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Abstract—A new kernel-based image representation is pro-
posed on this paper aiming to support clustering tasks on 3D
magnetic resonances images. The approach establishes an effec-
tive way to encode inter-slice similarities, so that the main shape
information is kept on a lower dimensional space. Additionally, a
spectral clustering technique is employed to estimate a compact
embedding space where natural groups are easily detectable.
Proposed approach outperforms the conventional voxel-wise sum
of squared differences on clustering the gender category. Addi-
tionally, a pair of eigenvectors describing accurately the subject
age is found.

I. INTRODUCTION

Brain Magnetic Resonance (MR) imaging plays an im-
portant role on many medical applications. For instance,
the identification of changes and functions of a given brain
structure along development, aging can help to model the
evolution of pathologies such as dementia, Alzheimer and
schizophrenia [1]. In electromagnetic source imaging, MR
images are employed to build an electric conductivity model
of the head, since it is known that a more realistic conductivity
modelling enhances the accuracy of the activity reconstruction
algorithms [2], [3]. The processing of such medical images
for finding spatial characteristics as size, shape and location
allows to construct representative anatomical models of a given
population [4].

For such applications a segmentation of brain regions and
structures is required. Nevertheless, such a task is not easy to
perform, mainly due to image artifacts and low inter-structure
contrast [5], [6]. Aiming to improve the segmentation accuracy,
template-based techniques have rised, which take into account
prior spatial distributions of brain structure shapes. To this
end, such priors have to be provided as an atlas, which
corresponds to a set of shape, intensity and/or functional
models of structures [7].

However, such approaches suffer of three main draw-
backs. Firstly, segmentation quality is highly dependant on
the template-to-image registration algorithm performance. Sec-
ondly, given that a ground-truth segmented template is usually
drawn by expert clinicians, provided template can produce
errors on final segmentation results [8]. Finally, a unimodal
distribution of the brain structure shape is imposed, which is
not proved [7]. Therefore, multi-atlas segmentation schemes
have been proposed recently to overcome such issues.

On such scheme, instead of one template, a set of atlases
are registered to a query image. In this sense, the label

for each voxel is estimated from the main trend over all
atlases, so the influence of misregistered or mislabeled outlier
templates is reduced. Nevertheless, for large atlas datasets, the
computational burden of registering all templates to a query
is highly increased. Moreover, anatomically unrepresentative
atlases can bias the solution [2], [7], [8]. Therefore, there is
a need for selecting a smaller, more representative subset of
atlases from a large set.

In this regard, [2] computed specialized head models for
a given subject based on demographic categories such as age,
ethnicity, gender and head size. Results on electromagnetic
source imaging showed an reduction on localization error
against using synthetic and whole-dataset-computed atlases.
On [7], an atlas stratification process is performed, which
corresponds to find modes on the whole image set, specifically
the mean shift algorithm is employed. Although clustering
results are provided by means of multidimensional scaling,
the original image space is not showed to be compact enough
to guarantee the mean estimator to converge. Moreover, there
is not an interpretation on the resulting modes. As another
approach, [8] performed atlas selection based on a ranking
computed from the similarity of the query image and all
subjects on the dataset. Measures such as sums of squared
differences (SSD), cross-correlation (CC) and mutual informa-
tion (MI) are employed as similarity measures. Nevertheless,
as [7], estimator convergence can not be guaranteed on such
super-high-dimensional spaces.

For overcoming such a drawback, some approaches include
a dimensionality reduction stage allowing algorithms to work
on more compact spaces. For instance, authors in [1], [9],
[10] reduce the number of features by grouping voxels into
anatomical regions through the alignment of labeled atlases.
Then a morphological pathology classification is performed
using classical machine learning techniques. On the other hand,
proposals as [11], [12] use high level features, such as vol-
ume/shape measurements of pre-labeled structures. Neverthe-
less, all those approaches require a previous alignment stage,
so being constrained to the both aforementioned registration
issues of computational burden and mis-registration.

In this paper, we proposed a new kernel-based repre-
sentation for 3D MR images, which reduces the original
feature space dimension while encoding the relationships be-
tween slices. Additionally, a spectral clustering technique is
employed to build a low-dimensional, compact space where
the natural groups become evident. Proposed approach is
compared against the conventional MR image similarity voxel-
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wise sum of squared differences on the task of clustering
the demographic categories age and gender. Obtained results,
shown in terms of cluster distributions and centroid distances,
proved that our approach is able to unfold the subject age
category and separate the gender category more accurately
than baseline approach. Moreover, provided scatter matrices
show that the use of spectral clustering allows to discover the
inherent distribution of the data.

This paper is organized as follows: Section II contains
the mathematical background of employed techniques and a
description of the proposed image representation approach.
Then, the experimental setup for testing the methodology and
the analysis of resulting clusters is described on Section III.
Finally, a discussion of obtained results and some concluding
remarks can be found on Section IV.

