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Abstract—There has been an ongoing effort in improving
reliability and consistency of pathology test results due to their
critical role in making an accurate diagnosis. One way to do this
is by applying image-based Computer Aided Diagnosis (CAD)
systems. This paper proposes a comprehensive benchmarking
platform comprising over 1,000 images to evaluate CAD systems
for the Anti-Nuclear Antibody (ANA) test via the Indirect
Immunofluorescence (IIF) protocol applied on Human Epithelial
Type 2 (HEp-2) cells. While prior works in this domain have
primarily focussed on classifying individual cell images derived
from ANA IIF HEp-2 images, our proposed benchmarking
platform goes beyond this by considering the ANA IIF HEp-2
image classification problem. Generally the existing works derive
an ANA IIF HEp-2 image label from the dominant pattern of
the cell images (we call this approach baseline). In this work, we
argue that this approach cannot be used to achieve an acceptable
performance, thus, the problem of classifying ANA IIF HEp-
2 images (or ANA images in short) is still largely unexplored.
To demonstrate that, we propose a simple-yet-effective CAD
system which is inspired from the recent success of object bank
representation in the object classification domain. We evaluate the
proposed system, the baseline and a recent CAD system and show
that our proposed system considerably outperforms the others.

I. INTRODUCTION

Pathology tests play a critical role in our healthcare sys-
tem for patient diagnosis. Any inaccuracies may compromise
patient diagnosis and treatment. Applying image-based CAD
systems is one of the solutions to leverage test consistency and
reliability and also decrease test turn around time [24], [10],
[15], [28], [12]. For instance, Tadrous et al. proposed a CAD
system which can be used for a rapid screening Ziehl-Neelsen
(ZN)-stained sections for detecting acid-alcohol-fast bacilli
(AAFB) which cause Tuberculosis (TB) in resource-poor re-
gional areas [24].

The best practice for identifying the existence of connective
tissue diseases is via the Anti-Nuclear Antibody (ANA) test
using the Indirect Immunofluorescence (IIF) protocol applied
on Human Epithelial type 2 (HEp-2) cells [18]. This approach
has high sensitivity due to the expression of a wide range
of antigens on HEp-2 cells. However, the protocol is [2],
[20], [13], [22]: (1) time consuming; (2) labour intensive;
(3) subjective; (4) has low reproducibility and (5) has large
inter/intra- personnel/laboratory variations. When combined
with the subjective analysis by scientists, the results produced
from CAD systems can potentially address these issues [10].

In the light of this fact, there has been a surge of interest
shown in the literature to develop such systems [10], [19], [13],
[5], [14], [22], [4], [29], [23], [1], [25], [26], [11], [16], [3],

[21], [6], [31], [9], [8], [32]. This also has been supported
by a number of excellent benchmarking platforms such as
ICPR2012Contest [10], [9], SNPHEp-2 [31] and ICIP2013 1

which help the community to compare methods proposed in
this area. Existing approaches in image analysis have also
been adapted and evaluated [23], [31]. Unfortunately, the
existing works primarily focus on the problem of classifying
cell images derived from ANA images. Whilst, these work
provide significant contribution, the cell classification is only
the first step in the whole CAD system procedure. Once the
cell patterns have been identified, the system needs to make
decision upon the ANA pattern. The identified ANA pattern
can then be combined with the scientist opinion. Currently,
most approaches classify ANA images by merely using the
dominant cell pattern which may only work for a limited
number of ANA patterns [10]. Furthermore, these approaches
only use the information extracted from the interphase cells.

Each ANA image normally contains a distribution of HEp-
2 cells that can be divided into two main cell cycle stages:
interphase and mitosis stages (Refer Fig. 1 for some example
images of ANA patterns). During the mitosis stage, HEp-2
cells divide into two daughter cells. Unlike the interphase
stage, in this stage the amount of cell chromatin is doubled.
The cells undergoing the mitosis stage may express different
antigens or antigens in different concentration to those of the
interphase stage. Therefore, it is essential to use information
extracted from both phases to classify an ANA pattern.

In the present work, we argue that the problem of ANA
image classification is still largely unexplored. Most existing
works primarily use the dominant pattern of the interphase
cells in classifying an ANA image (we denote this approach
baseline). As aforementioned, this is insufficient due to the
fact that the information from the mitotic cells is completely
ignored. Furthermore, one may have better classification ac-
curacy when the decision is not solely made based on the
dominant cell pattern, rather on the information extracted from
the cell distribution.

