], [3], [4] are
much better than ultrasonography and CT. Particularly, MRS
is regarded as the most direct MR-based method to quantify
water and fat components in liver. However, it is not widely
applicable across standard clinical imaging centers due to the
technical complexity. Instead, MRI based hepatic fat fraction
measurement is widely used. It employs multi-echo chemical
shift based methods and computes the fat fraction image voxel
by voxel (sample images in Fig. 1). However, most studies
only focus on improving the quantification of fat and water
components, while the estimated fat fraction images are not
liver specific. Doctors or clinical experts need to manually
delineate regions of interest (ROI) and interpret the results in
the whole MR images. Since 3D manual delineation of whole

(a) In-phase (b) Out-of-phase (c) Fat fraction map

Fig. 1. Dual-phase MRI and fat fraction result.

liver is low-efficient, high-cost and inconsistent, an automated
and robust 3D liver segmentation is essential for quantitative
measurements of hepatic fat fraction in clinical trials.

In recent decades, there have been many automatic segmen-
tation techniques proposed in medical image analysis. Usually,
deformable model based methods [5], [6] are accurate but
require good initializations. Atlas-guided approaches [7], [8],
[9] assume the target has similar pathological and geometric
characteristics with the training data. They require nonrigid
registration [10] and some appearance dependent classification
strategies [11] to segment the testing image. Many literatures
and methods have been proposed for liver segmentation in CT
images, including histogram based approach [12], shape con-
strained deformable model [13], graph cut [14], statistical atlas
[15], and learning-based approaches [16], [17]. And several
recent studies were done for MR images [18], [19]. However,
most generative models are sensitive to data and initialization,
while discriminative approaches usually require a large amount
of training data with consistent imaging protocols, which may
not be feasible in clinical trials and is label intensive. Besides,
CT images have different appearance patterns with MR images
which makes most algorithms designed for CT images not
suitable for MRI’s.

Robust liver segmentation in MRI is especially challenging
for data sets in clinical trials, owing to their variety. Here
we propose an automated and robust framework for liver
segmentation. It only needs a small number of training data
without constraining imaging protocols. Therefore, it is ideal
for the hepatic fat fraction assessment in clinical trials. In
our framework, a statistical image atlas is constructed and
employed to obtain a rough estimation of liver ROI. Then,
a robust deformable model is initialized from this estimation.
Both edge and region information is used in this model for
accurate and robust segmentation. The proposed segmentation
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Fig. 2. Segmentation Framework.

method combines the reliability of atlas-based approach with
the accuracy of deformable models. It is automatic and robust
to segment liver from T1-weighted MRI. With the segmenta-
tion result, we can measure the fat fraction distribution in the
liver region by magnitude based chemical shift method [2].
We evaluate this method on a data set of 14 volumetric MRI’s
from clinical trial. Our key contributions include the pipeline
of the fatty liver analysis, and the segmentation algorithm using
image atlas and deformable model.

II. METHODOLOGY

In this section, we introduce our framework for hepatic fat
fraction assessment, including atlas-based initial segmentation
and fine segmentation based on the robust deformable model
(Fig. 2).

A. Initial Segmentation via Statistical Atlas

There usually exist some unknown noises and imaging
artifacts in medical images, which can impact the accuracy
of image analysis. Bias field is a low-frequency noise which
can cause intensity inhomogeneities in MR images. Such
inhomogeneities can make the object boundary ambiguous for
segmentation algorithms. We use the improved nonparametric
nonuniform intensity normalization (N4) method [20] to cor-
rect the bias field. A comparison between original T1 weighted
MRI and bias corrected image is shown in Fig.3.

Given a small number of training images and their anno-
tations, image atlas based approaches [11], [21] usually use
appearance based label propagation techniques to segment an
unseen target image. They perform well when segmenting
new images with similar pathological and geometric charac-
teristics as the atlas population (e.g. in normal-appearance
brain segmentations) [22]. However, abdominal organs have
large variant shapes, and some adjacent organs may have very

similar intensities. So image atlas based approaches can hardly
get an accurate segmentation of liver. On the other hand,
this rough segmentation can be used as an initialization as
demonstrated in [15].

In this work, we use a registration-based statistical atlas
method to generate the initial segmentation. Let φ(x)I = J
denote a transformation from source image I to target image
J with nonrigid deformation field φ(x) after an affine registra-
tion, [23] proposed a symmetric diffeomorphic normalization
(SyN) method which solves the problem to get φ(x) and
inverse deformation field φ−1(z) at the same time. Here, x, z
are spatial coordinates in D-dimensional images I and J .