II. BACKGROUND

Provided a set of N MR images, X = {Ψn ∈ Ω :
n = 1, . . . , N}, to encode the affinity of a pair of images
{Ψn,Ψm}, we employ the following kernel function

ζ (Ψn,Ψm) = f (Ψn,Ψm)

= 〈ϕ (Ψn) , ϕ (Ψm)〉 ;m,n = 1, . . . , N.

where ϕ(·) is a function mapping from the original feature
space (Ω) to a Reproduced Kernel Hilbert Space (Kq). In
general, |Ω| � q and q → ∞ are assumed. Nevertheless,
through the so called “kernel trick”, there is no need for
computing ϕ(·) directly [13]. Therefore, a matrix Z ∈ R

N×N ,
with elements znm = ζ(Ψn,Ψm) ∈ R

+, encoding pair-wise
image similarity is estimated from the image set X.

A. Kernel-based Image Representation

Specifically on this work, the original feature space cor-
responds to Ω = R

W×H×L. Therefore, each MR image can
be read as an ordered set Ψ = {Xi : i = 1, . . . , L}, with
Xi ∈ R

W×H holding (W ×H)-sized MR slices. By assuming
smooth variations between adjacent slices on Ψ, the inter-
slice relationship is encoded by means of the following kernel
function:

κ (Xi,Xj) = 〈ϕ (Xi) , ϕ (Xj)〉 , i, j = 1, . . . , L (1)

From Eq. (1), a symmetric matrix K ∈ RL×L holds
elements kij = κ (Xi,Xj) with kij ∈ R

+. Therefore, each Ψn

can be represented by its pair-wise slice similarity matrix Kn,
yielding the computation of such matrix to a feature extraction
stage.

B. Spectral Clustering

Given a graph G = {V,E} composed of a set of N
vertices V = {vn ∈ N : n = 1, . . . , N} and a set of
edges E = {enm ∈ R

+ : n,m = 1, . . . , N} linking them,
the goal of spectral clustering is to find K disjoint subsets
from V. In this regard, Z can be seen as the weighting
edge matrix of the undirected, fully connected graph G, where

each entry represents the similarity between each image pair,
enm = znm = ζ(Ψn,Ψm).

Since the number of connected vertices in the graph G
corresponds to the eigenvalue multiplicity of the normalized
Laplacian matrix of Z, such a matrix is defined as [14]:

L = D−1/2ZD−1/2

where D ∈ R
N×N is a diagonal matrix, known as the

degree matrix with elements dmm =
∑N

n=1 zmn. Hence, a
spectral decomposition of L is required. Specifically, if the K
largest eigenvectors of L are stacked as columns on a matrix
Y ∈ R

N×k and each row is scaled to have unit length, thus
mapping the original data points into a unit hypersphere [15],
data modes can be inferred by simple clustering techniques
while enhancing latent distributions [16].

III. EXPERIMENTAL SETUP

The proposed MRI similarity measure approach is tested on
a well known image dataset and compared against the baseline
mean squared error (MSE) similarity measure. The proposal
is outlined on three main stages: i) the image preprocessing
stage is aimed to reference all images in the dataset to the
same intensity space and spatial framework, ii) the image
representation stage is performed to code the high-dimensional
information of each image on a lower feature space, and iii)
the image embedding stage is employed to build up a new low
dimensional space provided with a better interpretability and
where inferences can be carried out easily.

A. Database

The IXI dataset is a brain imaging study, holding MR
images from 575 normal subjects which age between 20 and
80 years. Subjects are provided with T1, T2, PD, DTI and
angiogram volumes. The image sequences were acquired with
three different scanners (Philips 1.5T, Philips 3T and a GE
3T), anonymised and converted to NIFTI format. Additionally,
basic demographic information for each subject is included
(age, gender, ethnicity, among others). The whole dataset is
freely available online 1.

Since the target of the current paper is related to atlas
construction, only the T1 sequences of N = 322 subjects
(acquired with the GE 3T scanner) were taken into account. T1
sequences are composed of 256×256×150-sized volumes with
a voxel size of 0.9375×0.9375×1.2mm. Thus, the considered
subset is composed of 141 male, 175 female and 6 unknown
subjects. Figure 1 shows an example of the MR image for a
given subject along three different views.

B. Preprocessing

Two preprocessing steps are performed over all images of
the considered dataset. Firstly, each image is registered to the
MNI305 template by an affine transform so that the whole
dataset is referenced to the Talairach space [17]. Due to the
registering, each volume is resampled to 197 × 233 × 189
size. Lastly, an intensity normalization procedure is performed
by scaling each voxel intensity, so that the mean intensity

1http://www.brain-development.org/
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(a) Axial (b) Sagittal (c) Coronal

Fig. 1. Volume sample from the IXI database. Subject 002

of the white matter is fixed to be 110. Both preprocessing
steps, normalization and registrering, are performed with the
Freesurfer image analysis suite, which is documented and
freely available for download online 2.

