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Abstract—High incidence cases associated with back pain
include intervertebral disc degeneration (IDD), or disc herniation,
in the spinal lumbar region, as well as sciatica, pain in the legs due
to IDD. This research aims to provide a more accurate and robust
segmentation scheme for identification of spine pathologies, to
assist with spine surgery planning and simulation. We are
developing a minimally supervised 3D segmentation approach of
lumbar spine herniated discs for MRI scans that exploits weak
shape priors encoded in simplex mesh active surface models.
In the event that the internal simplex shape memory influence
hinders detection of pathology, user-assistance is allowed to
turn off the shape feature and guide model deformation. We
propose use of weak shape priors as a precursor to, and
incorporation of, a shape-statistics feature for landmark-based
semi-automatic segmentation of healthy intervertebral discs, and
ultimately, for segmentation of vertebrae. Our framework enables
the application of shape priors in the healthy part of the anatomy,
and the disabling of these priors where inapplicable. Results were
validated against expert-guided segmentation and demonstrate
promising results with absolute mean segmentation error of less
than 1 mm.

I. INTRODUCTION

High incidence cases associated with back pain include
inter-vertebral disc degeneration (IDD), or disc herniation,
in the spinal lumbar region, as well as sciatica, pain in the
legs due to IDD [1]. Imaging studies indicate that 40% of
patients suffering from chronic back pain showed symptoms
of IDD [2]. Primary treatment for lower back pain consists
of non-surgical treatment methods. If non-surgical treatments
are ineffective, a surgical procedure may be required to treat
IDD, a procedure known as spinal discectomy. Approximately
300,000 discectomy procedures, over 90% of all spinal surgical
procedures [3], are performed each year, totaling up to $11.25
billion in cost per year. Other spinal surgeries include treatment
for metastatic spinal tumors and spinal cord injury.

A patient-specific, high-fidelity spine anatomical model
that faithfully represents any existing spine pathology can be
utilized as follows

• in surgery planning and navigation, for use by expert
surgeons, and

• as an anatomical model for surgery simulation for
training residents.

• To facilitate the fusion of several spine medical images
into a probabilistic intensity atlas of the spine that

mirrors a brain atlas [4] and that in turn could provide
priors for identifying pathologies [5].

In this paper we propose a minimally supervised method
for segmentation of herniated discs from high-resolution T2-
weighted Magnetic Resonance Imaging (MRI). A simplex
active surface mesh is initialized in the sagittal plane of a
patient MRI volume, and allowed to deform using weak shape
priors to capture the disc boundary. In the event that the
simplex model is unable to automatically capture the boundary
accurately, the user can manually guide the model deformation
through constraint points placed on the image volume. We
successfully demonstrate the use of weak shape priors through
automatic segmentation of healthy intervertebral discs, on the
basis of landmark-based registration. Our results are validated
on a clinical dataset of 8 healthy disc cases and 5 herniated
disc cases, and achieve mean segmentation error of less than
1 mm.

Section II introduces relevant anatomy and discusses the
clinical background, section III surveys research related to in-
tervertebral disc segmentation, section IV explains the frame-
work of our segmentation method and section V provides
research results. We discuss future work and conclusions in
section VI.

II. INTERVERTEBRAL DISC ANATOMY

The initial step towards determining the cause of lower
back pain is acquiring and analyzing medical image scans of
the patient. The standard procedure for detecting abnormalities
in the spinal structures is through visual inspection of the
medical images, typically T2 weighted MRI scans, subject
to the expertise of the physician. Spine treatment planning
requires a patient-specific 3D anatomical model of the spine
capable of correctly representing the salient anatomical fea-
tures, such as the vertebrae, the inter-vertebral discs, the spinal
cord and surrounding nerves. This requires identification of
non-overlapping anatomical structures in medical images, a
process otherwise known as image segmentation. Low image
resolution or image noise hinder the detection of these complex
structural boundaries, affecting the accuracy of the constructed
model.