The mutual information (MI) and cross-correlation (CC)
are two image similarity metrics commonly used in registration
problems. MI estimates globally optimal matching between
images, but may not be a good option in cases where non-
stationary patterns require locally adaptive similarity mea-
surement. On the other hand, CC depends only on local
estimates and is suitable when locally varying intensities occur.
To ensure the robustness of our framework to strong MRI
inhomogeneity (bias field), we choose cross-correlation as the
similarity metric in SyN method to do nonrigid registration. It
is defined as Eq. 1, where μIl and μJl

are local means in a
nD-sized window centered at each position x and z; Il and
Jl are vector representations of image patches in the window.

CC(I ′l ,J ′l ) =
(I ′l · J ′l )2

(I ′l · I ′l)(J ′l · J ′l )
(1a)

I ′l = Il − μIl , J ′l = Jl − μJl
(1b)

Given M training atlases, the statistical atlas is built follow-
ing the algorithm 1. The Ii and Si denote the training image
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(a) Original T1 (b) Bias corrected

Fig. 3. Bias field correction results in axial view.

and its golden standard segmentation, respectively. In the
output statistical atlas, Ī is mean image and S̄(x) represents
probability of liver appearing at x. In contrast to the Hounsfield
unit scale in CT, the intensities of MRI data have various
scales for the same tissue. To get the single reference image Ī
fused from training samples, we use the Average function
which normalizes the inputs individually before computing
the average intensities at each voxel. Please note that since
re-sampling is included in the transformation step, only Im
is re-sampled in line 2 and the warped Îi also has isotropic
1mm voxel resolution in line 6. The motivation of the loop
between line 3 and line 10 is to unbias the Ir which depends
on the choice of m in the beginning. Here, we set the maximal
iterations empirically as 2, thus 3M registrations are needed
in total.

When a new target image comes, we compute transfor-
mation φ̄T from Ī to the target. Then the target-specific liver
probability map S̄T = φ̄TS̄. An initial liver segmentation SInit

is computed by thresholding Gσ ∗ S̄T with a scalar value θ,
where Gσ is a Gaussian smoothing filter with scale size σ.

B. Fine Segmentation via Deformable Model

This SInit is used as an initialization of a parametric
active contour model, after converted to a high-quality surface
mesh [24]. Starting from this initialization, deformable models
[5], [6] can move through the spatial domain of an image
under both internal (e.g. smoothness) and external (e.g. image)
forces, and should converge to the desired object boundaries.
However, these models may be sensitive to image noise,
intensity inhomogeneity, and weak or misleading appearance
cues. To ensure the robustness, our shape-based deformable
model has the following energy terms:

E = EInt + κ1

∫
Λ

[PE(x) + κ2PR(x)]dΛ (2)

where EInt is the traditional internal energy term constraining
tension and rigidity. PE(x) = −ωe|∇G∗I|2 is the image edge
energy at x, where ∇G is a Gaussian derivative filter. PR(x)
is the image region energy defined like [25]. The object’s
interior intensity statistics provides important information to
avoid the model stuck in the local minima and converge to the
true object boundary. The combination of two external terms
ensure that this model is robust to noise and ambiguous edges
around liver. Here, κ1, κ2 and ωe are all scalar values used
as balances of different energy terms. We use the uniformly
weighted Laplacian discrete representation [26] for the dif-
ferential operators in internal energy term EInt. Without re-
meshing, the internal energy do not need to be evaluated in
every iteration. The standard PE(x) provides static external
force from the input image which is also computed once

Algorithm 1 Build statistical atlas

Input:
The training atlases {Ii,Si}, i ∈ {1, . . . ,M};

Output:
The statistical atlas {Ī, S̄};

1: pick an arbitrary m, where m ∈ {1, . . . ,M}
2: re-sample Im to get Ir with isotropic 1mm voxel size
3: while k < MAX ITERATION do
4: for i = 1 to M do
5: compute φi s.t. φiIr ≈ Ii
6: Îi = φi

−1Ii
7: end for
8: Ir = Average({Î1, · · · , ÎM})
9: k = k + 1

10: end while
11: for i = 1 to M do
12: compute φ̄i s.t. φ̄iIr ≈ Ii
13: Îi = φ̄−1

i Ii
14: Ŝi = φ̄−1

i Si
15: end for
16: Ī = Average({Î1, · · · , ÎM})
17: S̄ =

∑M
i=1 Ŝi/M

before model evolution. Although the image region force in
[25] is computed dynamically to enable larger capture range of
Metamorphs deformable model, we only compute PR(x) once
in our work. We define the PR(x) = D2. The D is a distance
map to the estimated object boundaries which maximizes the
likelihood of pixel intensities inside current model surface.
From our observations, the liver is a large organ in abdomen
and the initial localization is reliable. Thus the liver intensity
probability map can be computed once based on the initial liver
distribution Gσ∗S̄T and does not change a lot during iterations.
Then the object boundary is estimated and the distance map
D is computed. Since all the energy terms and corresponding
forces are computed once at the beginning, our deformable
model is efficient to converge.