C. Image Feature Extraction

For the sake of comparison, two image representation
techniques are employed in the current work. The first one
is a baseline where each voxel on the image is used as a
feature. While the second one corresponds to the proposed
approach where each image is represented by an Inter Slice
Kernel (ISK), noted as Ki ∈ R

L×L. Therefore, feature space
dimensions of order 106 and 104 are achieved for the former
and latter approaches, respectively.

Regarding the ISK-based feature extraction, the Gaussian
kernel is employed to compute Kij for each image:

κ (Xi,Xj) = exp

(−||Xi −Xj ||2F
2σ2

κ

)

where σκ ∈ R
+ is a scale parameter and notation ‖ · ‖F stand

for the Frobenious norm.

Hence, two important issues have to be highlighted. Firstly,
ISK can be computed along three different axes (namely:
Axial, Sagittal and Coronal). Therefore, all axes are considered
for subsequent analyses. Secondly, σκ parameter has to be
tuned for every axis. In the concrete case, taking into account
that lim

σk→0
Var(K(σk)) = 0, lim

σk→∞
Var(K(σk)) = 0 and an

appropriate σκ value spans widely the values of K, then,
the following criterion finds the parameter maximizing the
element-wise matrix variance:

σ∗κ = argmin
σ

Var(K(σ)). (2)

Obtained tuning curves are shown in Figure 2 for the three
considered axes. Mean and standard deviation are computed
for a randomly selected subset of 30 MR images. Figure 3
shows an example of the proposed image representation for a
given MR image along the axial, sagittal and coronal axes.

D. Unsupervised Learning

Starting from both aforementioned representation ap-
proaches, an embedding low dimensional space is built by
using the aforementioned explained spectral decomposition.

2http://surfer.nmr.mgh.harvard.edu/
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Fig. 2. Sigma tunning for Inter Slice Kernels along the three possible axes.
Mean and standard deviation are plotted.
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Fig. 3. Inter Slice Kernel similarity for a given image. All axes are measured
in mm.

Visualization, clustering, and regression are performed over a
new more compact space. For this specific task, the common
Gaussian kernel is employed:

ζ(Ψn,Ψm) = exp

(
−d(Ψn,Ψm)2

2σ2
ζ

)

where σζ ∈ R
+ is the scale parameter and d(Ψn,Ψm) ∈ R

+

is the distance function between the n-th and m-th images.
For the baseline image representation approach, that distance
corresponds to the voxel-wise image euclidean norm, defined
as:

dVW (Ψn,Ψm) = ||vec(Ψn)− vec(Ψm)||2
while for the proposed representation, the distance is computed
as the ISK matrix Frobenius norm as follows:

dISK(Ψn,Ψm) = ||Kn −Km||F

As said before in Section III-C, the Gaussian kernel param-
eter has to be appropriately tuned. To this end, the criterion
proposed on Equation (2) is used to tune σζ for all considered
image representations.

Resulting kernels for considered representations are shown
in Figure 5, where subjects are sorted by gender and age
values. Although all dataset information is encoded on matrices
and some small subsets can be identified, it is still hard to
group subjects on categories as gender and age. Therefore, a
PCA-based projection space is computed from the laplacian of
above matrices. The four largest decomposition eigenvectors
are shown in Figures 6 and 7. Obtained projection allows to
come up the following statements: i) The first and second
decomposition eigenvectors build a space able where the
age is “unfolded/unwraped”. ii) The fourth decomposition
eigenvector decodes the gender category more accurately than
remaining components.
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Fig. 4. σζ tuning curve for considered image representations: (a) Voxel-Wise
approach and (b) Proposed ISK along the three possible axes.
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Fig. 5. IXI dataset kernel matrices for both considered image representations.
Each row and column on the matrices corresponds to a given image. Images are
ordered by gender (firstly) and age (secondly). The color range is normalized
between the interval [0, 1]

Aiming to prove the first of above statement, two subse-
quent analyses are performed on the obtained representation
space. Firstly, a quadratic regression is computed, so that the
trend along the second component is emphasized. Secondly,
since the new representation enhances each cluster properties,
making the natural groups easily detectable, a simple k-means
clustering algorithm is used to find, with less difficulties,
the natural groups on the new space. As expected, resulting
regression (colored in red line) and clustering results (Fig-
ure 8(a)) show a trend along the second axis. Besides, the
cluster age distribution is provided in Figure 8(b) showing age
clustering, proving that the subject age tends to increase along
the computed trend curve.