The intervertebral disc is a soft tissue structure between
two adjacent vertebral bodies. It consists of a stronger outer
layer of fibrous cartilage known as annulus fibrosus that
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Fig. 1. Comparison of a normal and herniated lumbar disc anatomy in a
T-2 weighted MRI scan. The herniated disc, located between the L4 and L5
verterae, is pinching the spinal nerve extending from the spinal cord, resulting
in localized or radiating pressure and pain.

surrounds the softer, jelly-like nucleus pulposus and evenly
distributes the pressure across the disc. It is the nucleus
pulposus that acts as a shock-absorber between the vertebrae
and ensures spinal flexibility. In this research, we consider
disc herniation as a medical condition caused when the central
portion of the inter-vertebral disc, nucleus pulposus, is forced
out of the stronger outer fibrous ring due to pressure or a
tear in the annulus fibrosus, causing the localized displace-
ment of the disc material beyond the normal margins of the
intervertebral disc space [6]. This tear in the outer ring may
cause considerable pain and possible nerve root compression,
resulting in localized or radiating pain in the lower back and
legs. This condition usually occurs in adults as a result of
a trauma or injury to the spinal column or due to wear and
tear. It most often occurs in the lumbar spine as that region
supports most of the weight of the spine and back, with 95%
cases located at the L4-L5 disc, or the L5-S1 disc [7]. Disc
herniation is commonly detected through a sagittal view of an
MRI image [8]. Figure 1 depicts a sagittal T2-weighted MRI
scan featuring both normal and herniated discs.

III. RELATED RESEARCH

3D segmentation of intervertebral discs is a prerequisite for
the development of a computer-based surgery planning tool.
Various inter-vertebral disc segmentation methods have been
introduced, but are either limited to 2D segmentation of disc
pathology, or 3D segmentation of healthy inter-vertebral discs.

Michopoulou et al. [9] proposed an atlas-based method
for segmentation of degenerated lumbar intervertebral discs
limited to 2D MRI scans coupled with intensity-based classi-
fiers, with classification accuracy of 91.6% for normal and
87.2% of degenerated discs. Alomari et al. [10] proposed
a herniated disc diagnostic method that classifies pathology
limited to 2D MRI scans using a Bayesian classifier with a
coupled active shape model and a gradient vector flow snake
for segmentation.

Klinder et al. [11] and Kelm et al. [12] proposed automatic,
learning-based 3D detection and segmentation frameworks of
the spine, and suggested that existing disc pathologies can be
reliably segmented without specifying segmentation accuracy
of the pathological structure. Lalonde et al. [13] proposed
kriging-based deformation of a tetrahedral template mesh of
the spine, but have not demonstrated the ability to deal with
pathologies such as herniated discs. Moreover, this work is
based on high-resolution meshes that are essentially inappli-
cable to interactive surgery simulation as a result of a high
element count. Neubert et al. [14] proposed a 3D automated,
shape-based segmentation method for intervertebral discs and
classified 7 discs as degenerated. They stated that their results
indicate potential of using statistical shape-aware models for
segmentation of disc pathology without explicitly addressing
herniated disc segmentation accuracy. Disc pathology gener-
ally cannot be accurately represented using strong shape priors,
given that there is no average disc pathology shape.

Our method demonstrates the ability to successfully seg-
ment disc pathology, based on minimally supervised, spatially
variable weighting of weak prior shape information. We also
exploit controlled-resolution meshing conducive to a multi-
resolution approach to segmentation as well as producing
anatomical models with low element count for interactive
simulation.

IV. METHOD

Our segmentation approach is based on the discrete Sim-
plex surface model. A Simplex deformable model can be ex-
pressed as a physically-based system, where point vertices are
treated as point masses and edges model physical properties,
such as a spring-like behavior, or object boundary smoothness,
and is further discussed in section IV-D.

Weak shape priors in Simplex mesh deformable models
are being exploited to deform an ellipsoid template mesh
for segmentation of an intervertebral disc. An outline of our
segmentation and validation approach is illustrated in figure
2. In the event that the simplex fails to accurately capture
a herniated disc boundary, the user is allowed to manually
guide the segmentation process by placing constraint points
in the image volume. Similarly, ground truth for healthy
intervertebral discs has also been generated by implementing
this minimally-supervised technique, where the user is allowed
to manually guide deformation to correct existing segmentation
errors.

The remainder of this section discusses the image dataset
and image preprocessing steps, followed by the automatic
Simplex mesh deformation and optional user-guidance through
constraint points. The data validation technique is presented to
quantify the proposed framework’s performance.

A. Image dataset

Our test and validation dataset consists of MR images
of the lumbar spine pertaining to 5 patients with various
pathologies, such as herniated discs. Herniated discs are mostly
located in the L4-L5 and L5-S1 lumbar region and have been
identified in the dataset under expert supervision. T2-weighted
MRI scans, acquired on a 1.5T device using spin-echo scan-
ning sequence, having a resolution of 0.5 × 0.5 × 0.9mm3
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Fig. 2. Outline of our segmentation and validation approach.

have been utilized for testing and validating the segmentation
approach.

