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Abstract— Recently the use of image attributes as image
descriptors has drawn great attention. This is because the
resulting descriptors extracted using these attributes are human
understandable as well as machine readable. Although the image
attributes are generally semantically meaningful, they may not
be discriminative. As such, prior works often consider a dis-
criminative learning approach that could discover discriminative
attributes. Nevertheless, the resulting learned attributes could
lose their semantic meaning. To that end, in the present work,
we study two properties of attributes: discriminative power and
reliability. We then propose a novel greedy algorithm called
Discriminative and Reliable Attribute Learning (DRAL) which
selects a subset of attributes which maximises an objective
function incorporating the two properties. We compare our
proposed system to the recent state-of-the-art approach, called
Direct Attribute Prediction (DAP) for the zero-shot learning task
on the Animal with Attributes (AwA) dataset. The results show
that our proposed approach can achieve similar performance to
this state-of-the-art approach while using a significantly smaller
number of attributes.

I. INTRODUCTION

Feature extraction is one of the prominent tasks in the
image classification system pipeline. It serves as a transfor-
mation function mapping the images from their original high
dimensional space to another space where the classification
problem could be easier to solve. There are many works
aimed to develop such a good transformation function [22].
For instance, the Scale Invariant Feature Transform (SIFT) [14]
aims to extract features possessing invariant properties such
as: location, scale, rotation and affine transformations. Another
notable example is the Histogram Oriented Gradient (HOG) [7]
which is basically a feature descriptor counting occurrences
of specific gradient orientations in localized portions of an
image. Despite their excellent performance reported for various
vision applications [22], [7], these feature descriptors are
very difficult to be interpreted by humans. Although each of
their elements may have a relationship such as the gradient
magnitude, they do not have a direct relationship to the high-
level semantic concepts related to the problem domain [11],
[13].

Image attributes can be described as inherent proper-
ties/characteristics of an image. For instance, a car image could
have the following attributes: is blue, has wheels, is metallic.
In this case, one could represent an image with a set of image
attributes present in an image. Technically, each element in the
descriptor defines the existence/absence of a specific image
attribute. It can be detected by attribute detectors tested on
the low-level features mentioned above. Attribute detector is
basically a binary classifier trained beforehand. As such, one
needs to construct different training sets for each attribute
detector which could be expensive. To that end, one could use
a crowd sourcing approach which could minimise the cost by

using the Amazon Mechanical Turk (AMT) 1[17], [19]. Here,
we can ask people on the internet to describe the images by
words. Generally, the set of attributes found from this process
is not necessarily discriminative for the vision task. This is due
to the fact that it is difficult for humans to manually identify a
set of discriminative attributes for a classification task which
has a large number of categories.

The image attribute representation is successfully applied
in various vision tasks such as face verification [9], complex
event detection [15], human action recognition [26], visual
knowledge extraction [6], and zero-shot learning [10]. More-
over, Parikh et al. proposed the notion of relative attributes
such as larger or more open space which could be understood
as an adjective comparing two images [18].

In this work, we focus on the attribute-based zero shot
learning problem. Zero-shot learning [10] is the problem of
object recognition when the testing categories do not have
any training examples. However, humans can easily define
the attribute representation for each test category without
any training image due to the fact that each element of
the attribute descriptor has semantic meaning. For instance,
Lampert et al. showed that the image attribute descriptor
could be used to address the zero shot learning [10]. They
proposed two general frameworks of attributes-based zero-
shot learning, Direct Attributes Prediction (DAP) and Indirect
attributes prediction (IAP). However, in their work attribute
discriminative power has not yet been considered.

Several works proposed approaches to automatically dis-
cover discriminative attributes [8], [20], [27]. These ap-
proaches are very similar to some feature selection works [5],
[4]. Here, the attribute detectors are jointly learned with the
image classifier in the max-margin framework. For instance,
Farhadi et al. proposed to use random comparisons and
within category prediction to learn the discriminative attributes
respectively [8]. Nonetheless, the resulting set of attributes
are not guaranteed to have semantic meaning; defeating one
of the prime purposes of using attribute descriptors. Yu. et
al. designed a category-level discriminative attribute learning
algorithm according to category-separability and learnabil-
ity [27] however, their method also cannot be used to describe
images with concise semantic meaning due to the design of
category-attribute matrix. There is also significant human effort
required to build a new category-attribute matrix.