The evolution of the deformable model is summarized
as follows: 1) convert SInit to initial surface model x(0); 2)
compute initial and external forces; 3) deform model x(t−1)

to next time step x(t); 4) smooth current model x(t) in every
100 iterations; 5) repeat steps 3 to 4 until deformable model
converges. Here, the step 4 is necessary because the mesh
quality usually degenerates after iterations and may downgrade
the final segmentation result. We choose a LowPass filter to
do mesh smoothing which is recommended in [27].

C. Fat Fraction Assessment

For fat fraction assessment, we use dual-echo imaging
based method [2], in which two series of images were acquired
in a single breath-hold at two sequential echo times (TEs). At
these two TEs, water and fat signals are out-of-phase (OP) and
in-phase (IP), respectively. Then magnitude based chemical
shift method is utilized to estimate the fat fraction (FF) map
by: FF = |SIP − SOP|/(2SIP) [2], where SIP and SOP denote
signals in IP and OP images. The range of fat fraction is
limited to 0 − 50% due to the absolute value in this method.
Fortunately, it is acceptable in most cases since fat fractions
greater than 50% are uncommon in liver [3].
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(a) Subject I (b) Subject II

Fig. 4. Comparison of initial (blue dotted line) and final (green dotted line)
segmentation results against manual delineation (red solid line). First row is
axial view; second row is coronal view; the last row is sagittal view.

III. EXPERIMENTS

In dual-echo imaging, OP and IP images are taken with
a single breath-hold. The corresponding TEs are chosen as
2.3/4.6 msec at 1.5T or 1.15/2.3 msec at 3T. A database
of 14 abdominal MR volumetric scans is used. Each subject
has one pair of IP, OP scans and one T1-weighted MR scan.
We choose T1-weighted MR images to segment liver, whose
ground truths were manually labeled by experienced experts.
Then we estimate hepatic fat fraction distribution using IP and
OP images with segmented liver masks from T1 data. In our
dataset, image resolutions of T1 MRI’s range from 0.78 to
1.87mm in the axial slices with slice thickness from 3.5 to
7mm. The number of slices is from 30 to 104. The range in
Z axis varies from 210mm to 364mm. The intensity is from
178 to 32767. We use 7 subjects as training set to train the
statistical atlas and the rest 7 subjects as testing set.

We compare the proposed method with two other methods.
One method is to use thresholding of the atlas registration
result SInit by a scalar θ to get a segmentation (denoted as
Atlas). The other one is automatic graph cut method based
on the probabilistic atlas initialization (denoted as Atlas+GC)
[28]. We implemented the methods by our own. In Atlas+GC
method, we assume 6-neighborhood connectivity, and the
graph cut is solved by the min-cut/max-flow algorithm [29].
The region of interest is defined by the bounding box of
SInit > Throi. The hard-constraint seeds of liver is set as
those located in the region of erode(SInit > Thliver), while
the seeds of background is set as those outside of the region
of dilate(SInit > Thbg). All methods were implemented in
Matlab, tested on 3.4 GHz Intel Core i7 computer with 8G
RAM. We report the mean and variance values of the dice simi-

(a) Initial error 1 (b) Initial error 2 (c) Initial error 3

(d) Final error 1 (e) Final error 2 (f) Final error 3
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Fig. 5. Comparison of surface distances to ground truth in three cases. First
row is for initial segmentations; second row is for final segmentations.

larity coefficient ( 2TP
2TP+FP+FN ), accuracy ( TP+TN

TP+TN+FP+FN )

and relative error (FP+FN
TP+FN ) compared to the ground truth.

TP , TN , FP and FN are number of voxels correctly iden-
tified, correctly rejected, incorrectly identified, and incorrectly
rejected as liver tissue, respectively. We also measure the
symmetrical surface distance error between the surfaces of
segmentation results and those of the ground truth. Let X
and Y denote point sets of ground truth surface mesh and
segmentation result mesh, respectively; pX ∈ X is an arbitrary
point in X . S

X→Y
(pX) represents the point in Y which has

the minimum Euclidean distance to pX . S′
Y→X

(pX) represents

the point set in Y whose closest point in X is pX . The
symmetrical surface distance error at pX is defined as the
maximum Euclidean distance to { S

X→Y
(pX), S′

Y→X
(pX)}. In

this error map, we can easily visualize and compare the surface
error distribution of segmentation results referenced to the
ground truth.