To that end, we first propose a benchmarking platform for
ANA image classification allowing the community to evaluate
CAD systems designed for ANA image classification. The
platform contains a set of ANA images divided into train
and test sets along with the standard evaluation protocol. For
the immediate benefit to the community, the benchmarking
platform is also used in one of the ICPR 2014 contests titled

1The competition website and dataset available at http://nerone.diiie.unisa.
it/contest-icip-2013/index.shtml
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Fig. 1. Some images from the proposed dataset. The first row contains the
ANA common patterns whilst the lesser common patterns are presented on
the second row.

Fig. 2. Example FITC and mask images for interphase and metaphase cells.
The mask images are derived from DAPI channel.

the Performance Evaluation of Indirect Immunofluorescence
Image Analysis Systems held in conjunction with the 1st

Workshop on Pattern Recognition Techniques for Indirect
Immunofluorescence Images 2.

In this paper, we apply the baseline method and show that
it fails to achieve satisfactory results on the proposed bench-
marking platform. Then, we propose a simple-yet-effective
CAD system, inspired from [17], which uses the information
extracted from both mitotic and interphase cells.

We continue our discussion as follows. In the following
section, we describe the ANA HEp-2 image classification
problem. Section III presents the proposed benchmarking
platform. Then we propose our CAD system in Section IV.
The comparative evaluation results between the proposed CAD
system to the other methods are discussed in Section V.
Finally, main findings and future direction are presented in
Section VI.

II. THE ANA IIF HEP-2 IMAGE CLASSIFICATION

PROBLEM

We use the style of [31] to describe the ANA IIF HEp-2
image classification problem, or ANA image classification
problem in short. An ANA image I is represented by the
three-tuple {I,M , δ} which consists of: (i) the Fluorescein
Isothiocyanate (FITC) image channel which carries pattern
information I; (ii) a binary cell mask image M which are ex-
tracted from the 4’,6-diamidino-2-phenylindole (DAPI) image

2The contest and workshop website is http://i3a2014.unisa.it/

channel 3; (iii) the fluorescence intensity δ = {weak, strong}.
The goal is to construct a classifier which classifies an image
into one of the known ANA classes.

In general, the classifier should have four steps: (1) individ-
ual HEp-2 cell image extraction; (2) cell cycle classification;
(3) cell image descriptor extraction and classification; (4) ANA
image descriptor extraction and classification. The binary mask
could be used to extract cell images from the ANA image.
We note that that there is a distinct shape between interphase
and mitotic cells due to the fact that the DAPI image channel
delineates the cell DNA (refer to Fig. 2) Unlike the interphase
cells, the cell DNA is centred on the cell undergoing mitosis
phase. Despite the fact that one could, in theory, distinguish
between mitotic and interphase cells via their shape, we still
observed significant errors when only shape information is
used (results are not shown). Therefore, we envision that there
could be other useful information for addressing the cell cycle
classification problem which may improve the classification
accuracy (e.g. combining the FITC and the mask images).
Once the cells are extracted and their cycle is determined,
we can extract their image descriptor and classify them using
various approaches proposed from the prior works. In the
last step, the system extracts and classifies the ANA image
descriptor by using either the classification result of the cells
or the cell image descriptor. It is clear from these steps that
most prior works largely focus on the third step.

III. THE PROPOSED ANA IMAGE BENCHMARKING

PLATFORM

The benchmarking platform consists of a set of ANA
images divided into two subsets for training and test. The
ANA images were acquired in 2011-2013 from 1,001 ANA
positive de-identified patients sera at the Sullivan Nicolaides
Pathology Laboratory, Australia. The specimens were prepared
with screening dilution 1:80. Then we used a monochrome
high dynamic range cooled microscope camera on a micro-
scope with a plan-Apochromat 20x/0.8 objective lens and
LED illumination source. We took images from four different
locations for each specimen. Specifically, we took one FITC
image and one DAPI image for each location. This means,
each specimen has eight images (i.e. four FITC images with
four corresponding mask images). Each image was saved in
uncompressed monochrome TIF format with a resolution of
1388 x 1040 pixels 4.