Contributions The aim of the present work is to discover
the set of semantic attributes which are also discriminative
and reliable for the given classification task. To that end,
we propose a discriminative selection algorithm which takes
as input the image attributes discovered from the manual
process via the AMT. There are two main advantages of using
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the proposed approach: (1) the feature dimensionality can be
significantly reduced which simplifies the classification process
and (2) the selected attributes can potentially improve the
system performance due to the fact that the selection is based
on the attribute discrimination power. The algorithm selects
the subset of semantically meaningful attributes maximising
two attribute properties: attribute discriminative power and
attribute reliability. Attribute discriminative power is related to
the property of the attribute descriptor to separate images of
different categories, whilst, we relate the attribute reliability
to the error produced during the attribute descriptor extrac-
tion process. We apply our method to the zero-shot learning
problem investigated in [10]. We show that by applying our
algorithm we can decrease the dimensionality of the attribute
descriptor by 35% achieving better performance than the state-
of-the-art approach proposed in [10].

We continue our paper as follows. Section II presents the
proposed attribute properties. Then we describe the proposed
algorithm in Section III. The experiment and results are
discussed in Section IV. Finally the main findings and future
direction are presented in Section V.

II. PROPERTY OF ATTRIBUTES

Each element of an image attribute descriptor defines the
existence/absence of an image property [10]. Generally, in
an image classification task, each image is represented by
the same set of image attributes. Let zi ∈ {0, 1}B be the
B dimensional attribute descriptor of image Ii; the function
Φb : R

d �→ {0, 1} be the b-th attribute detector. Each element
in zi is determined as:

zi,b = Φb(xi) (1)

where zi,b is the b-th element of zi and xi is the set of features
extracted from image Ii.

In order to be successful in a classification task, one needs
to ensure that the attribute descriptor sufficiently separates im-
ages from different categories. Nevertheless, as demonstrated
by Farhadi et al. in [8], although a set of image attributes can
effectively describe objects from different categories, it may
not always be sufficient for distinguishing between different
categories. This is due to the fact that most image attributes
were generated by asking human to describe images. For
instance, it is reasonable to describe a cat as a four legged
animal. However this attribute is not useful to distinguish
between cats and dogs as they are both four legged animals. In
addition, it is almost impossible to manually identify the subset
of discriminative attributes from a large pool of attributes for
solving an image classification task with a large number of
categories. Therefore, it is important to have an automatic
system which is able to identify a subset of discriminative
attributes for each application domain.

Another important aspect that should be considered to
develop such a system is the fact that the attribute descrip-
tor extraction process is not error free. This is because the
attribute detectors {Φb}Bb=1 are essentially binary classifiers
trained to minimise the classification generalisation error. It
is preferable to have reliable attribute detectors which in turn
could minimise the overall descriptor extraction error.

In the light of the above facts, we propose that there are
intrinsically two aspects contributing to the performance of
a classification system utilising image attribute descriptors:

(1) attribute discriminative power and (2) attribute reliabil-
ity. The former determines the separability between image
categories and the latter determines the reliability of each
attribute detector and also the semantic drift of the attribute
classifier. Discriminative power has been explored in [27] to
discover discriminative category-level attributes. Nevertheless,
the discovered attributes resulting from this approach do not
necessarily have semantic meaning.

