
Evaluation of Time Series Distance Functions in the
Task of Detecting Remote Phenology Patterns
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Abstract—Phenology is the study of periodic natural phenom-
ena and their relationship to climate. Usually, phenology studies
consider the identification of patterns on temporal data. In those
studies, several phenological change patterns are often encoded in
time series for analysis and knowledge extraction. In this paper,
we evaluate the effectiveness of several time series similarity
functions in the task of classifying time series related to phenolog-
ical phenomena characterized by near-surface vegetation indices
extracted from images. In addition, we performed a correlation
analysis to identify potential candidates for combination.

I. INTRODUCTION

Plant phenology, the study of recurrent life cycles events
and its relationship to climate, is a key discipline in climate
change research [1]. To increase the range of study sites and
species and the accuracy of phenological observations, digi-
tal cameras have been successfully applied as multi-channel
imaging sensors, providing measures to estimate changes on
phenological events, such as leaf flushing and senescence [2],
[3], [4].

We have monitored leaf changing patterns of a tropical
cerrado-savanna vegetation by taken daily digital images [5].
For that, we extracted leaf color information from the RGB
(red, green, and blue) channels and correlated the changes in
pixel levels over time with leaf phenology patterns [5]. The
image analysis was conducted by defining regions of interest
(ROI) based on the random selection of plant species identified
in the digital image [4], [5].

Time series associated with each ROI have been obtained,
raising the need of using appropriate tools for mining patterns
of interest [6], [7], [8]. In this context, it is necessary to
define a quantitative measure of the dissimilarity between time
series, aiming at approximating the perceptual dissimilarity as
well as possible. This has fundamental implications for the

understanding of texture pattern and color perception of plant
species.

In this paper, we aim to identify a consistent measure of
distance, or dissimilarity, between time series obtained from
phenological observations. Our main goals are: i) to determine
which color channel is better for characterizing plant species;
ii) to analyze the impact of the sunshine on the discriminability
of time series; and iii) to evaluate the individual responsiveness
of plant species with respect to distance functions.

The remainder of this paper is organized as follows.
Section II discusses the methodology adopted for acquiring
time series. Section III presents the evaluated distance func-
tions and shows how to apply them to compare time series.
Section IV reports the results of our experiments and compares
the performance of distance functions for different scenarios.
Finally, we offer our conclusions and directions for future
work in Section V.

II. TIME SERIES ACQUISITION

The near-remote phenological system was set up in a 18m
tower in a Cerrado sensu stricto, a savanna-like vegetation
located at Itirapina, São Paulo State, Brazil. A digital hemi-
spherical lens camera (Mobotix Q24) was setup at the top of
the phenology tower, attached in an iron arm facing northeast.

The first data collection from the digital camera started on
18th August 2011. We set up the camera to automatically take
a daily sequence of five JPEG images (at 1280 × 960 pixels
of resolution) per hour, from 6:00 to 18:00 h (UTC-3). The
present study was based on the analysis of over 2,700 images
(Figure 1), recorded at the end of the dry season, between
August 29th and October 3rd 2011, day of year 241 to 278,
during the main leaf flushing season [5].
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Fig. 1: Sample image of the cerrado savanna recorded by the
digital camera on September 17th, 2011; and the segmentation
results for the selected scales in a subimage sample.

The image analysis was conducted by defining different
regions of interest (ROI), as described by Richardson et al. [2],
Richardson et al. [4], and Ahrends et al. [3]. We defined eleven
ROIs (Figure 2) based on the random selection of six plant
species identified by phenology experts in the hemispheric
image and on the ground: (1) three regions associated with
Aspidosperma tomentosum (blue areas), (2) one region for
Caryocar brasiliensis (green area), (3) one region for Myrcia
guianesis (cyan area), (4) three regions for Miconia rubiginosa
(red areas), (5) two regions for Pouteria ramiflora (yellow
areas), and (6) one region for Pouteria torta (magenta areas).

Fig. 2: Regions of interest (ROIs) defined for the analysis of
cerrado-savanna digital images.