A subset of 5 herniated discs and 8 healthy discs have
been segmented under expert guidance [6] and supervision to
be used for quantitative evaluation of the proposed minimally-
supervised automatic segmentation framework, with results
discussed in the section V.

B. Image preprocessing

An anisotropic diffusion [15] filter has been applied to the
volumetric images to reduce image noise within the structures
while preserving image boundaries. The filter mitigates image
noise located around the disc by reducing the overlapping
image intensities of the herniated disc boundary and the
surrounding posterior ligament [8]. The Insight Segmentation
and Registration Toolkit (ITK) [18] has been utilized for
applying image preprocessing filters.

C. Mesh initialization through landmark-based affine registra-
tion

An ellipsoid template mesh is initialized within the her-
niated disc image volume for simplex mesh deformation.
Arbitrary translation, rotation and scaling effects need to be
captured between the template mesh and the MRI image. 6
landmarks are manually placed on the ellipsoid template mesh
corresponding to 6 landmarks within the disc image boundary
to initialize the template within the disc image through affine
registration. These landmarks are placed at the center, superior,
inferior, anterior and posterior points on the disc surface,
as well as at the mostly superior disc surface to capture
arbitrary rotational effects. The initialized template mesh is

then allowed to automatically deform using a multi-resolution
surface model, as described in section IV-D.

D. Automatic multi-resolution simplex deformation

This research exploits simplex mesh discrete deformable
models for segmentation of intervertebral discs. Introduced by
Delingette [16] for 3D shape reconstruction and segmentation,
a k-simplex mesh is a k-manifold discrete mesh with exactly
k+1 distinct neighbors. A simplex mesh has the property of
constant vertex connectivity. Simplex meshes can represent
various objects depending on the connectivity k, where 1-
simplex represents a curve, a 2-simplex represents a surface,
and a 3-simplex represents a volume. Our research is focused
on surface representation for image segmentation using 2-
simplex meshes with 3 constant vertex connectivity.

The constant connectivity of the 2-simplex mesh leads to
three simplex parameters corresponding to a vertex with a
mass and its three neighboring vertices that are invariant under
similarity transformations [16]. These independent simplex pa-
rameters can be utilized to represent the geometric constraints
enforced upon a vertex with respect to its three neighbor
vertices. Therefore, a vertex P can be defined with respect
to its neighbors Pi with its simplex parameters ε1, ε2 and φ.
εi are the barycentric coordinates of the projection of vertex
P⊥ on the triangle (P1P2P3) such that ε1 + ε2 + ε3 = 1. φ is
the simplex angle linked to the mean curvature at vertex P and
h = ||P⊥ −P || is the elevation of P and the projected vertex
P⊥ along the normal direction n. The shape-based constraints
of P , updated by Gilles [17], are thus uniquely governed by
the equation

P (ε1, ε2, φ) = ε1P1 + ε2P2 + (1− ε1 − ε2)P3 + h(φ)n (1)
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(a) (b) (c)

Fig. 3. Use of multi-resolution simplex meshes for segmentation refinement
during model deformation.

The dynamics of each vertex P is governed by a Newtonian
law of motion represented by the equation

m
d2Pi

dt2
= −γ dPi

dt
+ α

−→
F int + β

−→
F ext (2)

where m is the vertex mass, γ is the damping force and α and
β are the weight factors of the internal and external forces

respectively.
−→
F ext is the sum of external forces governed

by image edge information and gradient intensity values that
minimize the distance between a vertex P and maximum
gradient intensity in the neighborhood of P along the normal

direction.
−→
F int is the sum of internal forces represented by

an elastic force that enforces smoothness and weak shape-
based constraints. This physically-based deformable model is
governed by forces to maintain internal stabilization through−→
F int. Weak shape memory is enforced by constraining the
internal forces along the normal direction of vertex P . This is
implemented by constraining the mean curvature at vertex P
governed by the simplex angle φ by setting φ = φc, where φc

is a constant [16].