A. Attribute discriminative power

Attribute discriminative power governs how well a set of
image attributes separate images from different categories. The
attribute discriminative power, Δ can be defined as:

Δ =
∑
i

∑
j

‖zi − zj‖H zi ∈ c, zj /∈ c (2)

where zi and zj are the attribute descriptors of the i-th and
j-th images which belong to different categories, respectively;
‖·‖H is the hamming distance. The above equation can be
easily extended to the zero-shot learning where only category-
level attributes are available:

Δ =
∑
i

∑
j

‖hi − hj‖H i �= j (3)

where hi,hj ∈ {0, 1}B are the category-level attribute de-
scriptor. Intuitively, when the attribute discriminative power Δ
is maximised, the margin between pair-wise categories will be
maximised in the attribute feature space. This will lead to high
category separability.

B. Attribute reliability

We define the attribute reliability, Ω which measures the
reliability of a set of attribute detectors as:

Ω =
B∑

b=1

ωb (4)

where ωb is the reliability score of the b-th attribute detector.
The individual reliability score ωb is related to the generalisa-
tion error of the attribute detector Φb. Indeed it is difficult to
determine the generalisation error of a classifier [3], [24]. One
possible alternative is to define ω̂b which is the approximation
of ωb. Thus, the approximated attribute reliability, Ω̂, is defined
as

Ω̂ =

B∑
b=1

ω̂b (5)

.

In the present work we determine ω̂b by first constructing the
Receiver Operating Characteristic (ROC) curve of the attribute
detector Φb and computing the Area Under the Curve (AUC).
We further perform non-linear normalisation using a sigmoid
function in order to increase the contrast between the reliable
and non-reliable attributes. Therefore, we define ω̂b as:

ω̂b =
1

1 + e−β(AUCb−γ)
(6)
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where AUCb is the AUC of the attribute detector Φb; β, γ
are the normalisation parameters. We determine both the AUC
and the normalisation parameters from a cross-validation set.
It is noteworthy to mention the attribute reliability relies on
two factors: (1) the generalisation error of the attribute detector
and (2) the semantic drift caused from the noise in the attribute
detector training process. The semantic drift happens when an
attribute detector accidentally learns a concept different from
the initial intention [8]. For instance, when we use car and
non-car images as positive and negative samples in order to
learn has wheel attribute, the corresponding attribute detector
may learn is metallic concept as the most discriminative
feature to differentiate cars with non-car images. Our proposed
approximation of the attribute reliability Ω̂ captures the former
factor. Nevertheless, it is still difficult to measure the degree
of the attribute detector semantic drift.

III. DISCRIMINATIVE AND RELIABLE ATTRIBUTE

LEARNING

A. Prior Work

In this part, we will briefly introduce the Discriminative
Attribute Prediction (DAP) method proposed in [10]. The DAP
uses the Bayes rule to model the relationships between attribute
descriptor zi and low level feature representation xi of an
image as well as zi and the unseen test category label v. The
attribute descriptor zy

i for a seen training category y can be

represented as a vector
[
zyi,1, ..., z

y
i,B

]T
, the Bayes posteriori

probability for a test category v given an input xi can be
defined as Eqn. 7 :

P (v|xi) = P (v)
B∏

b=1

P
(
zvi,b|xi

)

P
(
zvi,b

) (7)

where P (v) is the prior of the test category v, P (zvi,b) denotes
the attribute prior, P (zvi,b|xi) is the image-attribute probability
output of the attribute detector φb. The authors assume identi-
cal test category prior and then ignore P (v) effectively. They

also use empirical means P (zvi,b) =
1
K

∑K
k=1 I(z

k
i,b = zvi,b) for

all the training categories, where I(·) is the indicator function
that gives value one when the condition is met, zero otherwise;
and K is the number of training categories. Finally, the best
output category from all test categories v1, ..., vq is assigned
to a test sample xi according to the (maximum a posteriori
probability) MAP prediction as Eqn. 8:

f (xi) = argmax
q=1,...,Q

P (v|xi) = argmax
q=1,...,Q

B∏
b=1

P
(
z
vp
i,b|xi

)

P
(
z
vp
i,b

) (8)

B. Discriminative and Reliable Attribute Selection

Given a pool of image attributes U , the goal of the
present work is to mine the set of attributes which have high
discriminative power as well as reliability. To that end, we
define our objective function J(·) as:

J
({U, {hi}Ci=1, {Φb}Bb=1}

)
= argmax

S∈U

(
αΩ̂S + (1− α)ΔS

)

(9)

where U = {1 · · ·B} is the set of all image attributes; S ∈ U
is the selected subset of image attributes; ΔS and Ω̂S are the
selected attribute discriminative power and attribute reliability,
respectively; {Φb}Bb=1 is the set of attribute detectors; C is
the number of categories; α is the mixing parameter which
determines the importance between attribute discriminative
power and reliability.