We analyze each region in terms of the contribution of
the primary colors (Red, Green, and Blue), as proposed by
Richardson et al. [2]. Initially, we analyze each color channel
and compute the average value of the pixel intensity. After
that, we compute the relative (or normalized) brightness of
each color channel, as:

Totalavg. = Redavg. +Greenavg. +Blueavg. (1)

Red % =
Redavg.
Totalavg.

Green % =
Greenavg.

Totalavg.

Blue % =
Blueavg.
Totalavg.

where Redavg., Greenavg., and Blueavg. are the average
pixel intensity of the R, G, and B bands, respectively. The
normalization of those values reduces the influence of the
incident light, decreasing the color variability due to changes
on illumination conditions [9].

Figure 3 hows the behavior of those values for each ROI
along the whole period, considering only the digital images
taken at different hours of a day. Each line corresponds to a
time series for the variation of the normalized brightness of
the G channel. Notice the differences between the behavior
of each species, reflecting the leaf color changes over the leaf
life cycle or aging process.

III. DISSIMILARITY MEASURES

Between all categories of dissimilarity measures existing
in the literature, we have used three shape-based distances
(Manhatan [10], Euclidean [11], and Dynamic Time Warp-
ing [12]), three edit-based distances (Edit Distance on Real
Sequence [13], Edit Distance with Real Penalty [14], and
Longest Common Subsequence [15]), and one feature-based
distances (Zero-mean Normalized Cross Correlation [16]). In
the following subsections, each of those distance functions is
explained in more detail.

A. Manhatan Distance (L1)

The Manhattan distance, also known as L1, is one of
the widely used distance function employed to compare time
series [10]. Let Ta and Tb be two time series. The Manhatan
distance between Ta and Tb is defined as follows:

Manhattan(Ta, Tb) =
K∑
i=1

|Ta[i]− Tb[i]| (2)

B. Euclidean Distance (L2)

The Euclidean distance, also known as L2, between Ta and
Tb is defined as follows [11]:

Euclidean(Ta, Tb) = (
K∑
i=1

(Ta[i]− Tb[i])
2)1/2 (3)

C. Dynamic Time Warping (DTW)

The Dynamic Time Warping distance between two series
Ta and Tb with m and n events, respectively, is defined as
follows [12]:

DistDTW (Ta, Tb) = DTW (m,n) (4)

where

DTW (i, j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if i = 0, j = 0
∞, if i = 0
∞, if j = 0

dist(Ta[i], Tb[j]])+
min{DTW (i− 1, j − 1),

DTW (i− 1, j), DTW (i, j − 1)}, otherwise
(5)
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Fig. 3: The variance of the normalized brightness of each color channel from the digital images taken at different hours of a
day, each Julian day (August 28th to October 3rd, 2011), in the cerrado savanna using different regions of interest (ROIs).

D. Edit Distance on Real Sequence (EDR)

EDR(Ta, Tb) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n, if m = 0
m, if n = 0

min{EDR(Rest(Ta), Rest(Tb)) + subcost,
EDR(Rest(Ta), Tb) + 1,

EDR(Ta, Rest(Tb)) + 1}, otherwise
(6)

where subcost = 0, if match(Ta[1], Tb[1]) = true and
subcost = 1, otherwise. Rest(T ) stands for the time series
obtained from T by eliminating the first element [13].

E. Edit Distance with Real Penalty (ERP)

ERP (Ta, Tb) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑n
i=1 dist(Tb[i], g), if m = 0∑m
i=1 dist(Ta[i], g), if n = 0

min{ERP (Rest(Ta), Rest(Tb))+
dist(Ta[1], Tb[1]),

ERP (Rest(Ta), Tb) + dist(Ta[1], g)
ERP (Ta, Rest(Tb)) + dist(Tb[1], g)},

otherwise
(7)

where dist(a, b) is the distance between two elements and
g is a gap of edit distance. ERP also uses the real distance
between elements (dist(Ta[1], Tb[1])) as the penalty to handle
local time shifting [14].