Lastly, for proving the second statement, a cluster measure
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Fig. 6. Scatter matrix for the four largest decomposition eigenvectors using
the voxel-wise approach. Upper scatters are grouped by age. Lower scatters
are grouped by gender.
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Fig. 7. Scatter matrix for the four largest decomposition eigenvectors using
the ISK along the axial axis. Upper scatters are grouped by age. Lower scatters
are grouped by gender.

is employed to quantify the separability of male and female
clusters. The measure is computed from the inter-cluster over
the intra-cluster variance, so that the larger the value, the
farther the cluster distributions. The test is carried out along
each considered decomposition eigenvectors and over the
four dimensional representation space. Obtained separability
measures (see Table I) show a larger separation through the
fourth component for most of the ISK representations.

Approach 1st 2nd 3rd 4th All
Baseline 2.33 5.23 8.33 2.62 12.22

ISK Axial 2.74 2.25 2.06 14.66 15.98

ISK Sagittal 3.03 4.61 8.48 11.20 18.74

ISK Coronal 2.57 3.05 12.79 2.72 14.50
TABLE I. CLUSTER SEPARABILITY MEASURE FOR THE FIRST FOUR

COMPONENTS OF CONSIDERED REPRESENTATION APPROACHES.
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Fig. 8. Trend estimation along the second decomposition axis results using
the ISK axial image representation.

IV. DISCUSSION AND CONCLUDING REMARKS

In the current work, a kernel-based image representation
is introduced that is specifically devoted to 3D MR image
unsupervised clustering. Besides, a low-dimensional, compact
space is build by means of spectral clustering, so that the
demographic categories are easier distinguished. From the
obtained results, the following comments arise:

As seen in Figure 2, the estimated parameters for the
Gaussian kernel are close to each other. Therefore, since
the inter slice difference is taken from an image for the
three axes, the difference dynamic range and the parameter
search space are the same for all axes. Moreover, given that
the confidence interval, produced by the 30-trials-computed
standard deviation, is narrow, the proposed parameter tuning
proved to be a stable criterion. In this sense, obtained ISK
using estimated parameters maximally enhances the inter-slice
relationship, as can be seen in Figure 3.

In Figure 4, obtained parameters for ISK tuning (see Figure
4(b)) lie around the same value. Such a fact may be explained
by a couple reasons: i) the feature values range from 0 to
1 for all axes, so the search space is the same. ii) Although

the kernel shape is different for the three axes (Figure 3), the
latent phenomenon is the same for all axes. Therefore, if above
considerations are meet, tuned parameters for different views
tend to converge to the same value.

Regarding the age as a demographic category, by visual
inspection of the first and second components depicted in
Figure 7, it can be seen that the proposed methodology is able
to unfold the age better than any other component pair, even on
the baseline decomposition results (see Figure 6). Moreover,
a quadratic dependance between second and first eigenvectors
can be inferred. Additionally, a larger dispersion is shown on
older subjects than on younger ones. This finding can be due
to a larger head shape dispersion on older humans, which is
according to anatomical head knowledge. It is known that brain
anatomy is steady on middle age humans, while change (gray
matter volume diminish) faster on older humans.

Aiming to prove above statements, a quadratic regression
is performed (see Figure 8), which proves to fit adequately
the relation between the first two ISK-Axial eigenvectors.
Moreover, since the average age on each cluster tends to
increase as the centroid position increases, it can be said that
subject age is directly described by the relationship between
the first two eigenvectors.

Regarding the gender, on a component-wise analysis, the
fourth ISK-Axial and third voxel-wise eigenvectors seem more
suitable to distinguish gender than remaining components in
Figures 6 and 7. Therefore, a two-sample hypothesis test is
employed to quantify the separability between gender clusters
for the first four eigenvectors of all considered representations.
A component-wise and a multivariate test are performed.
Results on Table I show that the largest separability is found
when using the first four eigenvectors and proved that our
proposal is more suitable to distinguish gender than the voxel-
wise baseline.

Taking into account the aforementioned results, the pro-
posed kernel-based representation methodology is proved to
find the natural inherent distributions of MR images, namely,
age and gender categories. In this sense, our proposal is suit-
able to support MR image clustering and similarity measure-
ment tasks required on template-based image segmentation.

As future work, three main research lines are proposed.
i) Given that obtained decomposition vectors do not follow
Gaussian distributions, other relaxed embedding techniques,
such as local linear embedding and laplacian eigenmaps, will
be tested aiming to improve the representation quality. ii)
Supervised decomposition techniques will be proved to find
representations suitable to distinguish other categories such as
ethnicity or pathology subclasses. iii) The most straightforward
research direction is to test methodology as a template subset
selector on MR image segmentation tasks, so that the structure
classification results are improved.
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