We note that the optimisation problem presented in Eqn. 9
is NP-hard as it involves optimisation in binary space [16].
This means that the problem cannot be solved by any tradi-
tional optimisation algorithm such as gradient descent algo-
rithms. As such, we propose a greedy algorithm wherein for
each step, it chooses the attribute that maximises the objective.
We call this algorithm Discriminative and Reliable Attribute
Learning (DRAL).

The goal of the DRAL algorithm is to select a subset
of attributes S so that it maximises J(·). The algorithm is
presented in Algorithm 1. The algorithm optimises the function
J(·) by optimising a single attribute at a time. Let us suppose
that we want to optimise the k-th attribute in S. This can be
done by converting Eqn. 9 into:

J
(
{U, {hi}Ci=1, {Φb}Bb=1}

)
=

argmax
k∈U

(
αω̂k + (1− α)

∑
i

∑
j

‖hi,k − hj,k‖H+

α
∑
b �=k

ω̂b + (1− α)
∑
i

∑
j

∑
b �=k

‖hi,b − hj,b‖H
⎞
⎠ (10)

which then can be further simplified into:

J
(
{U, {hi}Ci=1, {Φb}Bb=1}

)
=

argmax
k∈U

(
αω̂k + (1− α)

∑
i

∑
j

‖hi,k − hj,k‖H+C

)
(11)

where C = α
∑

b�=k ω̂b+(1−α)
∑

i

∑
j

∑
b�=k‖hi,b−hj,b‖H ;

hi,k is the k-th element of the category-level attribute descrip-
tor i. To solve the above equation, the proposed algorithm
chooses k from U which optimises the above function. Here
the k attribute is not included in the set S

Before optimising the objective function with respect to
k ∈ U , we would need to choose l ∈ S which will be
replaced by k. In this case, l needs to be the attribute that is
most unreliable and non-discriminative. This means we need
to solve the following problem:

J
(
{U, {hi}Ci=1, {Φb}Bb=1}

)
=

argmin
l∈S

(
αω̂l + (1− α)

∑
i

∑
j

‖hi,l − hj,l‖H+C

)
(12)

where C = α
∑

b�=l ω̂b + (1−α)
∑

i

∑
j

∑
b�=l‖hi,b− hj,b‖H .

The above equation can be addressed by choosing the attribute
from the selected subset S which minimises the function.

2621



Algorithm 1 The proposed greedy algorithm for solving
Eqn. 9. The final result is S which is the most discriminative
and reliable attribute set selected from U ; N is the number of
attributes (i.e. N = |S|)
Require: {U, {hi}Ci=1, {Φb}Bb=1}, N

1: S ← randomly select N number of attributes from U
2: repeat
3: l ∈ S ← Solve Eqn. 12
4: S = S − {l}
5: k ∈ U ← Solve Eqn. 11
6: S = S ∪ {k}
7: until S does not change

Given a subset S, the algorithm will alternate between
solving Eqn. 12 and Eqn. 11. It stops when the member of
subset S does not change any further.

There are several design choices on how S is initialised.
However, from our empirical analysis, initialising S by ran-
domly selecting attributes from U always gives quick conver-
gence. Therefore, we will use random selection to initialise
S. The full algorithm is presented in Algorithm 1. We will
later show in the experiment that by doing this procedure, the
algorithm monotonically increases the objective function and
thus convergence can be reached.