F. Longest Common Subsequence (LCSS)

LCSS(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if i = 0
0, if j = 0

1 + LCSS(i− 1, j − 1),
if |Ta[i]− Tb[i]| < ε

max{LCSS(i− 1, j), LCSS(i, j − 1)}, otherwise

distLCSS(Ta, Tb) = 1− LCSS(i, j)

min(n,m)
(8)

G. Zero-mean Normalized Cross Correlation (ZNCC)

ZNCC(Ta, Tb) = max
x

∑n−1
i=0 (Ta[i]− Ta)(Tb[x + i]− Tb)√∑n−1

i=0 (Ta[i]− Ta)2 ×
∑m−1

i=0 (Tb[x + i]− Tb)2

(9)

where Ta and Tb are the mean values of Ta and Tb, respec-
tively [16].

IV. EXPERIMENTS AND RESULTS

In this work, we adopted the evaluation method used
in [17], [18]. It relies on the classification of time series
extracted from pixels associated with individuals of a same
species. For that, regions are defined by using a hierarchical
segmentation based on the Guigues algorithm [19]. The image
used to obtain the hierarchy of segmented regions was taken
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on September 17th, 2011 (Figure 1). Five segmentation scales
were selected from the hierarchy to extract the time series, as
described in Section II. The finest scale is composed of 27, 380
regions and the coarsest scale contains 8, 849 regions. A given
region is considered as belonging to a ROI if at least 80% of
its size is overlapped by such a ROI. In our experiments, we
have used only regions from the coarsest scale, as they have
been shown the most effective ones [17], [18].

The distance functions described in Section III are used in
the classification of time series using the k-Nearest Neighbor
algorithm (kNN) classifier. The main motivations for employ-
ing kNN rely on the use of an explicit distance function in the
classification process and its low complexity. A time series
can be represented as a point in a high-dimensional space.
A K-Nearest Neighbor query asks for the K records, in a
dataset, more similar to a query q (a time series in our case),
according to a distance metric. More precisely, the objective
is to find the set S = {Ti | Ti ∈ DB} such that |S| = K
and ∀Tj /∈ S, dist(q, Ti) ≤ dist(q, Tj), where DB is the
set containing all available time series and dist is a distance
function described in Section III. In our implementation, we
assign q to the most frequent class found in S.

We use the weighted accuracy as evaluation measure to
assess the quality of each kNN classifier. Let |C| be the
number of time series associated with class C and NC the
number of instances correctly classified as belonging to class
C. The average accuracy AC of a classifier, considering
instances of class C as input, is defined as follows:

AC =
NC

|C| (10)

Conducted experiments aim to assess the accuracy of
different distance functions in classification tasks involving
different phenology study scenarios: (1) we consider time
series obtained for different hours of a day (from 6 am to
6 pm) and, in this case, we are interested in determining
which distance function yields the best classification results
for each hour; (2) we consider time series obtained from
three different color channels (R, G, and B) and, in this
case, we are interested in determining which distance function
yields the best results for each color channel; and (3) we
consider different masks that are associated with individuals
of different species and, in this case, we are interested in
determining which distance function yields the best results for
each species. In the following subsections, we discuss obtained
results considering each one of those scenarios.

A. Evaluation according to the Hour of a Day

Figure 4 presents the average accuracy performance for
different 1-NN classifiers implemented using the different
distance functions, considering different time stamps. As it
can be observed, for all classifiers, the best results are usually
found in extreme hours (early in the morning and late in the
afternoon). Note also that there is no clear winner classifier,
except for the ZNCC-based kNN classifier whose accuracy
performance is worse than all others.

Fig. 4: Accuracy of all kNN classifiers with different distance
functions using RGB Channels.

B. Evaluation according to Color Channels

Figures 5, 6, and 7 present the average accuracy perfor-
mance for different 1-NN classifiers implemented using the
different distance functions, considering the R, G, and B color
channels, respectively. As it can be observed, for all color
channels, there is no clear winner distance function. For all
classifiers, again the best results are usually found in extreme
hours (early in the morning and late in the afternoon). For
the G color channel, the observed behavior of the accuracy
performance of all classifiers over time is more steady. Note
also that again that the ZNCC-based KNN classifiers usually
yield the worse accuracy performances.