Template mesh deformation is guided by the presence of
MR image gradient forces estimated at each vertex in a direc-
tion along the surface normal. The global mesh resolution is
adapted to the complexity of the disc shape being segmented in
a coarse-to-fine segmentation approach. Thus, various simplex
mesh resolutions of a disc shape have been generated through
a multi-resolution scheme without loss of vertex connectivity
for segmentation refinement, as demonstrated in figure 3(a),
(b) and (c).

E. User-guided pathology segmentation

In the event that the internal simplex shape memory
influence hinders the detection of pathology, user-assistance is
allowed to turn off the shape feature and guide model defor-
mation. Deformation is manually guided by placing internal
and external constraint points on the volumetric image that
gracefully constrain the deformation to correct under and
over segmentation. Constraint point forces are enforced as an
addition to the external force. In the current implementation,
the number of constraint points applied to the images ranged
between 37-60, depending on the extremity of the disc pathol-
ogy that the automatic Simplex model deformation may fail
to capture. While a point set of that size is still compatible
with an objective of minimal supervision, we are also currently
pursuing a study to establish the sensitivity to the number
of constrain points, and whether a suitable choice of image
force enables a reduction of this overhead. Constraint points

Validation Metric Healthy disc
Absolute Mean error (mm) 0.275

Absolute Std. dev. (mm) 0.418
Average Hausdorff distance (mm) 3.237

TABLE I. AVERAGE VALIDATION METRICS COMPARING

SEMI-AUTOMATIC SEGMENTATION RESULTS WITH CORRESPONDING

EXPERTLY-CORRECTED SEGMENTATION OF 8 HEALTHY LUMBAR

INTERVERTEBRAL DISCS.

Fig. 4. Comparison of a semi-automatic L5-S1 disc segmentation result
against its corresponding expertly-corrected segmentation (ground truth), with
-2.452mm max. in, 2.081mm max. out error.

are applied to the herniated disc image boundary to correctly
guide the simplex mesh deformation, resulting in minimally-
supervised segmentation of herniated discs using the proposed
method.

This minimally-supervised segmentation method has also
been utilized for expert correction of healthy intervertebral
disc segmentation, which serves as ground truth for validation
of our healthy disc segmentation results, labeled as expertly-
corrected segmentation. This manual correction is mostly
observed at the lateral margins of the intervertebral discs as
discussed in Section V.

V. RESULTS

MeshValmet [19] has been utilized for calculation of quan-
titative validation metrics. The absolute mean surface error (in
mm) and absolute standard deviation of all errors (in mm)
and the Hausdorff distance (in mm) comparison metrics have
been calculated to compare the quality of our segmentation
approach with ground truth. The Hausdorff distance is the
maximum surface distance between two surface meshes and
quantitatively represents a measure of the worst segmentation
error.

Statistical comparison of 8 semi-automatic, landmark and
weak shape-prior based segmentations of healthy lumbar in-
tervertebral discs with expertly-corrected segmentation results,
considered ground truth, is represented in table I. The average
absolute mean error of healthy disc segmentation approach is
0.275 mm±0.418mm, with an average Hausdorff distance of
3.24 mm. The average maximum surface error was located
at the lateral margins of the intervertebral disc, where the
semi-automatic, unsupervised segmentation approach failed to
faithfully capture the image boundary due to image intensity
ambiguity caused by surrounding spine tissues and ligaments.
Figure 4 compares automatic segmentation of a healthy L5-
S1 disc with the expertly-corrected segmented result, con-
sidered ground truth. Our semi-automatic segmentation ap-
proach under-segmented the lateral margins with a maximum
In error of -2.45 mm, and a mean segmentation error of
0.19mm±0.29mm.
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Validation Metric Herniated disc
Absolute Mean error (mm) 0.608

Absolute Std. dev. (mm) 0.518
Average Hausdorff distance (mm) 3.485

TABLE II. AVERAGE VALIDATION METRICS COMPARING

MINIMALLY-SUPERVISED SEGMENTATION RESULTS WITH

CORRESPONDING MANUAL SEGMENTATION OF 5 HERNIATED LUMBAR

INTERVERTEBRAL DISCS.

Average results of 5 herniated discs comparing minimally-
supervised segmentation results against manual segmentation
have been calculated. Evaluation results have been obtained
by calculating surface to mesh difference between the manual
segmentation, considered ground truth, and simplex model
from our approach of the corresponding intervertebral disc.
Our approach demonstrates absolute mean surface error of 0.61
mm±0.52 mm of segmentation of 5 herniated intervertebral
discs (Table II). Our results are favorable in comparison with
competing 2D segmentation methods of herniated discs, and
3D segmentation methods of healthy discs. Michopoulou et al.
[9] reported a 2D mean absolute distance of 0.61mm, whereas
Neubert et al. [14] achieved a 3D segmented Hausdorff dis-
tance of 3.55mm for herniated disc segmentation.