There are seven ANA patterns considered: homogeneous,
speckled, nucleolar, centromere, golgi aparatus (Golgi), nu-
clear membrane (NuMem) and mitotic spindle. As depicted in
Fig. 3, the first four patterns are common ANA patterns and
the last three are much lesser common or rare. We deliberately
combined both common and uncommon patterns to simulate
the real scenario where pathology laboratories need to deal
with both patterns. We divided the images into two sets: 252
images for training and 749 for testing.

For each individual ANA pattern, we use the standard
textual description proposed in [27]:

3A simple foreground segmentation such as Otsu’s thresholding approach
could be used to generate the binary mask from the DAPI image.

4While it is possible to offer images with various resolution sizes to study
the system robustness, we would like to reserve this for the future work.
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Fig. 3. The number of images per class for each test and training set. There
is class imbalance between the common patterns (i.e. the first four patterns)
and the lesser common patterns (i.e. the last three).

• homogeneous a uniform diffuse fluorescence covering
the entire nucleoplasm sometimes accentuated in the
nuclear periphery; In some cases a more intense
staining of the inner edge of the nucleus (nuclear rim)
can be seen. Some samples may show an additional
appearance of peripheral nucleolar staining. Nucleoli
are often stained much like the surrounding nucleo-
plasm. In metaphase and telophase a homogenous or
peripheral chromatin staining is seen

• speckled the pattern is generally divided into two sub-
categories: coarse speckled: densely distributed, vari-
able sized speckles, generally associated with larger
speckles, throughout the nucleoplasm of interphase
cells; nucleoli are negative. Metaphase and telophase
cell cytoplasm contains speckles with condensation
around the chromatin plate which itself is negative.
fine speckled: fine speckled staining in a uniform
distribution, sometimes very dense so that an almost
homogeneous pattern is attained; nucleoli may be pos-
itive or negative. Cytoplasm of metaphase cells shows
fine speckles and condensation around the chromatin
plate which itself is negative. Nuclei of telophase
cells may be positive, sometimes being more strongly
stained than nuclei of interphase cells

• nucleolar brightly clustered large granules corre-
sponding to decoration of the fibrillar centers of the
nucleoli as well as the coiled bodies. In mitotic cells
the metaphase and telophase plate appear to have a
fluorescent irregular “fan-like” edge. Metaphase cell
cytoplasm may be slightly positive

• centromere rather uniform discrete speckles lo-
cated throughout the entire nucleus. Telophase and
metaphase cells always show these speckles in the
condensed chromosomal material

• golgi aparatus staining of a polar organelle adjacent
to and partially surrounding the nucleus, composed
of irregular large granules. Nuclei and nucleoli are
negative. Diffuse staining of the cytoplasm of dividing
cells sometimes with accentuation around chromoso-
mal material

• nuclear membrane (NuMem) a smooth homogeneous
ring-like fluorescence of the nuclear membrane in
interphase cells; A similar pattern is seen in telophase.
In metaphase cells the fluoresence is diffusely lo-
calised in the cytoplasm and chromosomal material
is unstained

• mitotic spindle staining only in the triangular or
”banana-shaped” pole area of the mitotic spindle in
the metaphase cells

As there is distribution imbalance between the common and
lesser common patterns, it is important to define an evaluation
protocol which is not biased towards the common patterns.
As such we propose to use the mean class accuracy (MCA)
to measure a method performance. Technically, we compute
the accuracy for each ANA pattern class and then we take the
average of the per-class accuracies.

Let CCRk be the correct classification rate for class k
determined as follows.

CCRk =
1

Nk
(TPk +TNk) (1)

where TPk and TNk are the number of true positive and true
negative results on class k, respectively; Nk is the number of
ANA images that belong to class k. The mean class accuracy
MCA is determined by:

MCA =
1

K

K∑

k=1

CCRk (2)

where K is the number of pattern classes (i.e. K equals seven
in this instance).