C. Evaluation according to Species

Figures 8, 9, and 10 present the average accuracy perfor-
mance for different 1-NN classifiers implemented using the
different distance functions, considering time series of the
species Aspidosperma tomentosum, Miconia rubiginosa, and
Pouteria ramiflora, respectively.

For the Aspidosperma tomentosum, it was observed high
performance accuracy scores for all classifiers associated with
the time series of 5 pm (more than 80% in terms of accuracy).
The accuracy performance of the evaluated classifiers is worse
for the species Miconia rubiginosa. The best results (around
40%) are observed at 6 pm. Note also that the performance of
the ZNCC-based classifiers are not good again. For the species
Pouteria ramiflora, observed accuracy performances are poor
for all classifiers, except for the ZNCC-based KNN classifiers
at 7 am.

D. Correlation Analysis of Classifiers

In our experiments, we have performed a correlation
analysis among all classifiers implemented using the different
distance functions. We used the well-known Correlation Co-
efficient ρ (COR) and this measure is defined as follows [20]:

COR(ci, cj) =
ad− bc√

(a+ b)(c+ d)(a+ c)(b+ d)
. (11)
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Fig. 5: Accuracy of all kNN classifiers with the different
distance functions using R color channel.

Fig. 6: Accuracy of all kNN classifiers with the different
distance functions using G color channel.

Fig. 7: Accuracy of all kNN classifiers with the different
distance functions using B color channel.

To calculate COR(ci, cj), we have used a 2 × 2 matrix
containing the relationship between a pair of classifiers with
the percentage of agreement. This relationship matrix has the
percentage of hit and miss for each classifier ci and cj . The
value a is the percentage of instances that both classifiers ci
and cj classified correctly in the testing set. Values b and c
are the percentage of instances that cj classified correctly but
ci missed and vice-versa. The value d is the percentage of

Fig. 8: Accuracy of all kNN classifiers with the different
distance functions for the specie Aspidosperma tomentosum.

Fig. 9: Accuracy of all kNN classifiers with the different
distance functions for the specie Miconia rubiginosa.

Fig. 10: Accuracy of all kNN classifiers with the different
distance functions for the specie Pouteria ramiflora.

instances that both classifiers missed.

Table I shows the correlation analysis scores between all
seven classifiers considered in this work. As it can be observed,
the classifiers that consider the distance functions L1, L2,
and ERP are highly correlated. The ZNCC-based classifier
shows to be the less correlated to other. There are no distance
functions exactly equal between others, thus it means a good
indicative to be used classifier fusion approaches [21], [22].
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Classifier kNN-1

kNN-1

Distances L1 L2 ZNCC DTW LCSS EDR ERP
L1 1.00 0.86 0.31 0.76 0.71 0.74 0.85
L2 - 1.00 0.33 0.73 0.71 0.74 0.94

ZNCC - - 1.00 0.28 0.28 0.28 0.33
DTW - - - 1.00 0.66 0.67 0.72
LCSS - - - - 1.00 0.83 0.71
EDR - - - - - 1.00 0.75
ERP - - - - - - 1.00

TABLE I: Correlation analysis between all seven classifiers.
The less correlated classifiers are highlighted in bold.

V. CONCLUSIONS

In this paper, we performed a comparative study of dif-
ferent time series distance function for identifying phenology
patterns associated with leaf color variation over time. Similar
study has never been done before in the literature. Performed
experiments demonstrate that the kNN classifiers implemented
with different distance functions yield better results for ex-
treme hours (early in the morning and late in the afternoon).
The best accuracy results have been achieved by distance
functions L1 and ERP using Red Channel at 5pm, 58.8%. It
is possible to observe a behavior a bit more stable over time
in the green and blue channels. Although the classifier based
on ZNCC distance function yields the worst results in almost
all experiments, it achieved good results for the most difficult
species (Pouteria ramiflora) of the dataset. Furthermore, a
correlation analysis has been performed between all classifiers.
This analysis showed that the distance functions L1, L2,
and ERP are more correlated each other. However, there
is no function that is totally equal other. Thus, in future
work is possible consider the combination those different kNN
classifiers using fusion approaches, and the investigation of
novel distance functions.
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