Figure 5 demonstrates the spatial distribution of error
between initial automatic segmentation using weak shape
priors, minimally-supervised segmentation result after con-
straining model deformation, and the corresponding manual
segmentation, considered ground truth, of the herniated disc
results. Weak shape priors are successfully able to segment
the disc with a maximum in error of -5.022mm near the
disc pathology. This error is reduced to -3.369mm through
minimally-supervised segmentation of pathology. It can be
observed that maximum error in our minimally-supervised
segmentation result is located at the lateral portion of the
intervertebral disc. This is likely due to ambiguity in deter-
mining the intervertebral disc boundary at the lateral margins
of the anatomy during manual segmentation. Our method also
tends to overestimate the degradation of the posterior herniated
disc due to internal smoothness properties, where constraint
points have been introduced to correct this overestimation of
the degradation of segmentation of pathology.

Robustness to variability in user supervision is demon-
strated in a series of experiments where the same anatomist’s
results are compared over several template initializations, and
where two anatomist results are also compared. Table III
shows an absolute mean error of 0.265 mm between two
sets of expertly-corrected segmentations performed by the
same human rater. The absolute mean error between two
segmentations performed by different human raters is 0.285
mm, demonstrating no significant difference between raters. As
depicted in Figure 6, most intra-rater and inter-rater variability
was observed at the lateral margins of the disc as well,
where the user guided simplex mesh deformation in presence
of ambiguous image boundary. This is consistent with the
segmentation error observed in Figure 5, motivating the use
of statistical shape knowledge to automatically and faithfully
capture object boundary in presence of image artifacts, planned
in future work.

(a) Semi-automatic vs. manual segmenation

(b) Minimally-supervised vs. manual segmentation

Fig. 5. Spatial maximum out (red) and maximum in (blue) segmentation error
of an L5-S1 herniated disc. (a) Comparison of semi-automatic segmentation
using weak shape priors against manual segmentation (-5.022mm max. in,
2.603mm max. out). (b) Comparison of minimally-supervised segmentation
against its corresponding manual segmentation (-3.369mm max. in, 3.487mm
max. out).

Validation Metric Intra-rater variability Inter-rater variability
Absolute Mean error (mm) 0.265 0.285

Absolute Std. dev. (mm) 0.453 0.488
Maximum out error (mm) -3.193 -3.145
Maximum in error (mm) 3.025 2.980
Hausdorff distance (mm) 3.192 3.145

TABLE III. VALIDATION METRICS COMPARING TWO SETS OF

EXPERTLY-CORRECTED SEGMENTATIONS OF A HEALTHY

INTERVERTEBRAL DISC PERFORMED BY THE SAME ANATOMIST AND TWO

DIFFERENT ANATOMISTS, DEMONSTRATING INTER-RATER AND

INTRA-RATER VARIABILITY RESPECTIVELY.

(a) Intra-rater segmentation error

(b) Inter-rater segmentation error

Fig. 6. Maximum out (red) and maximum in (blue) segmentation error
between two sets of segmentations performed by (a) the same rater (-3.192mm
max. in, 3.025mm max. out), and (b) different raters (-3.145mm max. in, 2.980
max out). Over- and under-segmentation is present at the lateral margins of
the healthy disc.

VI. CONCLUSION AND FUTURE WORK

In our approach, weak shape priors in active surface models
are a precursor of application of statistical shape knowledge
for segmentation of healthy as well as herniated discs of the
lumbar spine. We believe that incorporation of statistical shape
knowledge would reduce the lateral disc segmentation error,
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as observed in Figures 5 and 6.

This study demonstrates use of weak shape priors in active
surface models for segmentation of healthy as well as herniated
discs. As herniated disc anatomy cannot be faithfully captured
by prior shape or intensity features, weak shape prior influence
is turned off and graceful degradation from these priors is
allowed in a user-controlled manner, refining the segmentation
result. Our main contribution is a framework for 3D segmen-
tation of herniated discs of the lumbar spine, towards creating
a 3D segmentation framework for development of a patient-
specific surgery simulator that captures spine pathology with
fidelity.
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