IV. CELL BANK DESCRIPTOR

In the present work, we derive the ANA image descriptor
zi from the cell bank descriptor extracted from each individual
cell image. The cell bank descriptor is inspired from the object
bank approach presented in [17]. Technically, each element of
the cell bank descriptor is the output score of a one-versus-all
SVM classifier specifically trained to detect the existence of
a particular cell pattern. Let Φp : Rn �→ [−1, 1] be the p-th
one-versus-all SVM classifier which maps an input cell feature
descriptor into a continuous value ranging from -1 to 1. Let
hc be the cell bank descriptor of cell c, then the p-th element
of hc is determined by:

hc,p = Φp(xc) (3)

where xc ∈ R
n is the image features extracted from the c-th

cell image. In other words, hc = [Φ1(xc) . . .ΦP (xc)].

We train one SVM classifier for each ANA pattern. In
addition, we train a separate set of SVM classifiers for each
cell cycle stage. This means, to extract the cell bank descriptor
from a cell image, the system needs to determine its cell cycle
stage and then apply the corresponding set of SVM classifiers
to the cell feature descriptor. Once the cell bank descriptors
are extracted from all cells, we compute the average cell bank
descriptor for each cell cycle stage:

h[j] =
1

Nj

Ni∑

c=1

hc (4)

where j is either interphase or mitosis; Nj is the number
cells classified into the j cell cycle stage; hc is the cell bank
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descriptor of the c-th cell which belongs to the j cell cycle
stage.

Finally, we represent the i-th ANA image descriptor zi ∈
R

2P as the concatenation of the average cell bank descriptor

of each cell cycle stage zi = [h[interphase] h[mitosis]].

Once all the ANA image descriptors have been extracted,
we train a multi-class Kernel SVM classifier in conjunction
with the Radial Basis Function Kernel. In the present work, we
also use Kernel SVM for each one-versus-all SVM classifier in
conjunction with Pyramid Match Kernel as suggested in [30].

Unlike the baseline approach that simply assumes the
pattern of an ANA image from the most dominant cell pattern,
the proposed approach allows more flexibility. More precisely,
as the output score for each individual cell classifier is used to
represent each cell image, the proposed approach assumes that
each cell could belong to one or more patterns (e.g. when a cell
is classified as positive by two cell classifiers). This means, to
some extend, the cell bank descriptor captures the information
about the distribution of cell patterns appeared within the ANA
image.

V. EVALUATION

We first present the experiment settings and then we con-
trast the proposed CAD system, here denoted Cell Bank, to the
baseline method and the Multiple Expert System (MES) [22].

A. Experiment settings

Each cell image is represented by using the Cell Pyramid
Matching (CPM) descriptor due to its robustness in various lab-
oratory settings [30]. However, our method is not limited to this
descriptor. The CPM descriptor consists of three histograms:
(1) the overall cell histogram; (2) the histogram extracted
from the cell interior; (3) the histogram extracted from the
cell boundary. Each histogram is extracted by using the Soft
Assignment encoding method with Discrete Cosines Transform
(DCT) patch level descriptor. We use 1024 dictionary atoms
for each histogram.

We use a multi-class Kernel SVM classifier to classify
individual cell images for the baseline method. It then derives
a given ANA image label from the dominant cell pattern. We
also implemented the Multiple Expert System, here denoted
MES, proposed in [22]. In MES, each cell pattern has a binary
KSVM classifier in conjunction with the Radial Basis Function
Kernel. To classify an ANA image, MES will compute the
weighted voting score wherein the weight is determined from
the classifier reliability score.

B. Evaluation on various settings

In this evaluation we varied the settings of the proposed
approach. We compared the efficacy between Kernel SVM and
Nearest Neighbour classifiers as the ANA image classifier. We
also evaluated the usefulness of the information provided from
each cell cycle stage and when both were combined.

The results shown in Table I suggest that the interphase
cells carry more useful information than mitotic cells. Nev-
ertheless, combining the information from both gives the best

TABLE I. PERFORMANCE COMPARISON OF THE PROPOSED APPROACH

VARIANTS. NN: NEAREST NEIGHBOUR; KSVM: KERNEL SUPPORT

VECTOR MACHINE.

Variants Mean class accuracy (in %)

Interphase - NN 70.9
Mitotic - NN 53.0
Both - NN 73.3

Interphase - KSVM 72.0
Mitotic - KSVM 56.3
Both - KSVM 79.3

TABLE II. PERFORMANCE COMPARISON OF THE MES APPLIED ON

THE INTERPHASE AND MITOTIC CELLS.