Another way to solve Eqn. 9 is by considering a group of
attributes instead of individual attribute. We call this approach
as group selection approach. Unlike the proposed approach, in
the group selection approach, at one instance, we would like
to select a group of attributes that will optimise Eqn. 9. Never-
theless, from our observation, in this setting, the solution can
always be reduced to the single attribute selection presented in
Eqn. 11 and Eqn. 12. This entails the group selection would
give virtually the same results as the proposed approach.

IV. EXPERIMENT EVALUATION

In this section, the variants of the proposed approach are
evaluated and compared. Then the best performing system
will be contrasted to the state-of-the-art method named Direct
Attribute Prediction (DAP) [10]. We note that we use the same
classifier as DAP for all variants. The difference is that the
DAP uses the whole set of attribute pool. We consider the zero-
shot learning problem applied in the Animal with Attribute
dataset (AwA) [10].

A. Dataset and Experiment settings

The AwA dataset contains 35,474 images of 50 animal
categories with 85 attribute labels. It has two types of labels
for each image: the attribute label and category label. Category
label indicates the animal category to which the image belongs.
Attribute label represents the presence/absence of an attribute
in an image. Therefore, each image is represented by 85 dimen-
sional attribute descriptor. We note that in this dataset, all the
images in a same category have same attribute representation.
We follow the experiment protocol and the settings used in [10]
for the zero-shot learning problem. In particular, the categories
are divided into two disjoint sets: 40 categories for training
and 10 categories for testing. In this way, there is no training
image given for the 10 categories in the test set. However,
the manually labelled category-level attributes for each test
category are given.

For the low-level feature used to train the attribute detectors
and detect the attributes, we use the same extracted features as
in [10] such as: HSV colour histogram, SIFT [14], rgSIFT [23],
PHOG [2], SURF [1] and local self-similarity [21]. All the
features are combined using the Multiple Kernel Learning. We
also use the kernels provided from the author, to make our
results comparable to the previous works. In addition, we also
use the same parameters to train the attribute detectors and
repeat the experiment 5 times.

The proposed DRAL algorithm has three parameters: β and
γ which are used for Eqn. 6 and the mixing coefficient α. The
values of all parameters are selected from the cross-validation
set. From our empirical analysis we found that γ = 1

B

∑
b ω̂b

to be a good value. In addition β is determined from range
[0, 100].

The mixing coefficient α determines the importance of
the attribute properties (i.e. attribute discriminative power and
attribute reliability). We search α with range [0.1...0.9] and
we find that α = 0.9 to perform best. Intuitively, we should
put more important into the attribute discriminative power
when there are a large number of categories. This can be
explained from the fact that large number of categories require
longer binary code to sufficiently separate them. However, as
mentioned, there are only 10 categories in the test set, thus, we
need to put more importance toward the attribute reliability.

B. Experimental Results

For the first evaluation, we compare five variants of the pro-
posed system: (1) DRAL using only the attribute discriminative
power information (i.e. α = 0), denoted DRAL (discrimina-
tive); (2) DRAL using only the attribute reliability information
(i.e. α = 1.0), DRAL (reliability); (3) the proposed DRAL us-
ing both attribute properties, denoted DRAL (both); (4) semi-
random selection and (5) random selection. The semi-random
selection approach uses the DRAL algorithm without solving
Eqn. 12. Instead the approach randomly selects l ∈ S. Whilst
the random selection approach randomly selects S from U .

We first present the empirical study of the study the
proposed algorithm’s convergence. Fig. 1 shows the plot of the
objective function score presented in Eqn. 9 for each variant
of DRAL in every loop. Note that for the case of random se-
lection, the attribute set S is randomly selected for every loop.
This result suggests that when using both attribute properties,
the proposed algorithm achieves the highest convergence rate
(i.e. after iteration 20). Moreover, the other approaches are
not able to maximise the objective function. The semi-random
selection variant requires a more iterations to converge. This
shows that our strategy requires both attribute properties in
order to maximise the objective function.

It is noteworthy to mention that the algorithm did not
converge when using only the attribute discriminative power
property. On closer examination, we found that the system
picked many unreliable attributes generating discriminative
attribute descriptors that sufficiently separates the 10 test
categories. This generated large errors during the attribute
descriptor extraction on each test image which led to a large
classification error.