As shown in Fig. 4, red lines are ground truth boundaries,
blue lines are the initial segmentations, and the green lines are
the final results from our proposed approach. It demonstrates
that the deformable model refines the atlas-based segmenta-
tions to fit the real object boundary accurately. In Fig. 5,
surface distances are plotted for three subjects in different
view. Fig. 5.a-5.c show the surface distances between ground
truth and initial segmentations, while Fig. 5.d-5.f show the
surface errors of final segmentation results. The mean surface
errors of the initial and final segmentations are 12.9mm and
7.4mm, with standard deviations as 11.1 and 6.8, respectively.
Quantitative comparisons of overlapping accuracies are shown
in table I. The first row shows the segmentation results of SInit

with θ = 0.5; the second row is from the proposed automatic
graph cut method with Throi = 0.1, Thliver = 0.9, Thbg = 0;
and the third row is from the proposed atlas+deformable
model method.

Despite its inaccuracy, atlas-based method still provides
good initializing for finer segmentations. The automatic graph
cut approach has a larger variance and consumes huge memo-
ries during computation. Our proposed method has larger dice
score and accuracy, as well as smaller relative error. It indicates
that the proposed method has better average performance.
Meanwhile the smaller standard deviations in last row show
that it is more stable and robust comparing with the other
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TABLE I. SEGMENTATION ACCURACY COMPARISON.

Method Dice score Accuracy Relative error

μ σ μ σ μ σ

Atlas 0.86 0.04 0.87 0.04 0.28 0.09

Atlas+GC 0.87 0.06 0.89 0.05 0.23 0.09

Ours 0.90 0.02 0.91 0.02 0.20 0.05

0

0.1

0.2

0.3

0.4

Fig. 6. Colored FFM in liver from different view (axial, sagittal and
coronal).Values range from 0% to 50%.

two approaches. The parameters for deformable model was
tuned for one subject and applied to all the testing subjects.
In our implementation, κ1 = 1, κ2 = 1 and ωe = 2.5. The
SyN registration is implemented in Advanced Normalization
Tools (ANTs) [30]. We use CC metric with window radius
4, weight 1 and gradient step length 1.5. The optimization
is performed on three resolutions with a maximum of 30
iterations at the coarsest level, 20 at the next coarsest and 10
at the full resolution, after the affine registration (200, 100, 50
maximal iterations respectively). We use a Gaussian regularizer
with sigma of 3 that operates only on the similarity gradient
and not on deformation field.

Finally, we transform the segmented liver masks from T1
image space to IP/OP image space by rigid registration. Fat
fraction is assessed in liver region, where each voxel has a
value indicating the ratio of fat component at that position.
With the liver-specific FF distribution, it is easy to compute
statistical measurements of fat ratio inside the liver tissue
automatically. One assessment result is demonstrated in Fig.
6. For this subject, the mean fat fraction inside liver region is
about 0.4%, while the maximum value is about 46% appearing
along the liver boundary.

IV. CONCLUSION

We proposed a framework to segment 3D liver in MRI from
clinical trials, followed by the assessment of the fat fraction
map in the liver region. It utilizes image registration and
trained statistical atlas to obtain a rough initialization, which is
fed into robust deformable model for accurate segmentation.
This statistical atlas not only provides a good initialization
for the deformable model, but also is a reliable estimate of
image region potential energy. The combination of these two
modules enables efficient and accurate segmentation, from
which the magnitude based chemical shift method computes
the liver-specific fat fraction distribution. Our preliminary
results demonstrate that this automatic system is robust to
various liver shapes, different intensity distributions and low
image resolution. In addition, it is an effective solution for
clinical trials which have diverse data sources coming from
different scanners and protocols. Our framework can be easily
extended to segment other anatomies, as it does not require
expensive training or prior knowledge. Since we only used

observed feature in T1 weighted MRI, a potential improvement
could be combination with in-phase and out-phase MRIs to get
more comprehensive boundary features into the energy term of
the deformable model for more accurate segmentation. Another
possible enhancement could be incorporation of shape priors
in the deformable model to further improve segmentation
accuracy and efficiency. Sometimes the initial segmentation
is relatively good and only sparse gross errors instead of
Gaussian errors may be observed. In these cases, a sparse
shape composite model [31], [32] can be incorporated into
deformable model to refine the segmentation. Besides, the
complex-based multi-echo fat assessment algorithm [3], [4]
will be investigated. Unlike the magnitude-based approach we
used, the complex-based approach permits a dynamic range of
0 − 100% for fat-fraction, which could be a general solution
to fat quantification of other tissues of interest, e.g. adipose,
bone marrow, etc.
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