Variants Mean class accuracy (in %)

Interphase - MES 66.4
Mitotic - MES 53.0

performance. In addition, we also found that KSVM is a better
classifier than the Nearest Neighbour.

Table II presents the evaluation of the MES approach
on both cells. The MES proposed in [22] only considers
interphase cells, however, in this work, we also present the
results on mitotic cells as well. The results are still consistent
with the previous findings in Table I suggesting that interphase
cells carry more information.

It is noteworthy to mention that the results presented here
are much lower and seem to contradict the results reported
in [22]. On closer examination we found that some classifiers
have large classification errors due to confusion in ANA
patterns that do not have dominant cell patterns. For instance,
the mitotic spindle pattern does not have a specific interphase
cell pattern. In fact the pattern could be similar to either
homogeneous or speckled. This decreases the reliability score
which in turns could force the system to choose the incorrect
ANA pattern class which has a better reliability score.

C. Comparative evaluation of systems

In this section we compare the best performing system
found from the previous section to the baseline. Fig. 4 presents
the evaluation results. The proposed approach outperforms
both MES and the baseline. There is a slight improvement on
the proposed approach when using interphase cells compared
to the baseline.

Table III shows further detail of the per-class accuracy
results. The proposed approach performs much better in all
classes except with Nucleolar. We found that the proposed ap-
proach significantly improves the performance of less common
patterns such as Golgi and Mitotic Spindle. However, when
only interphase cells are used, it has worse performance in
common patterns compared to the baseline. The mitotic cells
play an important role in improving the performance on almost
all patterns. The highest improvement was achieved with the
Speckled pattern.

Another noteworthy observation is that, although the mi-
totic spindle pattern is only found in the mitotic cells, its per-
formance has not changed even when the proposed approach
uses the mitotic cell information. This finding warrants further
investigation.
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Fig. 4. Comparative evaluation between the proposed Cell Bank approach,
the Multiple Expert System (MES) [22] and the baseline; The proposed cell
Bank both uses information from both interphase and mitotic cells.

TABLE III. PER-CLASS ACCURACY FOR THE BASELINE, MES, AND

THE PROPOSED CELL BANK (CB) SYSTEM. HO: HOMOGENEOUS; SP:
SPECKLED; NUC: NUCLEOLAR; CE: CENTROMERE; GO: GOLGI

APARATUS; NU: NUCLEAR MEMBRANE; MI: MITOTIC SPINDLE.

CAD system Per-Class Accuracy (in %)
Ho Sp Nuc Ce Go Nu Mi

MES - interphase [22] 58.0 56.3 95.3 95.4 65.4 80.6 13.6
Baseline 88.5 69.6 96.7 94.7 57.7 67.7 22.7
CB - interphase - KSVM 74.5 74.7 92.7 92.1 65.4 58.1 38.6
CB - both - KSVM 89.8 88.6 95.3 98.0 65.4 79.0 38.6

VI. CONCLUSIONS

There has been a great effort to develop CAD systems for
the ANA test via the Indirect Immunofluorescence protocol
applied on HEp-2 cells. When combined with the manual re-
sults from scientists, the CAD system results could potentially
leverage test consistency and reliability as well as decrease the
test turn around time. Despite much interest, prior works in this
domain have primarily focussed on classifying individual cell
images derived from ANA IIF HEp-2 images. In the present
work, we take a further step by considering the problem of
ANA IIF HEp-2 image classification. Our major contribution is
on the proposed benchmarking platform which could stimulate
further exploration in this field. The benchmarking platform
consists of a set of specimen images acquired from 1,001
patient sera as well as the evaluation metric for comparative
analysis. In addition, we have shown that using the dominant
cell pattern to determine the pattern of a given ANA IIF HEp-2
image, the approach used by most prior works, is insufficient
to achieve satisfactory performance. To prove this argument,
we proposed a simple-yet-effective CAD system, namely Cell
Bank, which was inspired from the object bank approach.
When compared to the baseline as well as a recent CAD system
on the proposed benchmarking platform, the proposed Cell
Bank significantly outperformed the other methods.

We note that although the proposed mean class accuracy
(MCA) metric gives us good performance measurement, there
are other approaches that we would like to explore in the future
such as Average Precision (AP) and Precision-Recall curve
used in the PASCAL object categorisation challenges [7].
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