In the second evaluation, we compared the performance of
all variants in the test set. To this end, we varied the number
of selected attribute N from 35 to 75. Fig. 2 presents the
results. The proposed DRAL algorithm using both attribute
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Fig. 2. Comparison of the proposed approach variants when the number
of selected attributes varies from 35 to 75, The best performance (41.5% in
accuracy outperforms that of DAP) appears at the point when 55 selected
attributes used .

properties generally perform better than the other variants.
The variant achieves slightly better performance than the
original DAP when only 55 attributes were selected (i.e. 35%
less). Moreover, we can reduce this to 40 with a price of
slight performance loss (41.2%). This suggests that proposed
algorithm is able to select the most discriminative attribute
set from the 85 attributes provided in the dataset. Table I
presents further detailed results when the number of attributes
was set to 55. These results are consistent with the convergence
evaluation presented before.

TABLE I. ZERO-SHOT MULTI-CLASS CLASSIFICATION ACCURACY ON

10 NOVEL ANIMALS CATEGORIES SELECTING 55 ATTRIBUTES.

Methods Accuracy (in %)

DRAL (both) 41.5
DRAL (reliability) 40.9
DRAL (discriminative) 37.5

Semi-random selection 40.6
Random selection 40.2

original DAP [10] 41.4

C. Comparative analysis to DAP

In this evaluation, we use the best performing system previ-
ously found (i.e. DRAL(both)). Fig. 3 present the comparison
between the DAP and the DRAL ROC curves. This further
validates the efficacy of the proposed system. The AUCs of
the system in most categories are better than those of the DAP.
That suggests that the automatic selection of discriminative
and reliable attributes does indeed notably improve the per-
formance over the DAP in most test categories. In particular,
it significantly outperforms DAP in leopard, persian+cat,
chimpanzee and seal. However, we note that there are still two
categories performing worse namely the pig and hippopotamus
categories.

V. MAIN FINDINGS AND FUTURE DIRECTION

Image attributes offer a convenient way of bringing seman-
tic concepts into machine-readable image representation. Al-
though these image attributes are generally semantically mean-
ingful, they are not necessarily discriminative. This means,
there is no guarantee for image classification systems using
this approach to achieve good performance. To that end, in
the present work we study two properties of image attributes:
attribute discriminative power and attribute reliability. The
attribute discriminative power is related to the property of a set
of image attributes to separate images of different categories.
Whilst, the attribute reliability is related to the error produced
during the attribute descriptor extraction process. We propose
a greedy algorithm, here denoted Discriminative Reliable
Attribute Learning (DRAL), to select a subset of attributes
maximising an objective function that incorporates the two
properties. Given a pool of image attributes, the algorithm first
selects the image attribute minimising the objective function
from the selected set. Then, it replaces the image attribute from
the pool with the one maximising the objective function. The
process iterates until the selected set does not change.

We empirically showed that the algorithm converges and
was able to optimise the objective function. We contrasted our
proposed approach with the state-of-the-art approach, denoted
DAP for the zero shot learning problem in the Animal with At-
tribute dataset. The results demonstrated that with significantly
less number of attributes the proposed approach achieved a
comparable performance to the DAP approach.

There are many extensions and feasible enhancements can
be explored in the future. For instance, we could use a better
approximation to measure the attribute reliability property that
considers both the detector performance as well as the semantic
drift. Another interesting future direction is to find the smallest
set of attributes by adding an additional regularisation term
in the objective function. We can also explore some novel
applications for the proposed strategy such as super resolu-
tion [12], 3D reconstruction [28], [29] or anomaly detection in
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Fig. 3. Comparison of the Performance between the proposed method DRAL
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surveillance systems [25]. Here we can use attributes of low
resolution image as the query to collect the high resolution
images which have similar parts to that, then use the patches
of the high resolution images as sources to approximate the
patches of low resolution image and reconstruct the high
resolution images.
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